Search results for: structural parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12078

Search results for: structural parameters

11838 Experimental Analysis of Tuned Liquid Damper (TLD) with Embossments Subject to Random Excitation

Authors: Mohamad Saberi, Arash Sohrabi

Abstract:

Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.

Keywords: TLD, seismic table, structural system, Hunzer linear behaviour

Procedia PDF Downloads 345
11837 Impact of Gd³⁺ Substitution on Structural, Optical and Magnetic Properties of ZnFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda

Abstract:

In this report, the impact of Gd³⁺ substitution in ZnFe₂O₄ spinel ferrite nanoparticles on structural, optical and magnetic properties was investigated. ZnFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles were synthesized by honey-mediated sol-gel combustion method. X-ray diffraction, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy confirmed the formation of cubic spinel ferrite crystal structure. The morphology and elemental analysis were studied using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. UV-Visible reflectance spectroscopy revealed band gap variation with concentration of Gd³⁺ substitution in ZnFe₂O₄ nanoparticles. Magnetic property was studied using vibrating sample magnetometer at room temperature. The synthesized spinel ferrite nanoparticles showed ferromagnetic behaviour. The evaluated magnetic parameters such as saturation magnetization, coercivity and remanence showed variation with Gd³⁺ substitution in spinel ferrite nanoparticles. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: sol-gel combustion method, nanoparticles, magnetic property, optical property

Procedia PDF Downloads 261
11836 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake

Procedia PDF Downloads 255
11835 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 314
11834 Hyperelastic Formulation for Orthotropic Materials

Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann

Abstract:

In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.

Keywords: finite strain, hyperelastic, invariants, orthotropic

Procedia PDF Downloads 405
11833 Structural Analysis of Multi-Pressure Integrated Vessel for Sport-Multi-Artificial Environment System

Authors: Joon-Ho Lee, Jeong-Hwan Yoon, Jung-Hwan Yoon, Sangmo Kang, Su-Yeon Hong, Hyun-Woo Jeong, Jaeick Chae

Abstract:

There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sports multi-environment simultaneously. In this study, we design a multi-pressure (positive/atmospheric/negative pressure) integrated vessel that can be used for the sport-multi-artificial environment system. We presented additional vessel designs with enlarged space for the tall users; with reinforcement pads added to reduce the maximum stress in the joints of its shells, and then carried out numerical analysis for the structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell, and the entrance, the safety of the structure was checked with the allowable stress of its material.

Keywords: structural analysis, multi-pressure, integrated vessel, sport-multi-artificial environment

Procedia PDF Downloads 491
11832 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network

Procedia PDF Downloads 240
11831 Experimental Analysis of Tuned Liquid Damper (TLD) for High Raised Structures

Authors: Mohamad Saberi, Arash Sohrabi

Abstract:

Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article, we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.

Keywords: TLD, seismic table, structural system, Hunzer linear behaviour

Procedia PDF Downloads 293
11830 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China

Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan

Abstract:

The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.

Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure

Procedia PDF Downloads 432
11829 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: dissolved oxygen, water quality, predication DO, support vector machine

Procedia PDF Downloads 250
11828 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 176
11827 Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study

Authors: Mohammad Zamzam, Wesam Bachir, Imad Asaad

Abstract:

Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite.

Keywords: enamel, Er:YAG, geometrical parameters, orthodontic composite, remnant composite

Procedia PDF Downloads 517
11826 Moment-Curvature Relation for Nonlinear Analysis of Slender Structural Walls

Authors: E. Dehghan, R. Dehghan

Abstract:

Generally, the slender structural walls have flexural behavior. Since behavior of bending members can be explained by moment–curvature relation, therefore, an analytical model is proposed based on moment–curvature relation for slender structural walls. The moment–curvature relationships of RC sections are constructed through section analysis. Governing equations describing the bond-slip behavior in walls are derived and applied to moment–curvature relations. For the purpose of removing the imprecision in analytical results, the plastic hinge length is included in the finite element modeling. Finally, correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed algorithms. The results show that bond-slip effect is more significant in walls subjected to larger axial compression load. Moreover, preferable results are obtained when ultimate strain of concrete is assumed conservatively.

