Search results for: triangular patch antenna
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 575

Search results for: triangular patch antenna

95 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures

Authors: Michał Lidner, Zbigniew SzcześNiak

Abstract:

The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.

Keywords: adiabatic process, air shock wave, explosive, finite volume method

Procedia PDF Downloads 155
94 Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments

Authors: E. Rama Devi Jothilingam

Abstract:

Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness.

Keywords: Diabetes mellitus, fuzzy expert system, Mamdani, MATLAB

Procedia PDF Downloads 254
93 Dynamics and Advection in a Vortex Parquet on the Plane

Authors: Filimonova Alexanra

Abstract:

Inviscid incompressible fluid flows are considered. The object of the study is a vortex parquet – a structure consisting of distributed vortex spots of different directions, occupying the entire plane. The main attention is paid to the study of advection processes of passive particles in the corresponding velocity field. The dynamics of the vortex structures is considered in a rectangular region under the assumption that periodic boundary conditions are imposed on the stream function. Numerical algorithms are based on the solution of the initial-boundary value problem for nonstationary Euler equations in terms of vorticity and stream function. For this, the spectral-vortex meshless method is used. It is based on the approximation of the stream function by the Fourier series cut and the approximation of the vorticity field by the least-squares method from its values in marker particles. A vortex configuration, consisting of four vortex patches is investigated. Results of a numerical study of the dynamics and interaction of the structure are presented. The influence of the patch radius and the relative position of positively and negatively directed patches on the processes of interaction and mixing is studied. The obtained results correspond to the following possible scenarios: the initial configuration does not change over time; the initial configuration forms a new structure, which is maintained for longer times; the initial configuration returns to its initial state after a certain period of time. The processes of mass transfer of vorticity by liquid particles on a plane were calculated and analyzed. The results of a numerical analysis of the particles dynamics and trajectories on the entire plane and the field of local Lyapunov exponents are presented.

Keywords: ideal fluid, meshless methods, vortex structures in liquids, vortex parquet.

Procedia PDF Downloads 33
92 Chitosan Doped Curcumin Gold Clusters Flexible Nanofiber for Wound Dressing and Anticancer Activities

Authors: Saravanan Govindaraju, Kyusik Yun

Abstract:

The purpose of this study is to develop the chitosan doped curcumin gold cluster nanofiber for wound healing and skin cancer drug delivery applications. Chitosan is a typical marine polysaccharide composed of glucosamine and n-acetyl glucosamine biodegradable and biocompatible polymer. Curcumin is a natural bioactive molecule obtained from Curcuma longo, it mostly occurs in some Asian countries like India and China. It has naturally antioxidant, antimicrobial, wound healing and anticancer property. Due to this advantage, we prepared a combination of natural polymer chitosan with Curcumin and gold nanocluster nanofiber (CH-CUR-AuNCs nanofibers). The prepared nanofiber was characterized by using Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Antibacterial studies were performed with E.coli and S.aureus. Antioxidant assay, drug release test, and cytotoxicity will be evaluated. Prepared nanofiber emits low intensity of red fluorescent. The FTIR confirm the presence of chitosan and Curcumin in the nanofiber. In vitro study clearly shows the antibacterial activity against the gram negative and gram positive bacteria. Particularly, synthesised nanofibers provide better antibacterial activity against gram negative than gram positive. Cytotoxicity study also provides better killing rate in cancer cell, biocompatible with normal cell. Prepared CH-CUR-AuNCs nanofibers provide the better killing rate to bacterial strains and cancer cells. Finally, prepared nanofiber can be possible to use for wound healing dressing, patch for skin cancer and other biomedical applications.

Keywords: curcumin, chitosan, gold clusters, nanofibers

Procedia PDF Downloads 230
91 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 68
90 Sociological Approach to the Influence of Gender Stereotypes in Sport Education

Authors: Sara Rozenwajn Acheroy

Abstract:

