Search results for: spin orbit interaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4159

Search results for: spin orbit interaction

4039 The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline

Authors: W. Wang, Y. Zhang, J. Shuai, Z. Lv

Abstract:

The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed.

Keywords: pipeline, adjacent defects, interaction between defects, failure pressure

Procedia PDF Downloads 153
4038 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 304
4037 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation

Procedia PDF Downloads 233
4036 Optimum Design of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

Nanofibers are effective material which have frequently been investigated to produce high quality air filters. As an environmental approach our aim is to achieve nanofibers by melting. In spun-bond systems extruder, spin-pump, nozzle package and attenuator are used. Molten polymer which flows from extruder is made steady by spin-pump. Regular melt passes through nozzle holes and forms fibers under high pressure. The fibers pulled from nozzle are shrunk to micron size by an attenuator, after solidification they are collected on a conveyor. In this research different designs of attenuator system have been studied and also CFD analysis have been done on them. Afterwards, one of these designs tested and finally some optimizations have been done to reduce pressure loss and increase air velocity.

Keywords: attenuator, nanofiber, spun-bond, extruder

Procedia PDF Downloads 384
4035 Stern-Gerlach Force in Quantum Magnetic Field and Schrodinger's Cat

Authors: Mandip Singh

Abstract:

Quantum entanglement plays a fundamental role in our understanding of counter-intuitive aspects of quantum reality. If classical physics is an approximation of quantum physics, then quantum entanglement should persist at a macroscopic scale. In this paper, a thought experiment is presented where a free falling spin polarized Bose-Einstein condensate interacts with a quantum superimposed magnetic field of nonzero gradient. In contrast to the semiclassical Stern-Gerlach experiment, the magnetic field and the spin degrees of freedom both are considered to be quantum mechanical in a generalized scenario. As a consequence, a Bose-Einstein condensate can be prepared at distinct locations in space in a sense of quantum superposition. In addition, the generation of Schrodinger-cat like quantum states shall be presented.

Keywords: Schrodinger-cat quantum states, macroscopic entanglement, macroscopic quantum fields, foundations of quantum physics

Procedia PDF Downloads 154
4034 Step into the Escalator’s Fractal Behavior by Using the Poincare Map

Authors: Ali Albadri

Abstract:

Step band in an escalator moves in a cyclic periodic pattern. Similarly, most if not all of the components and sub-assemblies in the escalator operate in the same way. If you mark up one step in the step band of an escalator and stand next to the escalator, on the incline, to watch the marked-up step when it passes by, you ask yourself, does the marked up step behaves exactly the same way during each revolution when it passes you by again and again? We can say that; there is some similarity in this example and the example when an astronomer watches planets in the sky, and he or she asks himself or herself, does each planet intersects the plan of observation in the same position for every pantry rotation? For a fact, we know for the answer to the second example is no, because scientist, astronomers, and mathematicians have proven that planets deviate from their paths to take new paths during their planetary moves, albeit with minimal change. But what about the answer to the question in the first example? considering that there is increase in the wear and tear of components with time in the step, in the step band, in the tracks and in many other places in the escalator. There is also the accumulation of fatigue in the components and sub-assemblies. This research is part of many studies which we are conducting to address the answer for the question in the first example. We have been using the fractal dimension as a quantities tool and the Poincare map as a qualitative tool. This study has shown that the fractal dimension value and the shape and distribution of the orbits in the Poincare map has significant correlation with the quality of the mechanical components and sub-assemblies in the escalator.

Keywords: fractal dimension, Poincare map, rugby ball orbit, worm orbit

Procedia PDF Downloads 27
4033 Complete Enumeration Approach for Calculation of Residual Entropy for Diluted Spin Ice

Authors: Yuriy A. Shevchenko, Konstantin V. Nefedev

Abstract:

We consider the antiferromagnetic systems of Ising spins located at the sites of the hexagonal, triangular and pyrochlore lattices. Such systems can be diluted to a certain concentration level by randomly replacing the magnetic spins with nonmagnetic ones. Quite recently we studied density of states (DOS) was calculated by the Wang-Landau method. Based on the obtained data, we calculated the dependence of the residual entropy (entropy at a temperature tending to zero) on the dilution concentration for quite large systems (more than 2000 spins). In the current study, we obtained the same data for small systems (less than 20 spins) by a complete search of all possible magnetic configurations and compared the result with the result for large systems. The shape of the curve remains unchanged in both cases, but the specific values of the residual entropy are different because of the finite size effect.

