Search results for: traffic complex
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5993

Search results for: traffic complex

5963 Accidents Involving Pedestrians Walking along with/against Traffic: An Evaluation of Crash Characteristics and Injuries

Authors: Chih-Wei Pai, Rong-Chang Jou

Abstract:

Using A1 A2 police-reported accident data for years 2003–2010 in Taiwan, the paper examines anatomic injuries and crash characteristics specific to pedestrians in “facing traffic” and “back to traffic” crashes. There were 2768 and 7558 accidents involving pedestrians walking along with/against traffic respectively. Injuries sustained by pedestrians and crash characteristics in these two crash types were compared with those in other crash types (nearside crash, nearside dart-out crash, offside crash, offside dart-out crash). Main findings include that “back to traffic” crashes resulted in more severe injuries, and pedestrians in “back to traffic” crashes had increased head, neck, and spine injuries than those in other crash types; and there was an elevated risk of head injuries in unlit darkness and NBU (non-built-up) roadways. Several crash features (e.g. unlit darkness, overtaking maneuvers, phone use by pedestrians and drivers, intoxicated drivers) appear to be over-involved in “back to traffic” crashes. The implications of the research findings regarding pedestrian/driver education, enforcement, and remedial engineering design are discussed.

Keywords: pedestrian accident, crash characteristics, injury, facing traffic, back to traffic

Procedia PDF Downloads 328
5962 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 78
5961 Traffic Congestion Problem and Possible Solution in Kabul City

Authors: Sayed Abdul Rahman Sadaat, Nsenda Lukumwena

Abstract:

Traffic congestion is a worldwide issue, especially in developing countries. This is also the case of Afghanistan, especially in Kabul-the capital city, whose rapid population growth makes it the fifth fastest growing city in the world. Traffic congestion affects not only the mobility of people and goods but also the air quality that leads to numerous deaths (3000 people) every year. There are many factors that contribute to traffic congestion. The insufficiency and inefficiency of public transportation system along with the increase of private vehicles can be considered among the most important contributing factors. This paper addresses the traffic congestion and attempts to suggest possible solutions that can help improve the current public transportation system in Kabul. To this end, the methodology used in this paper includes field work conducted in Kabul city and literature review. The outcome suggests that improving the public transportation system is likely to contribute to the reduction of traffic congestion and the improvement of air quality, thereby reducing the number of death related to air quality.

Keywords: air quality, Kabul, Afghanistan, public transportation system, improvements, traffic congestion

Procedia PDF Downloads 339
5960 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 83
5959 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 123
5958 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 162
5957 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 24
5956 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 528
5955 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity

Procedia PDF Downloads 173
5954 Impacting the Processes of Freight Logistics at Upper Austrian Companies by the Use of Mobility Management

Authors: Theresa Steiner, Markus Pajones, Christian Haider

Abstract:

Traffic is being induced by companies due to their economic behavior. Basically, two different types of traffic occur at company sites: freight traffic and commuting traffic. Due to the fact that these traffic types are connected to each other in different kinds, an integrated approach to manage them is useful. Mobility management is a proved method for companies, to handle the traffic processes caused by their business activities. According to recent trend analysis in Austria, the freight traffic as well as the individual traffic, as part of the commuting traffic, will continue to increase. More traffic jams, as well as negative environmental impacts, are expected impacts for the future. Mobility management is a tool to control the traffic behavior with the scope to reduce emissions and other negative effects which are caused by traffic. Until now, mobility management is mainly used for optimizing commuting traffic without taking the freight logistics processes into consideration. However, the method of mobility management can be used to improve the freight traffic area of a company as well. The focus of this paper will be particularly laid on analyzing to what extent companies are already using mobility management to influence not only the commuting traffic they produce but also their processes of freight logistics. A further objective is to acquire knowledge about the motivating factors which persuade companies to introduce and apply mobility management. Additionally, advantages and disadvantages of this tool will be defined as well as limitations and factors of success, with a special focus on freight logistics, will be depicted. The first step of this paper is to conduct a literature review on the issue of mobility management with a special focus on freight logistics processes. To compare the theoretical findings with the practice, interviews, following a structured interview guidline, with mobility managers of different companies in Upper Austria will be undertaken. A qualitative analysis of these surveys will in a first step show the motivation behind using mobility management to improve traffic processes and how far this approach is already being used to especially influence the freight traffic of the companies. An evaluation to what extent the method of mobility management is already being approached at Upper Austrian companies to regulate freight logistics processes will be one outcome of this publication. Furthermore, the results of the theoretical and practical analysis will reveal not only the possibilities but also the limitations of using mobility management to influence the processes of freight logistics.