This study aims to analyze gender stereotypes’ influence of physical education’s teachers in secondary education and coaches in sports clubs of five sports: swimming, beach-volley, tennis, gymnastics and football. Because sport is a major socializing agent of high symbolic, ideological and economical relevance with an impact in the social values and the construct of identity, in addition, to be an international and global phenomenon, States tend to institutionalize it through education, federations, and clubs, as well as build sports facilities. Research in the field is now needed more than ever, given that sport is still considered as a masculine practice, and that such perspective is spread at school since the age of six in physical education lessons. For all those reasons, and more, it is necessary to study which stereotypes are transmitted in its everyday practice and how it affects young people’s self-perception on their physical and body capacities. This study’s objectives are centered on 4 points: 1) stereotypes and self-perception of students and young people, 2) teachers and coaches’ stereotypes and influence, 3) social status of parents (indicative) and 4) environmental analysis of schools and sport clubs. To that end, triangular methodology has been favored. Quantitative and qualitative data, through semi-structured interviews with coaches and teachers; group interviews with young people; 450 surveys in high schools from Madrid, Barcelona and Canary Islands; and participant observation in clubs. Remarks made at this stage of the study are diverse and not conclusive. For example, physical education teachers have more gender stereotypes than coaches in sport clubs, matching with our hypothesis so far. It also seems that young people at the age of 16-17 still do not have internalized gender stereotypes as deep as their teachers. This among other observations of the current fieldwork will be exposed, hoping to give a better understanding of the need for gender policies and educational programs with gender perspective in all sectors that includes sport’s activities.

Keywords: gender, sport, sexism, gender stereotypes, sport education

Procedia PDF Downloads 182
89 Receptor-Independent Effects of Endocannabinoid Anandamide on Contractility and Electrophysiological Properties of Rat Ventricular Myocytes

Authors: Lina T. Al Kury, Oleg I. Voitychuk, Ramiz M. Ali, Sehamuddin Galadari, Keun-Hang Susan Yang, Frank Christopher Howarth, Yaroslav M. Shuba, Murat Oz

Abstract:

A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier studies. In the present work, we have hypothesized that the antiarrhythmic effects reported for AEA are due to its negative inotropic effect and altered action potential (AP) characteristics. Therefore, we tested the effects of AEA on contractility and electrophysiological properties of rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) caused a significant decrease in the amplitudes of electrically-evoked myocyte shortening and Ca2+ transients and significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 µg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists). Furthermore, AEA inhibited voltage-activated inward Na+ (INa) and Ca2+ (IL,Ca) currents; major ionic currents shaping the APs in ventricular myocytes, in a voltage and PTX-independent manner. Collectively, the results suggest that AEA depresses ventricular myocyte contractility, by decreasing the action potential duration (APD), and inhibits the function of voltage-dependent Na+ and L-type Ca2+ channels in a manner independent of cannabinoid receptors. This mechanism may be importantly involved in the antiarrhythmic effects of anandamide.

Keywords: action potential, anandamide, cannabinoid receptor, endocannabinoid, ventricular myocytes

Procedia PDF Downloads 317
88 Nesting Habitat Preference of Indigenous Bumblebee, Bombus haemorrhoidalis in Himalayan Range of Azad Jammu and Kashmir, Pakistan

Authors: Umer Ayyaz Aslam Sheikh

Abstract:

Non Apis bee like the bumblebees are important due to their utilization of diverse floral plants and belong to the richest and most conspicuous flower visitors in alpine, temperate and arctic environments for pollination in both natural and managed cropping systems. These bees generally construct underground nests and habitat devastation and crumbling are major causes for their decline in nature. The present study was conducted in the Himalayan range of Azad Jammu, and Kashmir, Pakistan, surveys were conducted during the early spring season to observe maximum Bombus haemorrhoidalis queens (emerged after winter diapauses) searching for a nesting place. Whole study area was grouped into four types of landscape (open field, relatively open , relatively wooded and wooded), five habitat types (field, field boundary, pasture forest boundary and forest) and these habitat further grouped into four different patch types including withered grass, new grass, tussocks and stones and moss. Maximum nest seeking bumblebee queens preferred relatively open field landscape followed by open fields and forest boundaries. Field boundaries were recorded as most proffered habitat along with withered grasses for nesting sites of B. haemorrhoidalis queens. A wooded landscape with stone and moss type of patches were found least preferred nesting sites. This study will be helpful in the future for conservation program this for declining bumblebee species in this region. It will also provide the baseline for the conservation of other bumblebee species of the world.

