Search results for: stochastic simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5209

Search results for: stochastic simulation

5149 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 35
5148 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription

Authors: Michael Fundator

Abstract:

Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.

Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription

Procedia PDF Downloads 363
5147 Modelling Structural Breaks in Stock Price Time Series Using Stochastic Differential Equations

Authors: Daniil Karzanov

Abstract:

This paper studies the effect of quarterly earnings reports on the stock price. The profitability of the stock is modeled by geometric Brownian diffusion and the Constant Elasticity of Variance model. We fit several variations of stochastic differential equations to the pre-and after-report period using the Maximum Likelihood Estimation and Grid Search of parameters method. By examining the change in the model parameters after reports’ publication, the study reveals that the reports have enough evidence to be a structural breakpoint, meaning that all the forecast models exploited are not applicable for forecasting and should be refitted shortly.

Keywords: stock market, earnings reports, financial time series, structural breaks, stochastic differential equations

Procedia PDF Downloads 160
5146 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity

Procedia PDF Downloads 346
5145 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar

Abstract:

This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.

Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model

Procedia PDF Downloads 267
5144 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Taiki Baba, Tomoaki Hashimoto

Abstract:

The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.

Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization

Procedia PDF Downloads 245
5143 Increasing Performance of Autopilot Guided Small Unmanned Helicopter

Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya

Abstract:

In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.

Keywords: small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots

Procedia PDF Downloads 550
5142 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.

Keywords: probability, probability density function, stochastic, turbulence

Procedia PDF Downloads 542
5141 A Two Stage Stochastic Mathematical Model for the Tramp Ship Routing with Time Windows Problem

Authors: Amin Jamili

Abstract:

Nowadays, the majority of international trade in goods is carried by sea, and especially by ships deployed in the industrial and tramp segments. This paper addresses routing the tramp ships and determining the schedules including the arrival times to the ports, berthing times at the ports, and the departure times in an operational planning level. In the operational planning level, the weather can be almost exactly forecasted, however in some routes some uncertainties may remain. In this paper, the voyaging times between some of the ports are considered to be uncertain. To that end, a two-stage stochastic mathematical model is proposed. Moreover, a case study is tested with the presented model. The computational results show that this mathematical model is promising and can represent acceptable solutions.

Keywords: routing, scheduling, tram ships, two stage stochastic model, uncertainty

Procedia PDF Downloads 410
5140 A Reactive Flexible Job Shop Scheduling Model in a Stochastic Environment

Authors: Majid Khalili, Hamed Tayebi

Abstract:

This paper considers a stochastic flexible job-shop scheduling (SFJSS) problem in the presence of production disruptions, and reactive scheduling is implemented in order to find the optimal solution under uncertainty. In this problem, there are two main disruptions including machine failure which influences operation time, and modification or cancellation of the order delivery date during production. In order to decrease the negative effects of these difficulties, two derived strategies from reactive scheduling are used; the first one is relevant to being able to allocate multiple machine to each job, and the other one is related to being able to select the best alternative process from other job while some disruptions would be created in the processes of a job. For this purpose, a Mixed Integer Linear Programming model is proposed.

Keywords: flexible job-shop scheduling, reactive scheduling, stochastic environment, mixed integer linear programming

Procedia PDF Downloads 326
5139 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 64
5138 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 161
5137 Scheduling Jobs with Stochastic Processing Times or Due Dates on a Server to Minimize the Number of Tardy Jobs

Authors: H. M. Soroush

Abstract:

The problem of scheduling products and services for on-time deliveries is of paramount importance in today’s competitive environments. It arises in many manufacturing and service organizations where it is desirable to complete jobs (products or services) with different weights (penalties) on or before their due dates. In such environments, schedules should frequently decide whether to schedule a job based on its processing time, due-date, and the penalty for tardy delivery to improve the system performance. For example, it is common to measure the weighted number of late jobs or the percentage of on-time shipments to evaluate the performance of a semiconductor production facility or an automobile assembly line. In this paper, we address the problem of scheduling a set of jobs on a server where processing times or due-dates of jobs are random variables and fixed weights (penalties) are imposed on the jobs’ late deliveries. The goal is to find the schedule that minimizes the expected weighted number of tardy jobs. The problem is NP-hard to solve; however, we explore three scenarios of the problem wherein: (i) both processing times and due-dates are stochastic; (ii) processing times are stochastic and due-dates are deterministic; and (iii) processing times are deterministic and due-dates are stochastic. We prove that special cases of these scenarios are solvable optimally in polynomial time, and introduce efficient heuristic methods for the general cases. Our computational results show that the heuristics perform well in yielding either optimal or near optimal sequences. The results also demonstrate that the stochasticity of processing times or due-dates can affect scheduling decisions. Moreover, the proposed problem is general in the sense that its special cases reduce to some new and some classical stochastic single machine models.