Keywords: freight logistics processes, freight traffic, mobility management, passenger traffic

Procedia PDF Downloads 284
5953 A Hybrid Traffic Model for Smoothing Traffic Near Merges

Authors: Shiri Elisheva Decktor, Sharon Hornstein

Abstract:

Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).

Keywords: highway merges, traffic modeling, SUMO, driving policy

Procedia PDF Downloads 71
5952 A Survey on Intelligent Traffic Management with Cooperative Driving in Urban Roads

Authors: B. Karabuluter, O. Karaduman

Abstract:

Traffic management and traffic planning are important issues, especially in big cities. Due to the increase of personal vehicles and the physical constraints of urban roads, the problem of transportation especially in crowded cities over time is revealed. This situation reduces the living standards, and it can put human life at risk because the vehicles such as ambulance, fire department are prevented from reaching their targets. Even if the city planners take these problems into account, emergency planning and traffic management are needed to avoid cases such as traffic congestion, intersections, traffic jams caused by traffic accidents or roadworks. In this study, in smart traffic management issues, proposed solutions using intelligent vehicles acting in cooperation with urban roads are examined. Traffic management is becoming more difficult due to factors such as fatigue, carelessness, sleeplessness, social behavior patterns, and lack of education. However, autonomous vehicles, which remove the problems caused by human weaknesses by providing driving control, are increasing the success of practicing the algorithms developed in city traffic management. Such intelligent vehicles have become an important solution in urban life by using 'swarm intelligence' algorithms and cooperative driving methods to provide traffic flow, prevent traffic accidents, and increase living standards. In this study, studies conducted in this area have been dealt with in terms of traffic jam, intersections, regulation of traffic flow, signaling, prevention of traffic accidents, cooperation and communication techniques of vehicles, fleet management, transportation of emergency vehicles. From these concepts, some taxonomies were made out of the way. This work helps to develop new solutions and algorithms for cities where intelligent vehicles that can perform cooperative driving can take place, and at the same time emphasize the trend in this area.

Keywords: intelligent traffic management, cooperative driving, smart driving, urban road, swarm intelligence, connected vehicles

Procedia PDF Downloads 296
5951 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions

Authors: Saad Roustom, Hajo Ribberink

Abstract:

In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.

Keywords: connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations

Procedia PDF Downloads 40
5950 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 325
5949 Analysis of Traffic Crashes on Rural Roads in Oman

Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon

Abstract:

Fatalities of Road Traffic Crashes (RTCs) on rural roads are usually higher than that on urban roads. The likelihood of traffic accidents may increase with the presence of factors that are associated with the rural type of community such as long-distance, road type, road geometry (e.g., curves and steepens), poor lighting, terrain, obstacles (e.g., animals crossing, boulders or tree branches), heavy truck traffic, weather conditions, and road flaws. Most of these factors are present on the rural roads of Oman. As many cities in Oman are surrounded by mountains and connected by rural roads, this is of great concern. In this paper, the causes of traffic crashes on rural roads in Oman are analyzed. The fatality rate of traffic deaths on rural roads is compared with the fatality rate on urban roads for different regions in Oman. Statistical data and police reports show that the leading cause of RTCs and deaths on rural roads is vehicle speeding, especially on long-distance roads. It is shown that crashes on rural roads result in higher fatalities than crashes on urban roads. In comparison to speed, the numbers of RTCs and deaths that resulted from other causes are small.