Keywords: bumblebee, Bombus haemorrhoidalis, habitat, nest seeking preference, Pakistan

Procedia PDF Downloads 96
87 Development of a Fuzzy Logic Based Model for Monitoring Child Pornography

Authors: Mariam Ismail, Kazeem Rufai, Jeremiah Balogun

Abstract:

A study was conducted to apply fuzzy logic to the development of a monitoring model for child pornography based on associated risk factors, which can be used by forensic experts or integrated into forensic systems for the early detection of child pornographic activities. A number of methods were adopted in the study, which includes an extensive review of related works was done in order to identify the factors that are associated with child pornography following which they were validated by an expert sex psychologist and guidance counselor, and relevant data was collected. Fuzzy membership functions were used to fuzzify the associated variables identified alongside the risk of the occurrence of child pornography based on the inference rules that were provided by the experts consulted, and the fuzzy logic expert system was simulated using the Fuzzy Logic Toolbox available in the MATLAB Software Release 2016. The results of the study showed that there were 4 categories of risk factors required for assessing the risk of a suspect committing child pornography offenses. The results of the study showed that 2 and 3 triangular membership functions were used to formulate the risk factors based on the 2 and 3 number of labels assigned, respectively. The results of the study showed that 5 fuzzy logic models were formulated such that the first 4 was used to assess the impact of each category on child pornography while the last one takes the 4 outputs from the 4 fuzzy logic models as inputs required for assessing the risk of child pornography. The following conclusion was made; there were factors that were related to personal traits, social traits, history of child pornography crimes, and self-regulatory deficiency traits by the suspects required for the assessment of the risk of child pornography crimes committed by a suspect. Using the values of the identified risk factors selected for this study, the risk of child pornography can be easily assessed from their values in order to determine the likelihood of a suspect perpetuating the crime.

Keywords: fuzzy, membership functions, pornography, risk factors

Procedia PDF Downloads 95
86 Analyze the Effect of TETRA, Terrestrial Trunked Radio, Signal on the Health of People Working in the Gas Refinery

Authors: Mohammad Bagher Heidari, Hefzollah Mohammadian

Abstract:

TETRA (Terrestrial Trunked Radio) is a digital radio communication standard, which has been implemented in several different parts of the gas refinery ninth (phase 12th) by South Pars Gas Complex. Studies on possible impacts on the users' health considering different exposure conditions are missing. Objectives: To investigate possible acute effects of electromagnetic fields (EMF) of two different levels of TETRA hand-held transmitter signals on cognitive function and well-being in healthy young males. Methods: In the present double-blind cross-over study possible effects of short-term (2.5 h) EMF exposure of handset-like signals of TETRA (450 - 470 MHz) were studied in 30 healthy male participants (mean ± SD: 25.4 ±2.6 years). Individuals were tested on nine study days, on which they were exposed to three different exposure conditions (Sham, TETRA 1.5 W/kg and TETRA 10.0 W/kg) in a randomly assigned and balanced order. Participants were tested in the afternoon at a fixed timeframe. Results: Attention remained unchanged in two out of three tasks. In the working memory, significant changes were observed in two out of four subtasks. Significant results were found in 5 out of 35 tested parameters, four of them led to an improvement in performance. Mood, well-being and subjective somatic complaints were not affected by TETRA exposure. Conclusions: The results of the present study do not indicate a negative impact of a short-term EMF- effect of TETRA on cognitive function and well-being in healthy young men.

Keywords: TETRA (terrestrial trunked radio), electromagnetic fields (EMF), mobile telecommunication health research (MTHR), antenna

Procedia PDF Downloads 266
85 Towards Printed Green Time-Temperature Indicator

Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois

Abstract:

To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.

Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics

Procedia PDF Downloads 124
84 Tracing Ethnic Identity through Prehistoric Paintings and Tribal Art in Central India

Authors: Indrani Chattopadhyaya

Abstract:

This paper seeks to examine how identity – a cultural self-image of a group of people develops – how they live, they think, they celebrate and express their world view through language, gesture, symbols, and rituals. 'Culture' is a way of life and 'identity' is assertion of that cultural self-image practiced by the group. The way in which peoples live varies from time to time and from place to place. This variation is important for their identity. Archaeologists have classified these patterns of spacial variations as 'archaeological culture.' These cultures are identified 'self-consciously' with a particular social group indicating ethnicity. The ethnic identity as archaeological cultures also legitimizes the claims of modern groups to territory. In prehistoric research problems of ethnicity and multiculturalism, stylistic attributes significantly reflect both group membership and individuality. In India, anthropologists feel that though tribes have suffered relative isolation through history, they have remained an integral part of Indian civilization. The term 'tribe' calls for substitution with a more meaningful name with an indigenous flavour 'Adivasi' (original inhabitants of the land).While studying prehistoric rock paintings from central India - Sonbhadra (Uttar Pradesh) and Bhimbetka (Madhya Pradesh), one is struck by the similarity between stylistic attributes of painted motifs in the prehistoric rock shelters and the present day indigenous art of Kol and Bhil tribes in the area, who have not seen these prehistoric rock paintings, yet are carrying on with the tradition of painting and decorating their houses in the same way. They worship concretionary sandstone blocks with triangular laminae as Goddess, Devi, Shakti. This practice is going on since Upper Palaeolithic period confirmed by archaeological excavation. The past is legitimizing the role of the present groups by allowing them to trace their roots from earlier times.

Keywords: ethnic identity, hermeneutics, semiotics, Adivasi

Procedia PDF Downloads 280
83 Prey Selection of the Corallivorous Gastropod Drupella cornus in Jeddah Coast, Saudi Arabia

Authors: Gaafar Omer BaOmer, Abdulmohsin A. Al-Sofyani, Hassan A. Ramadan

Abstract:

Drupella is found on coral reefs throughout the tropical and subtropical shallow waters of the Indo-Pacific region. Drupella is muricid gastropod, obligate corallivorous and their population outbreak can cause significant coral mortality. Belt transect surveys were conducted at two sites (Bohairat and Baydah) in Jeddah coast, Saudi Arabia to assess prey preferences for D. cornus with respect to prey availability through resource selection ratios. Results revealed that there are different levels of prey preferences at the different age stages and at the different sites. Acropora species with a caespitose, corymbose and digitate growth forms were preferred prey for recruits and juveniles of Drupella cornus, whereas Acropora variolosa was avoided by D. cornus because of its arborescent colony growth form. Pocillopora, Stylophora, and Millipora were occupied by Drupella cornus less than expected, whereas massive corals genus Porites were avoided. High densities of D. cornus were observed on two fragments of Pocillopora damicornis which may because of the absence of coral guard crabs genus Trapezia. Mean densities of D. cornus per colony for each species showed significant differentiation between the two study sites. Low availability of Acropora colonies in Bayadah patch reef caused high mean density of D. cornus per colony to compare to that in Bohairat, whereas higher mean density of D. cornus per colony of Pocillopora in Bohairat than that in Bayadah may because of most of occupied Pocillopora colonies by D. cornus were physical broken by anchoring compare to those colonies in Bayadah. The results indicated that prey preferences seem to depend on both coral genus and colony shape, while mean densities of D. cornus depend on availability and status of coral colonies.

Keywords: prey availability, resource selection, Drupella cornus, Jeddah, Saudi Arabia

Procedia PDF Downloads 107
82 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures

Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar

Abstract:

Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.

Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses

Procedia PDF Downloads 483
81 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 41
80 Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves

Authors: M. Alkhalidi, S. Neelamani, Z. Al-Zaqah

Abstract:

This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance.

Keywords: random waves, regular waves, relative water depth, relative wave height, single breakwater, twin breakwater, wave steepness

Procedia PDF Downloads 269
79 Capacity Oversizing for Infrastructure Sharing Synergies: A Game Theoretic Analysis

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) rely on two basic modes of cooperation between organizations that are infrastructure/service sharing and resource substitution (the use of waste materials, fatal energy and recirculated utilities for production). The former consists in the intensification of use of an asset and thus requires to compare the incremental investment cost to be incurred and the stand-alone cost faced by each potential participant to satisfy its own requirements. In order to investigate the way such a cooperation mode can be implemented we formulate a game theoretic model integrating the grassroot investment decision and the ex-post access pricing problem. In the first period two actors set cooperatively (resp. non-cooperatively) a level of common (resp. individual) infrastructure capacity oversizing to attract ex-post a potential entrant with a plug-and-play offer (available capacity, tariff). The entrant’s requirement is randomly distributed and known only after investments took place. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period under some conditions that we derive. The entrant willingness-to-pay for the access to the infrastructure is driven by both her standalone cost and the complement cost to be incurred in case she chooses to access an infrastructure whose the available capacity is lower than her requirement level. The expected complement cost function is thus derived, and we show that it is decreasing, convex and shaped by the entrant’s requirements distribution function. For both uniform and triangular distributions optimal capacity level is obtained in the cooperative setting and equilibrium levels are determined in the non-cooperative case. Regarding the latter, we show that competition is deterred by the first period investor with the highest requirement level. Using the non-cooperative game outcomes which gives lower bounds for the profit sharing problem in the cooperative one we solve the whole game and describe situations supporting sharing agreements.