Keywords: entropy, pyrochlore, spin ice, Wang-Landau algorithm

Procedia PDF Downloads 231
4032 Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices

Authors: Jiwuer Jilili, Iogann Tolbatov, Mousumi U. Kahaly

Abstract:

Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization.

Keywords: density functional theory, interfacial magnetism, metal-insulator transition, Ni magnetism.

Procedia PDF Downloads 192
4031 Interaction of Tungsten Tips with Laguerre-Gaussian Beams

Authors: Abhisek Sinha, Debobrata Rajak, Shilpa Rani, Ram Gopal, Vandana Sharma

Abstract:

The interaction of femtosecond laser pulses with metallic tips has been studied extensively, and they have proved to be a very good source of ultrashort electron pulses. A study of the interaction of femtosecond Laguerre-Gaussian (LG) laser modes with Tungsten tips is presented here. Laser pulses of 35 fs pulse durations were incident on Tungsten tips, and their electron emission rates were studied for LG (l=1, p=0) and Gaussian modes. A change in the order of the interaction for LG beams is reported, and the difference in the order of interaction is attributed to ponderomotive shifts in the energy levels corresponding to the enhanced near-field intensity supported by numerical simulations.

Keywords: femtosecond, Laguerre-Gaussian, OAM, tip

Procedia PDF Downloads 213
4030 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking

Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu

Abstract:

Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.

Keywords: Chirality, detection, molecule, spin

Procedia PDF Downloads 70
4029 Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2

Authors: Satyabrata Bera, Mintu Mondal

Abstract:

Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family.

Keywords: 2D vdW ferromagnet, spin reorientation transition, anomalous hall effect, berry curvature

Procedia PDF Downloads 36
4028 The Antecedents of Customer-to-Customer Interaction to Brand and Communication Strategy: A Marketer’s Perspective

Authors: Kartina Sury Kariman

Abstract:

Brand-to-customer (B2C) engagement has been well established through the traditional platform such as direct sales, advertising, customer service center, customer hotline as well as brand usage experiences. Increasingly, interest to B2C has evolved to include customer-to-customer (C2C) interaction analysis aligned with the vast growth of web 2.0. Hence, discussion on C2C interaction and brand strategy have captured social media as it enables brands and C2C interaction to be connected in various ways, providing opportunities for marketers to shape their brand engagement strategy while reaching C2C as the targeted outcomes. The objective here is to provide a preliminary review of C2C interaction consisting the antecedents and consequences while highlighting areas of research interest within the context from marketers perspective and the business outcomes. This paper discusses how C2C interaction defines marketers’ brand and communication strategy and how social media trend shapes the strategy when promoting the awareness of life insurance industry and educating the target market.

Keywords: social media, brand engagement, customer interaction, customer engagement, brand strategy, life insurance

Procedia PDF Downloads 430
4027 Touching Interaction: An NFC-RFID Combination

Authors: Eduardo Álvarez, Gerardo Quiroga, Jorge Orozco, Gabriel Chavira

Abstract:

AmI proposes a new way of thinking about computers, which follows the ideas of the Ubiquitous Computing vision of Mark Weiser. In these, there is what is known as a Disappearing Computer Initiative, with users immersed in intelligent environments. Hence, technologies need to be adapted so that they are capable of replacing the traditional inputs to the system by embedding these in every-day artifacts. In this work, we present an approach, which uses Radiofrequency Identification (RFID) and Near Field Communication (NFC) technologies. In the latter, a new form of interaction appears by contact. We compare both technologies by analyzing their requirements and advantages. In addition, we propose using a combination of RFID and NFC.

Keywords: touching interaction, ambient intelligence, ubiquitous computing, interaction, NFC and RFID

Procedia PDF Downloads 467
4026 A Historical Overview and Supplementation of the Dyad Concept of Industrial Marketing

Authors: Kimmo J. Kurppa

Abstract:

This paper describes the development of the buyer-supplier dyad concept over the years and proposes improvements, clarifications and extensions to the prevailing definitions published in 1970’s and 1980’s. This paper suggests a partition of the buyer-supplier dyad to concepts of Commercial Dyad (dyadic interaction in vertical relationships) and Innovative Dyad (dyadic interaction in horizontal relationship) since dyadic interaction takes place in two major types of contexts between industrial firms. Especially the context of joint product development in a dyadic relationship has not been adequately recognized being totally different from the interaction taking place in commercial buyer-supplier interaction. This paper provides therefore a solution to the existing gap in research by clarifying the descriptions and the context where dyadic interaction takes place between industrial firms. This paper also illustrates and explains how the firm’s organization and the interaction taking place inside it, is connected to the dyadic interaction structure between the firm and its partner firm. This theme has been discussed earlier but the phenomenon has not been adequately described and has not been illustrated in earlier research. This conceptual study has been interested in how the dyad concept of Industrial Marketing has been defined in the earlier research and how the definition could be improved. This conceptual paper has been constructed by using the systematic review methodology and proposes avenues for future research. The concept and existence of relationship and interaction between firm’s internal interaction network and external interaction between firm’s dyadic counterparts, need to be verified through empirical research.

Keywords: dyadic interaction, industrial dyad, buyer-supplier relationship, strategic reciprocity, experience, socially adjusted opportunism

Procedia PDF Downloads 178
4025 Mathematical Model for Interaction Energy of Toroidal Molecules and Other Nanostructures

Authors: Pakhapoom Sarapat, James M. Hill, Duangkamon Baowan

Abstract:

Carbon nanotori provide several properties such as high tensile strength and heat resistance. They are promised to be ideal structures for encapsulation, and their encapsulation ability can be determined by the interaction energy between the carbon nanotori and the encapsulated nanostructures. Such interaction energy is evaluated using Lennard-Jones potential and continuum approximation. Here, four problems relating to toroidal molecules are determined in order to find the most stable configuration. Firstly, the interaction energy between a carbon nanotorus and an atom is examined. The second problem relates to the energy of a fullerene encapsulated inside a carbon nanotorus. Next, the interaction energy between two symmetrically situated and parallel nanotori is considered. Finally, the classical mechanics is applied to model the interaction energy between the toroidal structure of cyclodextrin and the spherical DNA molecules. These mathematical models might be exploited to study a number of promising devices for future developments in bio and nanotechnology.

Keywords: carbon nanotori, continuum approximation, interaction energy, Lennard-Jones potential, nanotechnology

Procedia PDF Downloads 114
4024 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control

Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi

Abstract:

In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.

Keywords: impedance control, control system, robots, interaction

Procedia PDF Downloads 390
4023 Room Temperature Electron Spin Resonance and Raman Study of Nanocrystalline Zn(1-x)Cu(x)O (0.005 < x < 0.05) Synthesized by Pyrophoric Method

Authors: Jayashree Das, V. V. Srinivasu , D. K. Mishra, A. Maity

Abstract:

Owing to the important potential applications over decades, transition metal (TM: Mn, Fe, Ni, Cu, Cr, V etc.) doped ZnO-based diluted magnetic semiconductors (DMS) always attract research attention for more and newer investigations. One of the interesting aspects of these materials is to study and understand the magnetic property at room temperature properly, which is very crucial to select a material for any related application. In this regard, Electron spin resonance (ESR) study has been proven to be a powerful technique to investigate the spin dynamics of electrons inside the system, which are responsible for the magnetic behaviour of any system. ESR as well as the Raman and Photoluminescence spectroscopy studies are also helpful to study the defects present or created inside the system in the form of oxygen vacancy or cluster instrumental in determining the room temperature ferromagnetic property of transition metal doped ZnO system, which can be controlled through varying dopant concentration, appropriate synthesis technique and sintering of the samples. For our investigation, we synthesised Cu-doped ZnO nanocrystalline samples with composition Zn1-xCux ( 0.005< x < 0.05) by pyrophoric method and sintered at a low temperature of 650 0C. The microwave absorption is studied by the Electron Spin Resonance (ESR) of X-band (9.46 GHz) at room temperature. Systematic analysis of the obtained ESR spectra reveals that all the compositions of Cu-doped ZnO samples exhibit resonance signals of appreciable line widths and g value ~ 2.2, typical characteristic of ferromagnetism in the sample. Raman scattering and the photoluminescence study performed on the samples clearly indicated the presence of pronounced defect related peaks in the respective spectra. Cu doping in ZnO with varying concentration also observed to affect the optical band gap and the respective absorption edges in the UV-Vis spectra. FTIR spectroscopy reveals the Cu doping effect on the stretching bonds of ZnO. To probe into the structural and morphological changes incurred by Cu doping, we have performed XRD, SEM and EDX study, which confirms adequate Cu substitution without any significant impurity phase formation or lattice disorder. With proper explanation, we attempt to correlate the results observed for the structural optical and magnetic behaviour of the Cu-doped ZnO samples. We also claim that our result can be instrumental for appropriate applications of transition metal doped ZnO based DMS in the field of optoelectronics and Spintronics.