Keywords: nonlinear analysis, slender structural walls, moment-curvature relation, bond-slip, plastic hinge length

Procedia PDF Downloads 285
11825 Preliminary Seismic Vulnerability Assessment of Existing Historic Masonry Building in Pristina, Kosovo

Authors: Florim Grajcevci, Flamur Grajcevci, Fatos Tahiri, Hamdi Kurteshi

Abstract:

The territory of Kosova is actually included in one of the most seismic-prone regions in Europe. Therefore, the earthquakes are not so rare in Kosova; and when they occurred, the consequences have been rather destructive. The importance of assessing the seismic resistance of existing masonry structures has drawn strong and growing interest in the recent years. Engineering included those of Vulnerability, Loss of Buildings and Risk assessment, are also of a particular interest. This is due to the fact that this rapidly developing field is related to great impact of earthquakes on the socioeconomic life in seismic-prone areas, as Kosova and Prishtina are, too. Such work paper for Prishtina city may serve as a real basis for possible interventions in historic buildings as are museums, mosques, old residential buildings, in order to adequately strengthen and/or repair them, by reducing the seismic risk within acceptable limits. The procedures of the vulnerability assessment of building structures have concentrated on structural system, capacity, and the shape of layout and response parameters. These parameters will provide expected performance of the very important existing building structures on the vulnerability and the overall behavior during the earthquake excitations. The structural systems of existing historical buildings in Pristina, Kosovo, are dominantly unreinforced brick or stone masonry with very high risk potential from the expected earthquakes in the region. Therefore, statistical analysis based on the observed damage-deformation, cracks, deflections and critical building elements, would provide more reliable and accurate results for the regional assessments. The analytical technique was used to develop a preliminary evaluation methodology for assessing seismic vulnerability of the respective structures. One of the main objectives is also to identify the buildings that are highly vulnerable to damage caused from inadequate seismic performance-response. Hence, the damage scores obtained from the derived vulnerability functions will be used to categorize the evaluated buildings as “stabile”, “intermediate”, and “unstable”. The vulnerability functions are generated based on the basic damage inducing parameters, namely number of stories (S), lateral stiffness (LS), capacity curve of total building structure (CCBS), interstory drift (IS) and overhang ratio (OR).

Keywords: vulnerability, ductility, seismic microzone, ductility, energy efficiency

Procedia PDF Downloads 367
11824 Ab Initio Studies of Structural and Thermal Properties of Aluminum Alloys

Authors: M. Saadi, S. E. H. Abaidia, M. Y. Mokeddem.

Abstract:

We present the results of a systematic and comparative study of the bulk, the structural properties, and phonon calculations of aluminum alloys using several exchange–correlations functional theory (DFT) with different plane-wave basis pseudo potential techniques. Density functional theory implemented by the Vienna Ab Initio Simulation Package (VASP) technique is applied to calculate the bulk and the structural properties of several structures. The calculations were performed for within several exchange–correlation functional and pseudo pententials available in this code (local density approximation (LDA), generalized gradient approximation (GGA), projector augmented wave (PAW)). The lattice dynamic code “PHON” developed by Dario Alfè was used to calculate some thermodynamics properties and phonon dispersion relation frequency distribution of Aluminium alloys using the VASP LDA PAW and GGA PAW results. The bulk and structural properties of the calculated structures were compared to different experimental and calculated works.

Keywords: DFT, exchange-correlation functional, LDA, GGA, pseudopotential, PAW, VASP, PHON, phonon dispersion

Procedia PDF Downloads 443
11823 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: direct shear, shear strength, slag, UU test

Procedia PDF Downloads 441
11822 A Structural Equation Model of Risk Perception of Rockfall for Revisit Intention

Authors: Ya-Fen Lee, Yun-Yao Chi

Abstract:

The study aims to explore the relationship between risk perceptions of rockfall and revisit intention using a Structural Equation Modelling (SEM) analysis. A total of 573 valid questionnaires are collected from travelers to Taroko National Park, Taiwan. The findings show the majority of travellers have the medium perception of rockfall risk, and are willing to revisit the Taroko National Park. The revisit intention to Taroko National Park is influenced by hazardous preferences, willingness-to-pay, obstruction and attraction. The risk perception has an indirect effect on revisit intention through influencing willingness-to-pay. The study results can be a reference for mitigation the rockfall disaster.