Keywords: capacity, cooperation, industrial symbiosis, pricing

Procedia PDF Downloads 405
78 Determines the Continuity of Void in Underground Mine Tunnel Using Ground Penetrating Radar

Authors: Farid Adisaputra Gumilang

Abstract:

Kucing Liar Underground Mine is a future mine of PT Freeport Indonesia PTFI that is currently being developed. In the development process, problems were found when blasting the tunnels; there were overbreak, and void occur caused by geological contact or poor rock conditions. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate the depth of rock mass yield within pillars. To prevent the potential hazard caused by void zones, geotechnical engineers must ensure the planned drift is mined in the best location where people can work safely. GPR, or Ground penetrating radar, is a geophysical method that can image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. The GPR survey measurements are conducted 48 meters along the drift that has a poor ground condition with 150MHz antenna with several angles (roof, wall, and floor). Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. In this paper, processing data using instantaneous amplitude to identify the void zone. In order to have a good interpretation and result, it combines with the geological information and borehole camera data, so the calibrated GPR data allows the geotechnical engineer to determine the safe location to change the drift location.

Keywords: underground mine, ground penetrating radar, reflectivity, borehole camera

Procedia PDF Downloads 41
77 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings

Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi

Abstract:

In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.

Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel

Procedia PDF Downloads 206
76 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach

Authors: Ravi Patel, Krishna K. Krishnan

Abstract:

In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.

Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS

Procedia PDF Downloads 142
75 Development of a Triangular Evaluation Protocol in a Multidisciplinary Design Process of an Ergometric Step

Authors: M. B. Ricardo De Oliveira, A. Borghi-Silva, E. Paravizo, F. Lizarelli, L. Di Thomazzo, D. Braatz

Abstract:

Prototypes are a critical feature in the product development process, as they help the project team visualize early concept flaws, communicate ideas and introduce an initial product testing. Involving stakeholders, such as consumers and users, in prototype tests allows the gathering of valuable feedback, contributing for a better product and making the design process more participatory. Even though recent studies have shown that user evaluation of prototypes is valuable, few articles provide a method or protocol on how designers should conduct it. This multidisciplinary study (involving the areas of physiotherapy, engineering and computer science) aims to develop an evaluation protocol, using an ergometric step prototype as the product prototype to be assessed. The protocol consisted of performing two tests (the 2 Minute Step Test and the Portability Test) to allow users (patients) and consumers (physiotherapists) to have an experience with the prototype. Furthermore, the protocol contained four Likert-Scale questionnaires (one for users and three for consumers), that inquired participants about how they perceived the design characteristics of the product (performance, safety, materials, maintenance, portability, usability and ergonomics), in their use of the prototype. Additionally, the protocol indicated the need to conduct interviews with the product designers, in order to link their feedback to the ones from the consumers and users. Both tests and interviews were recorded for further analysis. The participation criteria for the study was gender and age for patients, gender and experience with 2 Minute Step Test for physiotherapists and involvement level in the product development project for designers. The questionnaire's reliability was validated using Cronbach's Alpha and the quantitative data of the questionnaires were analyzed using non-parametric hypothesis tests with a significance level of 0.05 (p <0.05) and descriptive statistics. As a result, this study provides a concise evaluation protocol which can assist designers in their development process, collecting quantitative feedback from consumer and users, and qualitative feedback from designers.

Keywords: Product Design, Product Evaluation, Prototypes, Step

Procedia PDF Downloads 93
74 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 181
73 Innovative Design Considerations for Adaptive Spacecraft

Authors: K. Parandhama Gowd

Abstract:

Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation & Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected.

