Search results for: talenting orientation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1071

Search results for: talenting orientation

891 Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots

Authors: Meng Wu

Abstract:

Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.

Keywords: motion planning, gravity gradient inversion algorithm, ant colony optimization

Procedia PDF Downloads 113
890 Estimating the Power Influence of an Off-Grid Photovoltaic Panel on the Indicting Rate of a Storage System (Batteries)

Authors: Osamede Asowata

Abstract:

The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil-based energy. The aim of this paper is to evaluate the effect of a stationary PV panel on the charging rate of deep-cycle valve regulated lead-acid (DCVRLA) batteries. Stationary PV panels are set to a fixed tilt and orientation angle, which plays a major role in dictating the output power of a PV panel and subsequently on the charging time of a DCVRLA battery. In a basic PV system, an energy storage device that stores the power from the PV panel is necessary due to the fluctuating nature of the PV voltage caused by climatic conditions. The charging and discharging times of a DCVRLA battery were determined for a twelve month period from January through December 2012. Preliminary results, which include regression analysis (R2), conversion-time per week and work-time per day, indicate that a 36 degrees tilt angle produces a good charging rate for a latitude of 26 degrees south throughout the year.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation.

Procedia PDF Downloads 216
889 Comparison between Photogrammetric and Structure from Motion Techniques in Processing Unmanned Aerial Vehicles Imageries

Authors: Ahmed Elaksher

Abstract:

Over the last few years, significant progresses have been made and new approaches have been proposed for efficient collection of 3D spatial data from Unmanned aerial vehicles (UAVs) with reduced costs compared to imagery from satellite or manned aircraft. In these systems, a low-cost GPS unit provides the position, velocity of the vehicle, a low-quality inertial measurement unit (IMU) determines its orientation, and off-the-shelf cameras capture the images. Structure from Motion (SfM) and photogrammetry are the main tools for 3D surface reconstruction from images collected by these systems. Unlike traditional techniques, SfM allows the computation of calibration parameters using point correspondences across images without performing a rigorous laboratory or field calibration process and it is more flexible in that it does not require consistent image overlap or same rotation angles between successive photos. These benefits make SfM ideal for UAVs aerial mapping. In this paper, a direct comparison between SfM Digital Elevation Models (DEM) and those generated through traditional photogrammetric techniques was performed. Data was collected by a 3DR IRIS+ Quadcopter with a Canon PowerShot S100 digital camera. Twenty ground control points were randomly distributed on the ground and surveyed with a total station in a local coordinate system. Images were collected from an altitude of 30 meters with a ground resolution of nine mm/pixel. Data was processed with PhotoScan, VisualSFM, Imagine Photogrammetry, and a photogrammetric algorithm developed by the author. The algorithm starts with performing a laboratory camera calibration then the acquired imagery undergoes an orientation procedure to determine the cameras’ positions and orientations. After the orientation is attained, correlation based image matching is conducted to automatically generate three-dimensional surface models followed by a refining step using sub-pixel image information for high matching accuracy. Tests with different number and configurations of the control points were conducted. Camera calibration parameters estimated from commercial software and those obtained with laboratory procedures were comparable. Exposure station positions were within less than few centimeters and insignificant differences, within less than three seconds, among orientation angles were found. DEM differencing was performed between generated DEMs and few centimeters vertical shifts were found.

Keywords: UAV, photogrammetry, SfM, DEM

Procedia PDF Downloads 258
888 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 176
887 Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime

Authors: Edgar Ochoa, G. Torres-Villasenor

Abstract:

Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship.

Keywords: eutectic ribbon, fine grain, superplastic deformation, cube-cube orientation

Procedia PDF Downloads 134
886 Aligning Cultural Practices through Information Exchange: A Taxonomy in Global Manufacturing Industry

Authors: Hung Nguyen

Abstract:

With the rise of global supply chain network, the choice of supply chain orientation is critical. The alignment between cultural similarity and supply chain information exchange could help identify appropriate supply chain orientations, which would differentiate the stronger competitors and performers from the weaker ones. Through developing a taxonomy, this study examined whether the choices of action programs and manufacturing performance differ depending on the levels of attainment cultural similarity and information exchange. This study employed statistical tests on a large-scale dataset consisting of 680 manufacturing plants from various cultures and industries. Firms need to align cultural practices with the level of information exchange in order to achieve good overall business performance. There appeared to be consistent three major orientations: the Proactive, the Initiative and the Reactive. Firms are experiencing higher payoffs from various improvements are the ones successful alignment in both information exchange and cultural similarity The findings provide step-by-step decision making for supply chain information exchange and offer guidance especially for global supply chain managers. In including both cultural similarity and information exchange, this paper adds greater comprehensiveness and richness to the supply chain literature.

