Search results for: stochastic uncertainty analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27527

Search results for: stochastic uncertainty analysis

27497 Gamification Using Stochastic Processes: Engage Children to Have Healthy Habits

Authors: Andre M. Carvalho, Pedro Sebastiao

Abstract:

This article is based on a dissertation that intends to analyze and make a model, intelligently, algorithms based on stochastic processes of a gamification application applied to marketing. Gamification is used in our daily lives to engage us to perform certain actions in order to achieve goals and gain rewards. This strategy is an increasingly adopted way to encourage and retain customers through game elements. The application of gamification aims to encourage children between 6 and 10 years of age to have healthy habits and the purpose of serving as a model for use in marketing. This application was developed in unity; we implemented intelligent algorithms based on stochastic processes, web services to respond to all requests of the application, a back-office website to manage the application and the database. The behavioral analysis of the use of game elements and stochastic processes in children’s motivation was done. The application of algorithms based on stochastic processes in-game elements is very important to promote cooperation and to ensure fair and friendly competition between users which consequently stimulates the user’s interest and their involvement in the application and organization.

Keywords: engage, games, gamification, randomness, stochastic processes

Procedia PDF Downloads 297
27496 Weak Solutions Of Stochastic Fractional Differential Equations

Authors: Lev Idels, Arcady Ponosov

Abstract:

Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.

Keywords: delay equations, operator methods, stochastic noise, weak solutions

Procedia PDF Downloads 165
27495 Lyapunov and Input-to-State Stability of Stochastic Differential Equations

Authors: Arcady Ponosov, Ramazan Kadiev

Abstract:

Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework.

Keywords: asymptotic stability, delay equations, operator methods, stochastic perturbations

Procedia PDF Downloads 144
27494 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network

Procedia PDF Downloads 196
27493 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates

Authors: Abeer Amayri, Akif A. Bulgak

Abstract:

Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.

Keywords: global supply chains, quality, stochastic programming, supplier selection

Procedia PDF Downloads 424
27492 Analysis of Two Methods to Estimation Stochastic Demand in the Vehicle Routing Problem

Authors: Fatemeh Torfi

Abstract:

Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands. Approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed methods can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the stochastic demand challenges in vehicle routing system management and solve relevant problems.

Keywords: fuzzy least-squares, stochastic, location, routing problems

Procedia PDF Downloads 394
27491 Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis

Authors: Tugrul Torun, Ihsan A. Yuksel, Si̇nem On Aktan, Taha K. Vezi̇roglu

Abstract:

In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated.

Keywords: coordinate measurement, CMM, comparison, uncertainty

Procedia PDF Downloads 171
27490 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.

Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection

Procedia PDF Downloads 220
27489 Performance and Availability Analysis of 2N Redundancy Models

Authors: Yutae Lee

Abstract:

In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).

Keywords: availability, performance, stochastic reward net, 2N redundancy

Procedia PDF Downloads 388
27488 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 246
27487 Risk and Uncertainty in Aviation: A Thorough Analysis of System Vulnerabilities

Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu

Abstract:

Hazard assessment and risks quantification are key components for estimating the impact of existing regulations. But since regulatory compliance cannot cover all risks in aviation, the authors point out that by studying causal factors and eliminating uncertainty, an accurate analysis can be outlined. The research debuts by making delimitations on notions, as confusion on the terms over time has reflected in less rigorous analysis. Throughout this paper, it will be emphasized the fact that the variation in human performance and organizational factors represent the biggest threat from an operational perspective. Therefore, advanced risk assessment methods analyzed by the authors aim to understand vulnerabilities of the system given by a nonlinear behavior. Ultimately, the mathematical modeling of existing hazards and risks by eliminating uncertainty implies establishing an optimal solution (i.e. risk minimization).

Keywords: control, human factor, optimization, risk management, uncertainty

Procedia PDF Downloads 220
27486 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology

Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian

Abstract:

Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.

Keywords: energy in buildings, hardware in loop testing, modelica modelling, Monte Carlo simulation, uncertainty propagation

Procedia PDF Downloads 102
27485 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 192
27484 Identification of Wiener Model Using Iterative Schemes

Authors: Vikram Saini, Lillie Dewan

Abstract:

This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.

Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model

Procedia PDF Downloads 363
27483 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems

Authors: Amirhossein Khazali, Mohsen Kalantar

Abstract:

Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.

Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation

Procedia PDF Downloads 543
27482 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 106
27481 Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic

Authors: Y. Wang, S. Zhang, X. Chen

Abstract:

The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty.

Keywords: compressive strength, FRP, micro-buckling, random fibre packing

Procedia PDF Downloads 244
27480 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 202
27479 Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions

Authors: Fakhreddin Abedi, Wah June Leong

Abstract:

Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results.

Keywords: exponential stability in probability, stochastic differential equations, Lyapunov technique, Ito's formula

Procedia PDF Downloads 15
27478 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates

Authors: S. Dey, T. Mukhopadhyay, S. Adhikari

Abstract:

This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.

Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification

Procedia PDF Downloads 478
27477 Stochastic Fleet Sizing and Routing in Drone Delivery

Authors: Amin Karimi, Lele Zhang, Mark Fackrell

Abstract:

Rural-to-urban population migrations are a global phenomenon, with projections indicating that by 2050, 68% of the world's population will inhabit densely populated urban centers. Concurrently, the popularity of e-commerce shopping has surged, evidenced by a 51% increase in total e-commerce sales from 2017 to 2021. Consequently, distribution and logistics systems, integral to effective supply chain management, confront escalating hurdles in efficiently delivering and distributing products within bustling urban environments. Additionally, events like environmental challenges and the COVID-19 pandemic have indicated that decision-makers are facing numerous sources of uncertainty. Therefore, to design an efficient and reliable logistics system, uncertainty must be considered. In this study, it examine fleet sizing and routing while considering uncertainty in demand rate. Fleet sizing is typically a strategic-level decision, while routing is an operational-level one. In this study, a carrier must make two types of decisions: strategic-level decisions regarding the number and types of drones to be purchased, and operational-level decisions regarding planning routes based on available fleet and realized demand. If the available fleets are insufficient to serve some customers, the carrier must outsource that delivery at a relatively high cost, calculated per order. With this hierarchy of decisions, it can model the problem using two-stage stochastic programming. The first-stage decisions involve planning the number and type of drones to be purchased, while the second-stage decisions involve planning routes. To solve this model, it employ logic-based benders decomposition, which decomposes the problem into a master problem and a set of sub-problems. The master problem becomes a mixed integer programming model to find the best fleet sizing decisions, and the sub-problems become capacitated vehicle routing problems considering battery status. Additionally, it assume a heterogeneous fleet based on load and battery capacity, and it consider that battery health deteriorates over time as it plan for multiple periods.

Keywords: drone-delivery, stochastic demand, VRP, fleet sizing

Procedia PDF Downloads 18
27476 Evaluation of the Electric Vehicle Impact in Distribution System

Authors: Sania Maghsodloo, Sirus Mohammadi

Abstract:

Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.

Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system

Procedia PDF Downloads 525
27475 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion

Authors: Francys Souza, Alberto Ohashi, Dorival Leao

Abstract:

We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.

Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation

Procedia PDF Downloads 143
27474 Evaluating Forecasts Through Stochastic Loss Order

Authors: Wilmer Osvaldo Martinez, Manuel Dario Hernandez, Juan Manuel Julio

Abstract:

We propose to assess the performance of k forecast procedures by exploring the distributions of forecast errors and error losses. We argue that non systematic forecast errors minimize when their distributions are symmetric and unimodal, and that forecast accuracy should be assessed through stochastic loss order rather than expected loss order, which is the way it is customarily performed in previous work. Moreover, since forecast performance evaluation can be understood as a one way analysis of variance, we propose to explore loss distributions under two circumstances; when a strict (but unknown) joint stochastic order exists among the losses of all forecast alternatives, and when such order happens among subsets of alternative procedures. In spite of the fact that loss stochastic order is stronger than loss moment order, our proposals are at least as powerful as competing tests, and are robust to the correlation, autocorrelation and heteroskedasticity settings they consider. In addition, since our proposals do not require samples of the same size, their scope is also wider, and provided that they test the whole loss distribution instead of just loss moments, they can also be used to study forecast distributions as well. We illustrate the usefulness of our proposals by evaluating a set of real world forecasts.

Keywords: forecast evaluation, stochastic order, multiple comparison, non parametric test

Procedia PDF Downloads 51
27473 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 164
27472 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty

Procedia PDF Downloads 348
27471 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle

Authors: L. Q. Yuan, J. Yang, A. Siddiqui

Abstract:

A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.

Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method

Procedia PDF Downloads 387
27470 Efficiency Measurement of Turkish via the Stochastic Frontier Model

Authors: Yeliz Mert Kantar, İsmail Yeni̇lmez, Ibrahim Arik

Abstract:

In this study, the efficiency measurement of the top fifty Turkish Universities has been conducted. The top fifty Turkish Universities are listed by The Scientific and Technological Research Council of Turkey (TÜBITAK) according to the Entrepreneur and Innovative University Index every year. The index is calculated based on four components since 2018. Four components are scientific and technological research competency, intellectual property pool, cooperation and interaction, and economic and social contribution. The four components consist of twenty-three sub-components. The 2021 list announced in January 2022 is discussed in this study. Efficiency analysis have been carried out using the Stochastic Frontier Model. Statistical significance of the sub-components that make up the index with certain weights has been examined in terms of the efficiency measurement calculated through the Stochastic Frontier Model. The relationship between the efficiency ranking estimated based on the Stochastic Frontier Model and the Entrepreneur and Innovative University Index ranking is discussed in detail.

Keywords: efficiency, entrepreneur and innovative universities, turkish universities, stochastic frontier model, tübi̇tak

Procedia PDF Downloads 62
27469 Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform

Authors: Mohammad Younus Bhat

Abstract:

The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle.

Keywords: Quaternion Fourier transform, Quaternion offset linear canonical transform, short-time quaternion offset linear canonical transform, uncertainty principle

Procedia PDF Downloads 159
27468 Parameter Identification Analysis in the Design of Rock Fill Dams

Authors: G. Shahzadi, A. Soulaimani

Abstract:

This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.

Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS

Procedia PDF Downloads 101