Keywords: satellites, low earth orbit (LEO), medium earth orbit (MEO), geostationary earth orbit (GEO), self-organizing control system, anti-satellite weapons (ASAT), orbital control, radar warning receiver, missile warning receiver, laser warning receiver, attitude and orbit control systems (AOCS), command and data handling (CDH)

Procedia PDF Downloads 265
72 Isolation and Characterization of the First Known Inhibitor Cystine Knot Peptide in Sea Anemone: Inhibitory Activity on Acid-Sensing Ion Channels

Authors: Armando A. Rodríguez, Emilio Salceda, Anoland Garateix, André J. Zaharenko, Steve Peigneur, Omar López, Tirso Pons, Michael Richardson, Maylín Díaz, Yasnay Hernández, Ludger Ständker, Jan Tytgat, Enrique Soto

Abstract:

Acid-sensing ion channels are cation (Na+) channels activated by a pH drop. These proteins belong to the ENaC/degenerin superfamily of sodium channels. ASICs are involved in sensory perception, synaptic plasticity, learning, memory formation, cell migration and proliferation, nociception, and neurodegenerative disorders, among other processes; therefore those molecules that specifically target these channels are of growing pharmacological and biomedical interest. Sea anemones produce a large variety of ion channels peptide toxins; however, those acting on ligand-gated ion channels, such as Glu-gated, Ach-gated ion channels, and acid-sensing ion channels (ASICs), remain barely explored. The peptide PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by chromatographic techniques and pharmacologically characterized on acid-sensing ion channels of mammalian neurons using patch-clamp techniques. PhcrTx1 inhibited ASIC currents with an IC50 of 100 nM. Edman degradation yielded a sequence of 32 amino acids residues, with a molecular mass of 3477 Da by MALDI-TOF. No similarity to known sea anemone peptides was found in protein databases. The computational analysis of Cys-pattern and secondary structure arrangement suggested that this is a structurally ICK (Inhibitor Cystine Knot)-type peptide, a scaffold that had not been found in sea anemones but in other venomous organisms. These results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASICs. Also, this peptide constitutes a novel template for the development of drugs against pathologies related to ASICs function.

Keywords: animal toxin, inhibitor cystine knot, ion channel, sea anemone

Procedia PDF Downloads 261
71 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 71
70 On the Monitoring of Structures and Soils by Tromograph

Authors: Magarò Floriana, Zinno Raffaele

Abstract:

Since 2009, with the coming into force of the January 14, 2008 Ministerial Decree "New technical standards for construction", and the explanatory ministerial circular N°.617 of February 2, 2009, the question of seismic hazard and the design of seismic-resistant structures in Italy has acquired increasing importance. One of the most discussed aspects in recent Italian and international scientific literature concerns the dynamic interaction between land and structure, and the effects which dynamic coupling may have on individual buildings. In effect, from systems dynamics, it is well known that resonance can have catastrophic effects on a stimulated system, leading to a response that is not compatible with the previsions in the design phase. The method used in this study to estimate the frequency of oscillation of the structure is as follows: the analysis of HVSR (Horizontal to Vertical Spectral Ratio) relations. This allows for evaluation of very simple oscillation frequencies for land and structures. The tool used for data acquisition is an experimental digital tromograph. This is an engineered development of the experimental Languamply RE 4500 tromograph, equipped with an engineered amplification circuit and improved electronically using extremely small electronic components (size of each individual amplifier 16 x 26 mm). This tromograph is a modular system, completely "free" and "open", designed to interface Windows, Linux, OSX and Android with the outside world. It an amplifier designed to carry out microtremor measurements, yet which will also be useful for seismological and seismic measurements in general. The development of single amplifiers of small dimension allows for a very clean signal since being able to position it a few centimetres from the geophone eliminates cable “antenna” phenomena, which is a necessary characteristic in seeking to have signals which are clean at the very low voltages to be measured.