Keywords: diluted magnetic semiconductors, electron spin resonance, raman scattering, spintronics.

Procedia PDF Downloads 265
4022 Half Metallic Antiferromagnetic of Doped TiO2 Rutile with Doubles Impurities (Os, Mo) from Ab Initio Calculations

Authors: M. Fakhim Lamrani, M. Ouchri, M. Belaiche, El Kenz, M. Loulidi, A. Benyoussef

Abstract:

Electronic and magnetic calculations based on density functional theory within the generalized gradient approximation for II-VI compound semiconductor TiO2 doped with single impurity Os and Mo; these compounds are a half metallic ferromagnet in their ground state with a total magnetic moment of 2 μB for both systems. Then, TiO2 doped with double impurities Os and Mo have been performed. As result, Ti1-2xOsxMoxO2 with x=0.065 is half-metallic antiferromagnets with 100% spin polarization of the conduction electrons crossing the Fermi level, without showing a net magnetization. Moreover, Ti14OsMoO32 compound is stable energetically than Ti1-xMoxO2 and Ti1-xOsxO2. The antiferromagnetic interaction in Ti1-2xOsxMoxO2 system is attributed to the double exchange mechanism, and the latter could also be the origin of their half metallic.

Keywords: diluted magnetic semiconductor, half-metallic antiferromagnetic, augmented spherical wave method

Procedia PDF Downloads 396
4021 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element

Procedia PDF Downloads 123
4020 Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System

Authors: A. Jawahar

Abstract:

In this paper, the dependence of soliton pulses with respect to phase in a 10 Gbps, single channel, dispersion uncompensated telecommunication system was studied. The characteristic feature of periodic soliton interaction was noted at the Interaction point (I=6202.5Km) in one collision length of L=12405.1 Km. The interaction point is located for 10Gbps system with an initial relative spacing (qo) of soliton as 5.28 using Perturbation theory. It is shown that, when two in-phase solitons are launched, they interact at the point I=6202.5 Km, but the interaction could be restricted with introduction of different phase initially. When the phase of the input solitons increases, the deviation of soliton pulses at the I also increases. We have successfully demonstrated this effect in a telecommunication set-up in terms of Quality factor (Q), where the Q=0 for in-phase soliton. The Q was noted to be 125.9, 38.63, 47.53, 59.60, 161.37, and 78.04 for different phases such as 10o, 20o, 30o, 45o, 60o and 90o degrees respectively at Interaction point I.

Keywords: Soliton interaction, Initial relative spacing, phase, Perturbation theory and telecommunication system

Procedia PDF Downloads 437
4019 Control Strategies for a Robot for Interaction with Children with Autism Spectrum Disorder

Authors: Vinicius Binotte, Guilherme Baldo, Christiane Goulart, Carlos Valadão, Eliete Caldeira, Teodiano Bastos

Abstract:

Socially assistive robotic has become increasingly active and it is present in therapies of people affected for several neurobehavioral conditions, such as Autism Spectrum Disorder (ASD). In fact, robots have played a significant role for positive interaction with children with ASD, by stimulating their social and cognitive skills. This work introduces a mobile socially-assistive robot, which was built for interaction with children with ASD, using non-linear control techniques for this interaction.

Keywords: socially assistive robotics, mobile robot, autonomous control, autism

Procedia PDF Downloads 449
4018 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness

Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta

Abstract:

Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called BLINDED, designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.

Keywords: human computer interaction, interaction design guidelines, persuasive mobile technologies for sport and health

Procedia PDF Downloads 497
4017 Open-Ended Multi-Modal Relational Reason for Video Question Answering

Authors: Haozheng Luo, Ruiyang Qin

Abstract:

People with visual impairments urgently need assistance, not only on the fundamental tasks such as guiding and retrieving objects but on the advanced like picturing the new environments. More than a guiding dog, they might want such devices that can provide linguistic interaction. Building on this idea, we aim to study the interaction between the robot agent and visually impaired people. In our research, we are going to develop a robot agent that will be able to analyze the test environment and answer the participants’ questions. We also will study the relevant issues regarding the interaction between human beings and the robot agents to figure out which and how the factors will affect the interaction.