Keywords: culture, information exchange, supply chain orientation, similarity

Procedia PDF Downloads 325
885 A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test

Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim

Abstract:

In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), bending test, infrared camera, composite

Procedia PDF Downloads 364
884 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 296
883 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars

Procedia PDF Downloads 113
882 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method

Procedia PDF Downloads 313
881 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers

Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye

Abstract:

Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.

Keywords: energy, ibadan, heat - load, visual-basic.net

Procedia PDF Downloads 373
880 Numerical Investigation of Divergence and Rib Orientation Effects on Thermal Performance in a Divergent Duct, as an Application of Inner Cooling of Turbine Blades

Authors: Heidar Jafarizadeh, Hossein Keshtkar, Ahmad Sohankar

Abstract:

Heat transfer and turbulent flow structure have been studied in a divergent ribbed duct with a varying duct geometry with Reynolds numbers of 7000 to 90000 using numerical methods. In this study, we confirmed our numerical results of a ribbed duct with an Initial slope of zero to 3 degree by comparing them to experimental data we had and investigated the impact of the ducts divergence on heat transfer and flow pattern in the 2-dimensional flow. Then we investigated the effect of tilting the ribs, on heat transfer and flow behavior. We achieved this by changing the ribs angles from a range of 40 to 75 degrees in a divergent duct and simulated the flow in 3-dimensions. Our results show that with an increase in duct divergence, heat transfer increases linearly and the coefficient of friction increases exponentially. As the results show, a duct with a divergence angle of 1.5 degree presents better thermal performance in comparison with all the angle range’s we studied. Besides, a ribbed duct with 40 degree rib orientation had the best thermal performance considering the simultaneous effects of pressure drop and heat transfer which were imposed on it.

Keywords: divergent ribbed duct, heat transfer, thermal performance, turbulent flow structure

Procedia PDF Downloads 272
879 Tracing the Direction of Media Activism: Public Perspective

Authors: G. Arockiasamy, B. Sujeevan Kumar, Surendheran

Abstract:

Human progress and development are highly influenced by the power of information access and technology. A global and multi-national transformation all over the word is possible due to digitalization. In the process of exchanging information, experience, and resources, there is a radical shift in who controls them. Mass media has turned the world into a global village by strengthening communication network. As a result, a new digital culture has emerged as a social network commonly known as new media. Today the advancement of technology is at the doorstep of everyone linking to anywhere. The traditional social restrictions are broken down by the new type of virtual communication modality that transcends people beyond boundaries At the same time media empire has invaded every nook and corner of the world through great expansion. Media activism is growing stronger and stronger but the truth and true meaning lost in the process. This paper explores the peoples’ attitude to media activism and tracing its direction. The methodology employed is random sampling survey and content analysis method. Both qualitatively and quantitatively measured. The findings tend to show 60 percent indicate media activism as positive and others indicate as negative. As a conclusion, media activism has danger within but depends on nature of the development of human orientation.

Keywords: media activism, media industry, program, truth information, orientation and nature

Procedia PDF Downloads 175
878 Working Together: The Nature of Collaborative Legal and Social Services and Their Influence on Practice

Authors: Jennifer Donovan

Abstract:

Practice collaborations between legal assistance and social support services have emerged as a growing framework worldwide for delivering services to clients with high degrees of disadvantage, vulnerability and complexity. In Australia, the past five years has seen a significant growth in these socio-legal collaborations, with programs being delivered through legal, social service and health organizations and addressing a range of issues including mental health, immigration, parental child abduction and domestic violence. This presentation is based on research currently mapping the nature of these collaborations in Australia and exploring the influence that collaborating professions are having on each other’s practice. In a similar way to problem-solving courts being seen as a systematic take up of therapeutic jurisprudence in the court setting, socio-legal collaborations have the potential to be a systematic take up of therapeutic jurisprudence in an advice setting. This presentation will explore the varied ways in which socio-legal collaboration is being implemented in these programs. It will also explore the development of interdisciplinary therapeutic jurisprudence within them, with preliminary findings suggesting that both legal and social service practice is being influenced by the collaborative setting, with legal practice showing a more therapeutic orientation and social service professions, such as social work, moving toward a legal and rights orientation.

