Search results for: spectrophotometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 122

Search results for: spectrophotometry

32 Development of a Wound Dressing Material Based on Microbial Polyhydroxybutyrate Electrospun Microfibers Containing Curcumin

Authors: Ariel Vilchez, Francisca Acevedo, Rodrigo Navia

Abstract:

The wound healing process can be accelerated and improved by the action of antioxidants such as curcumin (Cur) over the tissues; however, the efficacy of curcumin used through the digestive system is not enough to exploit its benefits. Electrospinning presents an alternative to carry curcumin directly to the wounds, and polyhydroxybutyrate (PHB) is proposed as the matrix to load curcumin owing to its biodegradable and biocompatible properties. PHB is among 150 types of Polyhydroxyalkanoates (PHAs) identified, it is a natural thermoplastic polyester produced by microbial fermentation obtained from microorganisms. The proposed objective is to develop electrospun bacterial PHB-based microfibers containing curcumin for possible biomedical applications. Commercial PHB was solved in Chloroform: Dimethylformamide (4:1) to a final concentration of 7% m/V. Curcumin was added to the polymeric solution at 1%, and 7% m/m regarding PHB. The electrospinning equipment (NEU-BM, China) with a rotary collector was used to obtain Cur-PHB fibers at different voltages and flow rate of the polymeric solution considering a distance of 20 cm from the needle to the collector. Scanning electron microscopy (SEM) was used to determine the diameter and morphology of the obtained fibers. Thermal stability was obtained from Thermogravimetric (TGA) analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) was carried out in order to study the chemical bonds and interactions. A preliminary curcumin release to Phosphate Buffer Saline (PBS) pH = 7.4 was obtained in vitro and measured by spectrophotometry. PHB fibers presented an intact chemical composition regarding the original condition (dust) according to FTIR spectra, the diameter fluctuates between 0.761 ± 0.123 and 2.157 ± 0.882 μm, with different qualities according to their morphology. The best fibers in terms of quality and diameter resulted in sample 2 and sample 6, obtained at 0-10kV and 0.5 mL/hr, and 0-10kV and 1.5 mL/hr, respectively. The melting temperature resulted near 178 °C, according to the bibliography. The crystallinity of fibers decreases while curcumin concentration increases for the studied interval. The curcumin release reaches near 14% at 37 °C at 54h in PBS adjusted to a quasi-Fickian Diffusion. We conclude that it is possible to load curcumin in PHB to obtain continuous, homogeneous, and solvent-free microfibers by electrospinning. Between 0% and 7% of curcumin, the crystallinity of fibers decreases as the concentration of curcumin increases. Thus, curcumin enhances the flexibility of the obtained material. HPLC should be used in further analysis of curcumin release.

Keywords: antioxidant, curcumin, polyhydroxybutyrate, wound healing

Procedia PDF Downloads 96
31 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 416
30 The Evaluation of Occupational Exposure of Chrome in Welders of Stainless Steels

Authors: L. Musak, J. Valachova, T. Vasicko, O. Osina

Abstract:

Introduction: Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) in steel was above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. Materials and Methods: The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) was used cytogenetic analysis of peripheral blood lymphocytes, gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistical analysis was used the Mann-Whitney U-test. Results: The mean Cr level in exposed group was 0.095 mmol/l (0.019 min-max 0.504). No value does exceed the average normal value. The average value Cr in urine was 7.9 mmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs 0.80% and CSA-type 0.96% vs 0.90%). In the number of total CA was observed statistical difference between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44%<1.82%<2.13%). There was observed a statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups (1.22% vs. 0.59%, P<0.05). Discussion and conclusions: The work place is usually higher source of exposure to harmful factors. Workers need consistently and checked frequently health control. In assessing the risk of adverse effects of metals is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors.