Keywords: risk perception, rockfall, revisit intention, structural equation modelling

Procedia PDF Downloads 396
11821 Structural Behavior of Lightweight Concrete Made With Scoria Aggregates and Mineral Admixtures

Authors: M. Shannag, A. Charif, S. Naser, F. Faisal, A. Karim

Abstract:

Structural lightweight concrete is used primarily to reduce the dead-load weight in concrete members such as floors in high-rise buildings and bridge decks. With given materials, it is generally desired to have the highest possible strength/unit weight ratio with the lowest cost of concrete. The work presented herein is part of an ongoing research project that investigates the properties of concrete mixes containing locally available Scoria lightweight aggregates and mineral admixtures. Properties considered included: workability, unit weight, compressive strength, and splitting tensile strength. Test results indicated that developing structural lightweight concretes (SLWC) using locally available Scoria lightweight aggregates and specific blends of silica fume and fly ash seems to be feasible. The stress-strain diagrams plotted for the structural LWC mixes developed in this investigation were comparable to a typical stress-strain diagram for normal weight concrete with relatively larger strain capacity at failure in case of LWC.

Keywords: lightweight concrete, scoria, stress, strain, silica fume, fly ash

Procedia PDF Downloads 473
11820 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling

Procedia PDF Downloads 307
11819 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions

Authors: Matheus Fernando Pereira, Varese Salvador Timoteo

Abstract:

In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.

Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source

Procedia PDF Downloads 184
11818 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 123
11817 Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI

Authors: A. E. Kurtoglu, A. Cevik, M. Bilgehan

Abstract:

In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results.

Keywords: factor of safety, finite element method, safety of structures, soil structure interaction

Procedia PDF Downloads 464
11816 The Application of Artificial Neural Network for Bridge Structures Design Optimization

Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri

Abstract:

This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.

Keywords: bridge structures, ANN, optimization, back propagation

Procedia PDF Downloads 337
11815 Accelerated Structural Reliability Analysis under Earthquake-Induced Tsunamis by Advanced Stochastic Simulation

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

Recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 brought huge losses of lives and properties. Maintaining vertical evacuation systems is the most crucial strategy to effectively reduce casualty during the tsunami event. Thus, it is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability (or its complement failure probability) of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of the Subset Simulation algorithm and a recently proposed moving least squares response surface approach for stochastic sampling is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface model, subset simulation, structural reliability, Tsunami risk

Procedia PDF Downloads 336
11814 A Bibliometric Analysis of the Structural Equation Modeling in Education

Authors: Lim Yi Wei

Abstract:

Structural equation modelling (SEM) is well-known in statistics due to its flexibility and accessibility. It plays an increasingly important role in the development of the education field. The number of research publications using SEM in education has increased in recent decades. However, there is a lack of scientific review conducted on SEM in education. The purpose of this study is to investigate research trends related to SEM in education. The researcher will use Vosviewer, Datawrapper, and SciMAT to do bibliometric analysis on 5549 papers that have been published in the Scopus database in the last five years. The result will show the publication trends of the most cited documents, the top contributing authors, countries, institutions, and journals in the research field. It will also look at how they relate to each other in terms of co-citation, collaboration, and co-occurrence of keywords. This study will benefit researchers and practitioners by identifying research trends and the current state of SEM in education.

Keywords: structural equation modeling, education, bibliometric analysis, Vosviewer

Procedia PDF Downloads 64
11813 Climate Change Awareness at the Micro Level: Case Study of Grande Riviere, Trinidad

Authors: Sherry Ann Ganase, Sandra Sookram

Abstract:

This study investigates the level of awareness to climate change and major factors that influence such awareness in Grande Riviere, Trinidad. Through the development of an Awareness Index and application of a Structural Equation Model to survey data, the findings suggest an Awareness index value of 0.459 in Grande Riviere. These results suggest that households have climate smart attitudes and behaviors but climate knowledge is lacking. This is supported by the structural equation model which shows a negative relationship between awareness and causes of climate change. The study concludes by highlighting the need for immediate action on increasing knowledge.