Keywords: HRI, video question answering, visual question answering, natural language processing

Procedia PDF Downloads 189
4016 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media

Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas

Abstract:

A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.

Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties

Procedia PDF Downloads 469
4015 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application

Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu

Abstract:

Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.

Keywords: augmented reality, multimedia, user interface, engineering, education technology

Procedia PDF Downloads 541
4014 The Interaction between Human and Environment on the Perspective of Environmental Ethics

Authors: Mella Ismelina Farma Rahayu

Abstract:

Environmental problems could not be separated from unethical human perspectives and behaviors toward the environment. There is a fundamental error in the philosophy of people’s perspective about human and nature and their relationship with the environment, which in turn will create an inappropriate behavior in relation to the environment. The aim of this study is to investigate and to understand the ethics of the environment in the context of humans interacting with the environment by using the hermeneutic approach. The related theories and concepts collected from literature review are used as data, which were analyzed by using interpretation, critical evaluation, internal coherence, comparisons, and heuristic techniques. As a result of this study, there will be a picture related to the interaction of human and environment in the perspective of environmental ethics, as well as the problems of the value of ecological justice in the interaction of humans and environment. We suggest that the interaction between humans and environment need to be based on environmental ethics, in a spirit of mutual respect between humans and the natural world.

Keywords: environment, environmental ethics, interaction, value

Procedia PDF Downloads 383
4013 Effect of the Vertical Pressure on the ‎Electrical Behaviour of the Micro-Copper ‎Polyurethane Composite Films

Authors: Saeid Mehvari, Yolanda Sanchez-Vicente, Sergio González Sánchez, Khalid Lafdi

Abstract:

Abstract- Materials with a combination of transparency, electrical conductivity, and flexibility are required in the ‎growing electronic sector. In this research, electrically conductive and flexible films have been prepared. These ‎composite films consist of dispersing micro-copper particles into polyurethane (PU) matrix. Two sets of samples were ‎made using both spin coating technique (sample thickness lower than 30 μm) and materials casting (sample thickness ‎lower than 100 μm). Copper concentrations in the PU matrix varied from 0.5 to 20% by volume. The dispersion of ‎micro-copper particles into polyurethane (PU) matrix were characterised using optical microscope and scanning electron ‎microscope. The electrical conductivity measurement was carried out using home-made multimeter set up under ‎pressures from 1 to 20 kPa through thickness and in plane direction. It seems that samples made by casting were not ‎conductive. However, the sample made by spin coating shows through-thickness conductivity when they are under ‎pressure. The results showed that spin-coated films with higher concentration of 2 vol. % of copper displayed a ‎significant increase in the conductivity value, known as percolation threshold. The maximum conductivity of 7.2 × 10-1 ‎S∙m-1 was reached at concentrations of filler with 20 vol. % at 20kPa. A semi-empirical model with adjustable ‎coefficients was used to fit and predict the electrical behaviour of composites. For the first time, the finite element ‎method based on the representative volume element (FE-RVE) was successfully used to predict their electrical ‎behaviour under applied pressures. ‎

Keywords: electrical conductivity, micro copper, numerical simulation, percolation threshold, polyurethane, RVE model

Procedia PDF Downloads 154
4012 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 506
4011 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).

Keywords: motion detection, motion tracking, trajectory analysis, video surveillance

Procedia PDF Downloads 509
4010 The Doctor-Patient Interaction Experience Hierarchy Using Rasch Measurement Model Analysis

Authors: Wan Nur'ashiqin Wan Mohamad, Zarina Othman, Mohd Azman Abas, Azizah Ya'acob, Rozmel Abdul Latiff

Abstract:

Effective doctor-patient interaction is vital to both doctor and patient relationship. It is the cornerstone of good practice and an integral quality of a healthcare institution. This paper presented the hierarchy of the communication elements in doctor-patient interaction during medical consultations in a medical centre in Malaysia. This study adapted The Picker Patient Experience Questionnaire (2002) to obtain the information from patients. The questionnaire survey was responded by 100 patients between the ages of 20 and 50. Data collected were analysed using Rasch Measurement Model to yield the hierarchy of the communication elements in doctor-patient interaction. The findings showed that the three highest ranking on the doctor-patient interaction were doctor’s treatment, important information delivery and patient satisfaction of doctor’s responses. The results are valuable in developing the framework for communication ethics of doctors.

Keywords: communication elements, doctor-patient interaction, hierarchy, Rasch measurement model

Procedia PDF Downloads 141