Keywords: causes of traffic crashes, road safety, road traffic crash, rural roads

Procedia PDF Downloads 116
5948 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 46
5947 English Complex Aspectuality: A Functional Approach

Authors: Cunyu Zhang

Abstract:

Based on Systemic Functional Linguistics, this paper aims to explore the complex aspectuality system of English. This study shows that the complex aspectuality is classified into complex viewpoint aspect which refers to the homogeneous or heterogeneous ways continuously viewing on the same situation by the speaker and complex situation aspect which is the combined configuration of the internal time schemata of situation. Through viewpoint shifting and repeating, the complex viewpoint aspect is formed in two combination ways. Complex situation aspect is combined by the way of hypotactic verbal complex and the limitation of participant and circumstance in a clause.

Keywords: aspect series, complex situation aspect, complex viewpoint aspect, systemic functional linguistics

Procedia PDF Downloads 324
5946 On Flow Consolidation Modelling in Urban Congested Areas

Authors: Serban Stere, Stefan Burciu

Abstract:

The challenging and continuously growing competition in the urban freight transport market emphasizes the need for optimal planning of transportation processes in terms of identifying the solution of consolidating traffic flows in congested urban areas. The aim of the present paper is to present the mathematical framework and propose a methodology of combining urban traffic flows between the distribution centers located at the boundary of a congested urban area. The three scenarios regarding traffic flow between consolidation centers that are taken into consideration in the paper are based on the same characteristics of traffic flows. The scenarios differ in terms of the accessibility of the four consolidation centers given by the infrastructure, the connections between them, and the possibility of consolidating traffic flows for one or multiple destinations. Also, synthetical indicators will allow us to compare the scenarios considered and chose the indicated for our distribution system.

Keywords: distribution system, single and multiple destinations, urban consolidation centers, traffic flow consolidation schemes

Procedia PDF Downloads 128
5945 Identify the Traffic Safety Needs among Risky Groups in Iraq

Authors: Aodai Abdul-Illah Ismail

Abstract:

Even though the dramatic progress that has been made in traffic safety, but still millions of peoples get killed or injured as a result of traffic crashes, besides the huge amount of economic losses due to these crashes. So traffic safety continues to be one of the most important serious issues worldwide, and it affects everyone who uses the road network system, whether you drive, walk, cycle, or push a pram. One of the most important sides that offers promise for further progress in relation to traffic safety is related to risky groups (special population groups) who may have higher potential to be involved in accidents. Traffic safety needs of risky groups are different from each other and also from the average population. Due to the various limitations between these special groups from each other and from the average population, it is not possible to address all the issues –at the same time- raising the importance ranking among the other safety issues. This paper explains a procedure used to identify the most critical traffic safety issues of five risky groups, which include younger, older and female drivers, people with disabilities and school aged children. Multi criteria used in selecting the critical issues because the single criteria is not sufficient. Highway safety professionals were surveyed to obtain the ranking of importance among the risky groups and then to develop the final ranking among issues by applying weight for each of the criteria.

Keywords: traffic safety, risky groups, old drivers, young drivers

Procedia PDF Downloads 318
5944 Passenger Flow Characteristics of Seoul Metropolitan Subway Network

Authors: Kang Won Lee, Jung Won Lee

Abstract:

Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.

Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB

Procedia PDF Downloads 259
5943 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: automatic speech recognition, asr, air traffic control, atc

Procedia PDF Downloads 362
5942 Mapping of Traffic Noise in Riyadh City-Saudi Arabia

Authors: Khaled A. Alsaif, Mosaad A. Foda

Abstract:

The present work aims at development of traffic noise maps for Riyadh City using the software Lima. Road traffic data were estimated or measured as accurate as possible in order to obtain consistent noise maps. The predicted noise levels at some selected sites are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The maps show that noise levels remain over 50 dBA and can exceed 70 dBA at the nearside of major roads and highways.