Keywords: number of late jobs, scheduling, single server, stochastic

Procedia PDF Downloads 453
5136 Low Cost Inertial Sensors Modeling Using Allan Variance

Authors: A. A. Hussen, I. N. Jleta

Abstract:

Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.

Keywords: Allan variance, accelerometer, gyroscope, stochastic errors

Procedia PDF Downloads 396
5135 Simulating Economic Order Quantity and Reorder Point Policy for a Repairable Items Inventory System

Authors: Mojahid F. Saeed Osman

Abstract:

Repairable items inventory system is a management tool used to incorporate all information concerning inventory levels and movements for repaired and new items. This paper presents development of an effective simulation model for managing the inventory of repairable items for a production system where production lines send their faulty items to a repair shop considering the stochastic failure behavior and repair times. The developed model imitates the process of handling the on-hand inventory of repaired items and the replenishment of the inventory of new items using Economic Order Quantity and Reorder Point ordering policy in a flexible and risk-free environment. We demonstrate the appropriateness and effectiveness of the proposed simulation model using an illustrative case problem. The developed simulation model can be used as a reliable tool for estimating a healthy on-hand inventory of new and repaired items, backordered items, and downtime due to unavailability of repaired items, and validating and examining Economic Order Quantity and Reorder Point ordering policy, which would further be compared with other ordering strategies as future work.

Keywords: inventory system, repairable items, simulation, maintenance, economic order quantity, reorder point

Procedia PDF Downloads 103
5134 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 245
5133 156vdc to 110vac Sinusoidal Inverter Simulation and Implementation

Authors: Phinyo Mueangmeesap

Abstract:

This paper describes about pure sinusoidal inverter simulation and implementation from high voltage DC (156 Vdc). This simulation is to study and improve the efficiency of the inverter. By reducing the loss of power from boost converter in current inverter. The simulation is done by using the H-bridge circuit with pulse width modulate (PWM) signal and low-pass filter circuit. To convert the DC into AC. This paper used the PSCad for simulation. The result of simulation can be used to create prototype inverter by converting 156 Vdc to 110Vac. The inverter gives the output signal similar to the output from a simulation.

Keywords: inverter simulation, PWM signal, single-phase inverter, sinusoidal inverter

Procedia PDF Downloads 381
5132 Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models

Authors: Katja Ignatieva, Patrick Wong

Abstract:

We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices.

Keywords: stochastic volatility, affine jump-diffusion models, high frequency data, model specification, markov chain monte carlo

Procedia PDF Downloads 65
5131 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 129
5130 Calibration of Hybrid Model and Arbitrage-Free Implied Volatility Surface

Authors: Kun Huang

Abstract:

This paper investigates whether the combination of local and stochastic volatility models can be calibrated exactly to any arbitrage-free implied volatility surface of European option. The risk neutral Brownian Bridge density is applied for calibration of the leverage function of our Hybrid model. Furthermore, the tails of marginal risk neutral density are generated by Generalized Extreme Value distribution in order to capture the properties of asset returns. The local volatility is generated from the arbitrage-free implied volatility surface using stochastic volatility inspired parameterization.