Keywords: collaboration, socio-legal, Australia, therapeutic jurisprudence

Procedia PDF Downloads 303
877 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: lanthanide tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics

Procedia PDF Downloads 155
876 Research on University Campus Green Renovation Design Method

Authors: Abduxukur Zayit, Guo Rui Chen

Abstract:

Universities play important role for develop and distribute sustainable development ideas. This research based on the current situation of large and widely distributed university campuses in China. In view of the deterioration of campus performance, the aging of function and facilities, the large consumption of energy and resources, a logic of "problem-oriented-goal-oriented- At the level, taking the problem orientation as the focus,this paper analyzes the main influencing factors of the existing characteristics of the university campuses, establishes the digital assessment methods and clarifies the key points of the rennovation. Based on the goal orientation, this paper puts forward the existing university campus design principles, builds the green transformation-carding model and sets up the post-use evaluation model. In the end, with dual guidance as the constraint, we will formulate green design standards for campus greening, construct a greening enhancement measure for campus environment, and develop and promote a green campus after-use assessment platform. It provides useful research methods and research ideas for the reconstruction of the existing campus in China, especially the urban universities.

Keywords: design method, existing university campus, green renovation, sustainable development

Procedia PDF Downloads 101
875 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis

Authors: Enemeri George Uweiyohowo

Abstract:

Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)

Procedia PDF Downloads 172
874 Test Bench Development and Functional Analysis of a Reaction Wheel for an Attitude Determination and Control System Prototype

Authors: Pablo Raul Yanyachi, Alfredo Mamani Saico, Jorch Mendoza, Wang Xinsheng

Abstract:

The Attitude Determination and Control System (ADCS) plays a pivotal role in the operation of nanosatellites such as Cubesats, managing orientation and stability during space missions. Within the ADCS, Reaction Wheels (RW) are electromechanical devices responsible for adjusting and maintaining satellite orientation through the application of kinetic moments. This study focuses on the characterization and analysis of a specific Reaction Wheel integrated into an ADCS prototype developed at the National University of San Agust´ın, Arequipa (UNSA). To achieve this, a single-axis Test Bench was constructed, where the reaction wheel consists of a brushless motor and an inertia flywheel driven by an Electronic Speed Controller (ESC). The research encompasses RW characterization, energy consumption evaluation, dynamic modeling, and control. The results have allowed us to ensure the maneuverability of ADCS prototypes while maintaining energy consumption within acceptable limits. The characterization and linearity analysis provides valuable insights for sizing and optimizing future reaction wheel prototypes for nanosatellites. This contributes to the ongoing development of aerospace technology within the scientific community at UNSA.

Keywords: test bench, nanosatellite, control, reaction wheel

Procedia PDF Downloads 26
873 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu

Abstract:

This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.

Keywords: tooling condition, machining stability, milling machine, chatter

Procedia PDF Downloads 399
872 Prospective Teachers’ Metacognitive Awareness and Goal Orientation as Predictors of Academic Success

Authors: Gidado Lawal Likko

Abstract:

The study examined the relationship of achievement goals, metacognitive awareness and academic success among students of colleges of education in North Western Nigeria. The study was guided by three objectives. The first two were to find out whether students’ achievement goals and metacognitive awareness correlate with their academic success. 358 students comprising 242 males (67.6%) and 116 females (32.4%) were studied. Correlation survey was employed in the conduct of the study. The instruments used to collect data were students’ bio data form, achievement goals inventory (Roedel, Schraw and Plake, 1994), metacognitive awareness inventory (Schraw & Dennison, 1994) and students’ CGPA (NCCE minimum standard, 2013) was used as the index of academic success. Pearson Product Moment and regression analysis were the statistical techniques used to analyze the data. Results of the analysis indicated that students’ achievement goals (r=0.554, p=0.004) and metacognitive awareness (r= 0.67, p=0.001) positively correlated with their academic success. Similarly, significant relationship exists between achievement goals and metacognitive awareness (r=0.77, p=0.000). Part of the recommendations is the need for the management of all colleges of education to have educational interventions aimed at developing students’ metacognitive awareness which will foster purposeful self-regulation of their learning. This could be achieved by periodic assessment of students’ metacognitive awareness which will serve as feedback as they move from one educational level to another.

Keywords: academic success, goal orientation, metacognitive awareness, prospective teachers

Procedia PDF Downloads 195
871 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 35
870 The Impact of Corporate Social Responsibility on Tertiary Institutions in Bauchi State Nigeria

Authors: Aliyu Aminu Baba, Mustapha Makama

Abstract:

Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, these institutions are solely financed by the government alone. As stakeholders of society, corporations have to have to intervene and provide corporate social responsibility. The study intends to investigate the role of Entrepreneurs in incorporating social Responsibility. Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, the study intends to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and Entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State. Corporate social responsibility is vital in enhancing the infrastructural development of the tertiary institution as almost all individuals and corporate bodies benefit from this tertiary institutions. The study intends to examine the impact of corporate social responsibility to tertiary institutions and entrepreneurs in Bauchi state Nigeria. Questionnaires would be distributed to tertiary institutions and entrepreneurs in the Bauchi metropolis. The data collected will be analyzed with the help of SPSS version 23. The main objective is to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State.