Keywords: microtremor, HVSR, tromograph, structural engineering

Procedia PDF Downloads 372
69 Assessment of the Performance of the Sonoreactors Operated at Different Ultrasound Frequencies, to Remove Pollutants from Aqueous Media

Authors: Gabriela Rivadeneyra-Romero, Claudia del C. Gutierrez Torres, Sergio A. Martinez-Delgadillo, Victor X. Mendoza-Escamilla, Alejandro Alonzo-Garcia

Abstract:

Ultrasonic degradation is currently being used in sonochemical reactors to degrade pollutant compounds from aqueous media, as emerging contaminants (e.g. pharmaceuticals, drugs and personal care products.) because they can produce possible ecological impacts on the environment. For this reason, it is important to develop appropriate water and wastewater treatments able to reduce pollution and increase reuse. Pollutants such as textile dyes, aromatic and phenolic compounds, cholorobenzene, bisphenol-A and carboxylic acid and other organic pollutants, can be removed from wastewaters by sonochemical oxidation. The effect on the removal of pollutants depends on the type of the ultrasonic frequency used; however, not much studies have been done related to the behavior of the fluid into the sonoreactors operated at different ultrasonic frequencies. Based on the above, it is necessary to study the hydrodynamic behavior of the liquid generated by the ultrasonic irradiation to design efficient sonoreactors to reduce treatment times and costs. In this work, it was studied the hydrodynamic behavior of the fluid in sonochemical reactors at different frequencies (250 kHz, 500 kHz and 1000 kHz). The performances of the sonoreactors at those frequencies were simulated using computational fluid dynamics (CFD). Due to there is great sound speed gradient between piezoelectric and fluid, k-e models were used. Piezoelectric was defined as a vibration surface, to evaluate the different frequencies effect on the fluid into sonochemical reactor. Structured hexahedral cells were used to mesh the computational liquid domain, and fine triangular cells were used to mesh the piezoelectric transducers. Unsteady state conditions were used in the solver. Estimation of the dissipation rate, flow field velocities, Reynolds stress and turbulent quantities were evaluated by CFD and 2D-PIV measurements. Test results show that there is no necessary correlation between an increase of the ultrasonic frequency and the pollutant degradation, moreover, the reactor geometry and power density are important factors that should be considered in the sonochemical reactor design.

Keywords: CFD, reactor, ultrasound, wastewater

Procedia PDF Downloads 163
68 Morphometric and Radiographic Studies on the Tarsal Bones of Adult Chinkara (Gazella bennettii)

Authors: Salahud Din, Saima Masood, Hafsa Zaneb, Habib-Ur Rehman, Imad Khan, Muqader Shah

Abstract:

The present study was carried out on the gross anatomy, biometery and radiographic analysis of tarsal bones in twenty specimens of adult chinkara (Gazella bennettii). The desired bones were collected from the graveyards present in the locality of the different safari parks and zoos in Pakistan. To observe the edges and articulations between the bones, the radiographic images were acquired in craniocaudals and mediolateral views of the intact limbs. The gross and radiographic studies of the tarsus of adult Chinkara were carried out in University of Veterinary and Animal Sciences, Lahore, Pakistan. The tarsus of chinkara comprised of five bones both grossly and radiographically, settled in three transverse rows: tibial and fibular tarsal in the proximal, central and fourth fused tarsal in the middle row, the first, second and third fused tarsal in the distal row. The fibular tarsal was the largest and longest bone of the hock, situated on the lateral side and had a bulbous tuber calcis 'point of the hock' at the proximal extremity which projects upward and backward. The average maximum height and breadth for fibular tarsal was 5.61 ± 0.23 cm and 2.06 ± 0.13 cm, respectively. The tibial tarsal bones were the 2nd largest bone of the proximal row and lie on the medial side of the tarsus bears trochlea at either end. The average maximum height and breadth for tibial tarsal was 2.79 ± 0.05 cm and 1.74 ± 0.01 cm, respectively. The central and the fourth tarsals were fused to form a large bone which extends across the entire width of the tarsus and articulates with all bones of the tarsus. A nutrient foramen was present in the center of the non auricular area, more prominent on the ventral surface. The average maximum height and breadth for central and fourth fused tarsal was 1.51 ± 0.13 cm and 2.08 ± 0.07 cm, respectively. The first tarsal was a quadrilateral piece of bone placed on the poteriomedial surface of the hock. The greatest length and maximum breadth of the first tarsal was 0.94 ± 0.01 cm and 1.01 ± 0.01 cm, respectively. The second and third fused tarsal bone resembles the central but was smaller and triangular in outline. It was situated between the central above and the large metatarsal bone below. The greatest length and maximum breadth of second and third fused tarsal was 0.98 ± 0.01 cm and 1.49 ± 0.01 cm.