Keywords: arbitrage free implied volatility, calibration, extreme value distribution, hybrid model, local volatility, risk-neutral density, stochastic volatility

Procedia PDF Downloads 234
5129 A Stochastic Volatility Model for Optimal Market-Making

Authors: Zubier Arfan, Paul Johnson

Abstract:

The electronification of financial markets and the rise of algorithmic trading has sparked a lot of interest from the mathematical community, for the market making-problem in particular. The research presented in this short paper solves the classic stochastic control problem in order to derive the strategy for a market-maker. It also shows how to calibrate and simulate the strategy with real limit order book data for back-testing. The ambiguity of limit-order priority in back-testing is dealt with by considering optimistic and pessimistic priority scenarios. The model, although it does outperform a naive strategy, assumes constant volatility, therefore, is not best suited to the LOB data. The Heston model is introduced to describe the price and variance process of the asset. The Trader's constant absolute risk aversion utility function is optimised by numerically solving a 3-dimensional Hamilton-Jacobi-Bellman partial differential equation to find the optimal limit order quotes. The results show that the stochastic volatility market-making model is more suitable for a risk-averse trader and is also less sensitive to calibration error than the constant volatility model.

Keywords: market-making, market-microsctrucure, stochastic volatility, quantitative trading

Procedia PDF Downloads 109
5128 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.

Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems

Procedia PDF Downloads 396
5127 Multi-Period Supply Chain Design under Uncertainty

Authors: Amir Azaron

Abstract:

In this research, a stochastic programming approach is developed for designing supply chains with uncertain parameters. Demands and selling prices of products at markets are considered as the uncertain parameters. The proposed mathematical model will be multi-period two-stage stochastic programming, which takes into account the selection of retailer sites, suppliers, production levels, inventory levels, transportation modes to be used for shipping goods, and shipping quantities among the entities of the supply chain network. The objective function is to maximize the chain’s net present value. In order to maximize the chain’s NPV, the sum of first-stage investment costs on retailers, and the expected second-stage processing, inventory-holding and transportation costs should be kept as low as possible over multiple periods. The effects of supply uncertainty where suppliers are unreliable will also be investigated on the efficiency of the supply chain.

Keywords: supply chain management, stochastic programming, multiobjective programming, inventory control

Procedia PDF Downloads 270
5126 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: decentralized, optimal control, output, singular perturb

Procedia PDF Downloads 328
5125 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates

Authors: Abeer Amayri, Akif A. Bulgak

Abstract:

Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.

Keywords: global supply chains, quality, stochastic programming, supplier selection

Procedia PDF Downloads 423
5124 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 288
5123 The Prospect of Income Contingent Loan in Malaysia Higher Education Financing Using Deterministic and Stochastic Methods in Modelling Income

Authors: Syaza Isma, Timothy Higgins

Abstract:

In Malaysia, increased take-up rates of tertiary student borrowing, and reliance on retirement savings to fund children's education show the importance of public higher education financing schemes (PTPTN). PTPTN has been operating for 2 decades now; however, there are some critical issues and challenges that include low loan recovery and loan default that suggest a detailed consideration of student loan/financing scheme alternatives is crucial. In addition, the decline in funding level per student following introduction of the new PTPTN full and partial loan scheme has raised ongoing concerns over the sustainability of the scheme to provide continuous financial assistance to students in tertiary education. This research seeks to assess these issues that put greater efficiency in an effort to ensure equitable access to student funding for current and future generations. We explore the extent of repayment hardship under the current loan arrangements that presumably led to low recovery from the borrowers, particularly low-income graduates. The concept of manageable debt exists in the design of income-contingent repayment schemes, as practiced in Australia, New Zealand, UK, Hungary, USA (in limited form), the Netherlands, and South Korea. Can Income Contingent Loans (ICL) offer the best practice for an education financing scheme, and address the issue of repayment hardship and concurrently, can a properly designed ICL scheme provide a solution to the current issues and challenges facing Malaysia student financing? We examine the different potential ICL models using deterministic and stochastic approach to simulate income of graduates.

Keywords: deterministic, income contingent loan, repayment burden, simulation, stochastic

Procedia PDF Downloads 198
5122 An Accelerated Stochastic Gradient Method with Momentum

Authors: Liang Liu, Xiaopeng Luo

Abstract:

In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.

Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum

Procedia PDF Downloads 123
5121 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises

Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov

Abstract:

We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.

Keywords: mathematical expectation, filtration, anomalous noise, memory

Procedia PDF Downloads 207
5120 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable

Authors: Seon Soon Choi

Abstract:

The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.

Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable

Procedia PDF Downloads 378