Keywords: corporate social responsibility, tertiary, institutions, profitability

Procedia PDF Downloads 181
869 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 100
868 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization

Authors: Mohit Kumar

Abstract:

Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.

Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute

Procedia PDF Downloads 165
867 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine

Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi

Abstract:

One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.

Keywords: Combustion, Optically Accessible Engine, Spark-Ignition Engine, Sparl Orientation, Kernel Growth

Procedia PDF Downloads 110
866 Examining the Relationship Between Green Procurement Practices and Firm’s Performance in Ghana

Authors: Alexander Otchere Fianko, Clement Yeboah, Evans Oteng

Abstract:

Prior research concludes that Green Procurement Practices positively drive Organisational Performance. Nonetheless, the nexus and conditions under which Green Procurement Practices contribute to a Firm’s Performance are less understood. The purpose of this quantitative relational study was to examine the relationship between Green Procurement Practices and 500 Firms’ Performances in Ghana. The researchers further seek to draw insights from the resource-based view to conceptualize Green Procurement Practices and Environmental Commitment as resource capabilities to enhance Firm Performance. The researchers used insights from the contingent resource-based view to examine Green Leadership Orientation conditions under which Green Procurement Practices contribute to Firm Performance through Environmental Commitment Capabilities. The study’s conceptual framework was tested on primary data from some firms in the Ghanaian market. PROCESS Macro was used to test the study’s hypotheses. Beyond that, Environmental Commitment Capabilities mediated the association between Green Procurement Practices and the Firm’s Performance. The study further seeks to find out whether Green Leadership Orientation positively moderates the indirect relationship between Green Procurement Practices and Firm Performance through Environmental Commitment Capabilities. While conventional wisdom suggests that improved Green Procurement Practices help improve a Firm’s Performance, this study tested this presumed relationship between Green Procurement Practices and Firm Performance and provides theoretical arguments and empirical evidence to justify how Environmental Commitment Capabilities uniquely and in synergy with Green Leadership Orientation transform this relationship. The study results indicated a positive correlation between Green Procurement Practices and Firm Performance. This result suggests that firms that prioritize environmental sustainability and demonstrate a strong commitment to environmentally responsible practices tend to experience better overall performance. This includes financial gains, operational efficiency, enhanced reputation, and improved relationships with stakeholders. The study's findings inform policy formulation in Ghana related to environmental regulations, incentives, and support mechanisms. Policymakers can use the insights to design policies that encourage and reward firms for their Green Procurement Practices, thereby fostering a more sustainable and environmentally responsible business environment. The findings from such research can influence the design and development of educational programs in Ghana, specifically in fields related to sustainability, environmental management, and corporate social responsibility (CSR). Institutions may consider integrating environmental and sustainability topics into their business and management courses to create awareness and promote responsible practices among future business professionals. Also, the study results can also promote the adoption of environmental accounting practices in Ghana. By recognizing and measuring the environmental impacts and costs associated with business activities, firms can better understand the financial implications of their Green Procurement Practices and develop strategies for improved performance.

Keywords: environmental commitment, firm’s performance, green procurement practice, green leadership orientation

Procedia PDF Downloads 45
865 Bridging the Gap through New Media Technology Acceptance: Exploring Chinese Family Business Culture

Authors: Farzana Sharmin, Mohammad Tipu Sultan

Abstract:

Emerging new media technology such as social media and social networking sites have changed the family business dynamics in Eastern Asia. The family business trends in China has been developed at an exponential rate towards technology. In the last two decades, many of this family business has succeeded in becoming major players in the Chinese and world economy. But there are a very few availabilities of literature on Chinese context regarding social media acceptance in terms of the family business. Therefore, this study has tried to cover the gap between culture and new media technology to understand the attitude of Chinese young entrepreneurs’ towards the family business. This paper focused on two cultural dimensions (collectivism, long-term orientation), which are adopted from Greet Hofstede’s. Additionally perceived usefulness and ease of use adopted from the Technology Acceptance Model (TAM) to explore the actual behavior of technology acceptance for the family business. A quantitative survey method (n=275) used to collect data Chinese family business owners' in Shanghai. The inferential statistical analysis was applied to extract trait factors, and verification of the model, respectively. The research results found that using social media for family business promotion has highly influenced by cultural values (collectivism and long-term orientation). The theoretical contribution of this research may also assist policymakers and practitioners of other developing countries to advertise and promote the family business through social media.