Keywords: chinkara, morphometry, radiography, tarsal bone

Procedia PDF Downloads 134
67 Observing Sustainability: Case Studies of Chandigarh Boutiques and Their Textile Waste Reuse

Authors: Prabhdip Brar

Abstract:

Since the ancient times recycling, reusing and upcycling has been strongly practiced in India. However, previously reprocess was common due to lack of resources and availability of free time, especially with women who were homemakers. The upward strategy of design philosophy and drift of sustainability is sustainable fashion which is also termed eco fashion, the aspiration of which is to craft a classification which can be supported ad infinitum in terms of environmentalism and social responsibility. The viable approach of sustaining fashion is part of the larger trend of justifiable design where a product is generated and produced while considering its social impact to the environment. The purpose of this qualitative research paper is to find out if the apparel design boutiques in Chandigarh, (an educated fashion-conscious city) are contributing towards making conscious efforts with the re-use of environmentally responsive materials to rethink about eco-conscious traditional techniques and socially responsible approaches of the invention. Observation method and case studies of ten renowned boutiques of Chandigarh were conducted to find out about the creativity of their waste management and social contribution. Owners were interviewed with open-ended questions to find out their understanding of sustainability. This paper concludes that there are many sustainable ideas existing within India from olden times that can be incorporated into modern manufacturing techniques. The results showed all the designers are aware of sustainability as a concept. In all practical purposes, a patch of fabric is being used for bindings or one over the other as surface ornamentation techniques. Plain Fabrics and traditional prints and fabrics are valued more by the owners for using on other garments. Few of them sort their leftover pieces according to basic colors. Few boutique owners preferred donating it to Non-Government organizations. Still, they have enough waste which is not utilized because of lack of time and labor. This paper discusses how the Indian traditional techniques still derive influences though design and techniques, making India one of the contributing countries to the sustainability of fashion and textiles.

Keywords: eco-fashion textile, sustainable textiles, sustainability in india, waste management

Procedia PDF Downloads 79
66 Spatial Distribution of Virus-Transmitting Aphids of Plants in Al Bahah Province, Saudi Arabia

Authors: Sabir Hussain, Muhammad Naeem, Yousif Aldryhim, Susan E. Halbert, Qingjun Wu

Abstract:

Plant viruses annually cause severe economic losses in crop production and globally, different aphid species are responsible for the transmission of such viruses. Additionally, aphids are also serious pests of trees, and agricultural crops. Al Bahah Province, Kingdom of Saudi Arabia (KSA) has a high native and introduced plant species with a temperate climate that provides ample habitats for aphids. In this study, we surveyed virus-transmitting aphids from the Province to highlight their spatial distributions and hot spot areas for their target control strategies. During our fifteen month's survey in Al Bahah Province, three hundred and seventy samples of aphids were collected using both beating sheets and yellow water pan traps. Consequently, fifty-four aphid species representing 30 genera belonging to four families were recorded from Al Bahah Province. Alarmingly, 35 aphid species from our records are virus transmitting species. The most common virus transmitting aphid species based on number of collecting samples, were Macrosiphum euphorbiae (Thomas, 1878), Brachycaudus rumexicolens (Patch, 1917), Uroleucon sonchi (Linnaeus, 1767), Brachycaudus helichrysi (Kaltenbach, 1843), and Myzus persicae (Sulzer, 1776). The numbers of samples for the forementioned species were 66, 24, 23, 22, and 20, respectively. The widest range of plant hosts were found for M. euphorbiae (39 plant species), B. helichrysi (12 plant species), M. persicae (12 plant species), B. rumexicolens (10 plant species), and U. sonchi (9 plant species). The hottest spot areas were found in Al-Baha, Al Mekhwah and Biljarashi cities of the province on the basis of their abundance. This study indicated that Al Bahah Province has relatively rich aphid diversity due to the relatively high plant diversity in a favorable climatic condition. ArcGIS tools can be helpful for biologists to implement the target control strategies against these pests in the integrated pest management, and ultimately to save money and time.

Keywords: Al Bahah province, aphid-virus interaction, biodiversity, global information system

Procedia PDF Downloads 153