Keywords: awareness, climate change, climate education, index structural equation model

Procedia PDF Downloads 424
11812 A Review of the Drawbacks of Current Fixed Connection Façade Systems, Non-Structural Standards, and Ways of Integrating Movable Façade Technology into Buildings

Authors: P. Abtahi, B. Samali

Abstract:

Façade panels of various shapes, weights, and connections usually act as a barrier between the indoor and outdoor environments. They also play a major role in enhancing the aesthetics of building structures. They are attached by different types of connections to the primary structure or inner panels in double skin façade skins. Structural buildings designed to withstand seismic shocks have been undergoing a critical appraisal in recent years, with the emphasis changing from ‘strength’ to ‘performance’. Performance based design and analysis have found their way into research, development, and practice of earthquake engineering, particularly after the 1994 Northridge and 1995 Kobe earthquakes. The design performance of facades as non-structural elements has now focused mainly on evaluating the damage sustained by façade frames with fixed connections, not movable ones. This paper will review current design standards for structural buildings, including the performance of structural and non-structural components during earthquake excitations in order to overview and evaluate the damage assessment and behaviour of various façade systems in building structures during seismic activities. The proposed solutions for each facade system will be discussed case by case to evaluate their potential for incorporation with newly designed connections. Finally, Double-Skin-Facade systems can potentially be combined with movable facade technology, although other glazing systems would require minor to major changes in their design before being integrated into the system.

Keywords: building performance, earthquake engineering, glazing system, movable façade technology

Procedia PDF Downloads 511
11811 Vibrations of Thin Bio Composite Plates

Authors: Timo Avikainen, Tuukka Verho

Abstract:

The use of natural fibers as reinforcements is growing increasingly in polymers which are involved in e.g. structural, vibration, and acoustic applications. The use of bio composites is being investigated as lightweight materials with specific properties like the ability to dissipate vibration energy and positive environmental profile and are thus considered as potential replacements for synthetic composites. The macro-level mechanical properties of the biocomposite material depend on several parameters in the detailed architecture and morphology of the reinforcing fiber structure. The polymer matrix phase is often applied to remain the fiber structure in touch. A big role in the packaging details of the fibers is related to the used manufacturing processes like extrusion, injection molding and treatments. There are typically big variances in the detailed parameters of the microstructure fibers. The study addressed the question of how the multiscale simulation methodology works in bio composites with short pulp fibers. The target is to see how the vibro – acoustic performance of thin–walled panels can be controlled by the detailed characteristics of the fiber material. Panels can be used in sound-producing speakers or sound insulation applications. The multiscale analysis chain is tested starting from the microstructural level and continuing via macrostructural material parameters to the product component part/assembly levels. Another application is the dynamic impact type of loading, exposing the material to the crack type damages that is in this study modeled as the Charpy impact tests.

Keywords: bio composite, pulp fiber, vibration, acoustics, impact, FEM

Procedia PDF Downloads 40
11810 A Variable Structural Control for a Flexible Lamina

Authors: Xuezhang Hou

Abstract:

A control problem of a flexible Lamina formulated by partial differential equations with viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear infinite dimensional system in an appropriate energy Hilbert space. The semigroup approach of linear operators is adopted in investigating wellposedness of the closed loop system. A variable structural control for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system. A significant result on control theory that the thin plate can be approximated by ideal sliding mode in any accuracy in terms of semigroup approach is obtained.

Keywords: partial differential equations, flexible lamina, variable structural control, semigroup of linear operators

Procedia PDF Downloads 44
11809 Structural Barriers to Voting among Young Voters: an Intersectional Approach

Authors: Ryo Sato

Abstract:

The United States and many other countries witness alarmingly low voting rates among youths, skewing democratic representation. Many scholars and pundits have ascribed to this trend young voters' laziness, indifference, and self-centeredness and placed blame on them. However, a growing body of research is focusing on structural barriers to voting, which are defined as built-in obstacles lying in electoral laws and procedures. Drawing on national survey data from 891 young adults in 2020 and extant literature on structural barriers to voting, the project aims to develop a framework for analyzing systematic obstacles to voting experienced by young people and offer tangible policy recommendations. The preliminary findings presented at this conference include an intersectional analysis of the survey data, focusing on how different social categories — race, gender, socioeconomic status, immigration status, and others — in combination create unique voting experiences and barriers. This project offers a critical framework to combat the individualized understanding of low voting rates among youths and inform pathways to functional democracy.

Keywords: youth voting behavior, structural barriers, intersectionality, democratic participation, S

Procedia PDF Downloads 16