Keywords: China, cultural dimensions, family business, technology acceptance model, TAM

Procedia PDF Downloads 115
864 Students’ Perception of Effort and Emotional Costs in Chemistry Courses

Authors: Guizella Rocabado, Cassidy Wilkes

Abstract:

It is well known that chemistry is one of the most feared courses in college. Although many students enjoy learning about science, most of them perceive that chemistry is “too difficult”. These perceptions of chemistry result in many students not considering Science, Technology, Engineering, and Mathematics (STEM) majors because they require chemistry courses. Ultimately, these perceptions are also thought to be related to high attrition rates of students who begin STEM majors but do not persist. Students perceived costs of a chemistry class can be many, such as task effort, loss of valued alternatives, emotional, and others. These costs might be overcome by students’ interests and goals, yet the level of perceived costs might have a lasting impact on the students’ overall perception of chemistry and their desire to pursue chemistry and other STEM careers in the future. In this mixed methods study, we investigated task effort and emotional cost, as well as a mastery or performance goal orientation, and the impact these constructs may have on achievement in general chemistry classrooms. Utilizing cluster analysis as well as student interviews, we investigated students’ profiles of perceived cost and goal orientation as it relates to their final grades. Our results show that students who are well prepared for general chemistry, such as those who have taken chemistry in high school, display less negative perceived costs and thus believe they can master the material more fully. Other interesting results have also emerged from this research, which has the potential to have an impact on future instruction of these courses.

Keywords: chemistry education, motivation, affect, perceived costs, goal orientations

Procedia PDF Downloads 50
863 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods

Authors: Amir Sattari

Abstract:

For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.

Keywords: energy calculation, energy consumption, energy simulation, IDA ICE, TMF energi

Procedia PDF Downloads 89
862 Delving into Market-Driving Behavior: A Conceptual Roadmap to Delineating Its Key Antecedents and Outcomes

Authors: Konstantinos Kottikas, Vlasis Stathakopoulos, Ioannis G. Theodorakis, Efthymia Kottika

Abstract:

Theorists have argued that Market Orientation is comprised of two facets, namely the Market Driven and the Market Driving components. The present theoretical paper centers on the latter, which to date has been notably under-investigated. The term Market Driving (MD) pertains to influencing the structure of the market, or the behavior of market players in a direction that enhances the competitive edge of the firm. Presently, the main objectives of the paper are the specification of key antecedents and outcomes of Market Driving behavior. Market Driving firms behave proactively, by leading their customers and changing the rules of the game rather than by responding passively to them. Leading scholars were the first to conceptually conceive the notion, followed by some qualitative studies and a limited number of quantitative publications. However, recently, academicians noted that research on the topic remains limited, expressing a strong necessity for further insights. Concerning the key antecedents, top management’s Transformational Leadership (i.e. the form of leadership which influences organizational members by aligning their values, goals and aspirations to facilitate value-consistent behaviors) is one of the key drivers of MD behavior. Moreover, scholars have linked the MD concept with Entrepreneurship. Finally, the role that Employee’s Creativity plays in the development of MD behavior has been theoretically exemplified by a stream of literature. With respect to the key outcomes, it has been demonstrated that MD Behavior positively triggers firm Performance, while theorists argue that it empowers the Competitive Advantage of the firm. Likewise, researchers explicate that MD Behavior produces Radical Innovation. In order to test the robustness of the proposed theoretical framework, a combination of qualitative and quantitative methods is proposed. In particular, the conduction of in-depth interviews with distinguished executives and academicians, accompanied with a large scale quantitative survey will be employed, in order to triangulate the empirical findings. Given that it triggers overall firm’s success, the MD concept is of high importance to managers. Managers can become aware that passively reacting to market conditions is no longer sufficient. On the contrary, behaving proactively, leading the market, and shaping its status quo are new innovative approaches that lead to a paramount competitive posture and Innovation outcomes. This study also exemplifies that managers can foster MD Behavior through Transformational Leadership, Entrepreneurship and recruitment of Creative Employees. To date, the majority of the publications on Market Orientation is unilaterally directed towards the responsive (i.e. the Market Driven) component. The present paper further builds on scholars’ exhortations, and investigates the Market Driving facet, ultimately aspiring to conceptually integrate the somehow fragmented scientific findings, in a holistic framework.

Keywords: entrepreneurial orientation, market driving behavior, market orientation

Procedia PDF Downloads 351