Keywords: noise pollution, road traffic noise, LimA predictor, GPS

Procedia PDF Downloads 346
5941 Traffic Calming Measures at Rural Roads in Dhofar

Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon

Abstract:

Traffic calming measures are different design features or strategies used to reduce the speed of a traveling vehicle on a particular road. These calming measures are common on rural roads of Oman. Some of these measures are road speed limits, vertical deflections, horizontal deflections, and road signs. In general, vertical deflections such as rumble strips, road studs (cat’s eye), speed tables, and speed humps are widely used. In this paper, as vehicle speeding is a major cause of road traffic crashes and high fatalities in Oman, the effectiveness of existing traffic calming measures at current locations on rural roads is assessed. The study was conducted on the rural roads of Dhofar Governorate, which is located in the south of Oman. A special focus is given to the calming measures implemented on the mountain roads of Dhofar. It is shown that vertical deflection calming measures are effective in reducing vehicle speed to 20 to 40 kph, depending on the vertical deflection type and spacing. Calming measures are also proposed at locations with a high probability of traffic crashes based on the number of traffic crashes at these locations, road type, and road geometry.

Keywords: road safety, rural roads, speed, traffic calming measures, traffic crash

Procedia PDF Downloads 83
5940 Traffic Congestions Modeling and Predictions by Social Networks

Authors: Bojan Najdenov, Danco Davcev

Abstract:

Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.

Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android

Procedia PDF Downloads 445
5939 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection

Authors: Masahiro Miyaji

Abstract:

When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).

Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety

Procedia PDF Downloads 313
5938 Reactive Analysis of Different Protocol in Mobile Ad Hoc Network

Authors: Manoj Kumar

Abstract:

Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper, we compare AODV, DSDV, DSR, and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyze these routing protocols by extensive simulations in OPNET simulator and show how to pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, sent data traffic, throughput, retransmission attempts.

Keywords: AODV, DSDV, DSR, ZRP

Procedia PDF Downloads 483
5937 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 268
5936 Assessing Traffic Calming Measures for Safe and Accessible Emergency Routes in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji

Abstract:

Most accidents occur in urban areas, and the most related casualties are vulnerable road users (pedestrians and cyclists). The traffic calming measures (TCMs) are widely used and considered to be successful in reducing speed and traffic volume. However, TCMs create unwanted effects include: noise, emissions, energy consumption, vehicle delays and emergency response time (ERT). Different vertical and horizontal TCMs have been already applied nationally (Sweden) and internationally with different impacts. It is a big challenge among traffic engineers, planners, and policy-makers to choose and priorities the best TCMs to be implemented. This study will assess the existing guidelines for TCMs in relation to safety and ERT with focus on data from Norrkoping city in Sweden. The expected results will save lives, time, and money on particularly Swedish Roads. The study will also review newly technologies and how they can improve safety and reduce ERT.

Keywords: traffic calming measures, traffic safety, delay time, vulnerable road users

Procedia PDF Downloads 114
5935 Evaluating Traffic Congestion Using the Bayesian Dirichlet Process Mixture of Generalized Linear Models

Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig

Abstract:

This study applied traffic speed and occupancy to develop clustering models that identify different traffic conditions. Particularly, these models are based on the Dirichlet Process Mixture of Generalized Linear regression (DML) and change-point regression (CR). The model frameworks were implemented using 2015 historical traffic data aggregated at a 15-minute interval from an Interstate 295 freeway in Jacksonville, Florida. Using the deviance information criterion (DIC) to identify the appropriate number of mixture components, three traffic states were identified as free-flow, transitional, and congested condition. Results of the DML revealed that traffic occupancy is statistically significant in influencing the reduction of traffic speed in each of the identified states. Influence on the free-flow and the congested state was estimated to be higher than the transitional flow condition in both evening and morning peak periods. Estimation of the critical speed threshold using CR revealed that 47 mph and 48 mph are speed thresholds for congested and transitional traffic condition during the morning peak hours and evening peak hours, respectively. Free-flow speed thresholds for morning and evening peak hours were estimated at 64 mph and 66 mph, respectively. The proposed approaches will facilitate accurate detection and prediction of traffic congestion for developing effective countermeasures.

Keywords: traffic congestion, multistate speed distribution, traffic occupancy, Dirichlet process mixtures of generalized linear model, Bayesian change-point detection

Procedia PDF Downloads 261
5934 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.

Keywords: speed, Kriging, arterial, traffic volume

Procedia PDF Downloads 327