Keywords: genotoxicity, chromium, stainless steels, welders

Procedia PDF Downloads 337
29 Evaluation of the Phenolic Composition of Curcumin from Different Turmeric (Curcuma longa L.) Extracts: A Comprehensive Study Based on Chemical Turmeric Extract, Turmeric Tea and Fresh Turmeric Juice

Authors: Beyza Sukran Isik, Gokce Altin, Ipek Yalcinkaya, Evren Demircan, Asli Can Karaca, Beraat Ozcelik

Abstract:

Turmeric (Curcuma longa L.), is used as a food additive (spice), preservative and coloring agent in Asian countries, including China and South East Asia. It is also considered as a medicinal plant. Traditional Indian medicine evaluates turmeric powder for the treatment of biliary disorders, rheumatism, and sinusitis. It has rich polyphenol content. Turmeric has yellow color mainly because of the presence of three major pigments; curcumin 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione), demethoxy-curcumin and bis demothoxy-curcumin. These curcuminoids are recognized to have high antioxidant activities. Curcumin is the major constituent of Curcuma species. Method: To prepare turmeric tea, 0.5 gram of turmeric powder was brewed with 250 ml of water at 90°C, 10 minutes. 500 grams of fresh turmeric washed and shelled prior to squeezing. Both turmeric tea and turmeric juice pass through 45 lm filters and stored at -20°C in the dark for further analyses. Curcumin was extracted from 20 grams of turmeric powder by 70 ml ethanol solution (95:5 ethanol/water v/v) in a water bath at 80°C, 6 hours. Extraction was contributed for 2 hours at the end of 6 hours by addition of 30 ml ethanol. Ethanol was removed by rotary evaporator. Remained extract stored at -20°C in the dark. Total phenolic content and phenolic profile were determined by spectrophotometric analysis and ultra-fast liquid chromatography (UFLC), respectively. Results: The total phenolic content of ethanolic extract of turmeric, turmeric juice, and turmeric tea were determined 50.72, 31.76 and 29.68 ppt, respectively. The ethanolic extract of turmeric, turmeric juice, and turmeric tea have been injected into UFLC and analyzed for curcumin contents. The curcumin content in ethanolic extract of turmeric, turmeric juice, and turmeric tea were 4067.4, 156.7 ppm and 1.1 ppm, respectively. Significance: Turmeric is known as a good source of curcumin. According to the results, it can be stated that its tea is not sufficient way for curcumin consumption. Turmeric juice can be preferred to turmeric tea for higher curcumin content. Ethanolic extract of turmeric showed the highest content of turmeric in both spectrophotometric and chromatographic analyses. Nonpolar solvents and carriers which have polar binding sites have to be considered for curcumin consumption due to its nonpolar nature.

Keywords: phenolic compounds, spectrophotometry, turmeric, UFLC

Procedia PDF Downloads 163
28 Effect of Auraptene on the Enzymatic Glutathione Redox-System in Nrf2 Knockout Mice

Authors: Ludmila A. Gavriliuc, Jerry McLarty, Heather E. Kleiner, J. Michael Mathis

Abstract:

Abstract -- Background: The citrus coumarine Auraptene (Aur) is an effective chemopreventive agent, as manifested in many models of diseases and cancer. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1, and peroxiredoxin 1, by activating the antioxidant response element (ARE). Genetic and biochemical evidence has demonstrated that glutathione (GSH) and glutathione-dependent enzymes, glutathione reductase (GR), glutathione peroxidases (GPs), glutathione S-transferases (GSTs) are responsible for the control of intracellular reduction-oxidation status and participate in cellular adaptation to oxidative stress. The effect of Aur on the activity of GR, GPs (Se-GP and Se-iGP), and content of GSH in the liver, kidney, and spleen is insufficiently explored. Aim: Our goal was the examination of the Aur influence on the redox-system of GSH in Nrf2 wild type and Nrf2 knockout mice via activation of Nrf2 and ARE. Methods: Twenty female mice, 10 Nrf2 wild-type (WT) and 10 Nrf2 (-/-) knockout (KO), were bred and genotyped for our study. The activity of GR, Se-GP, Se-iGP, GST, G6PD, CytP450 reductase, catalase (Cat), and content of GSH were analyzed in the liver, kidney, and spleen using Spectrophotometry methods. The results of the specific activity of enzymes and the amount of GSH were analyzed with ANOVA and Spearman statistical methods. Results: Aur (200 mg/kg) treatment induced hepatic GST, GR, Se-GP activity and inhibited their activity in the spleen of mice, most likely via activation of the ARE through Nrf2. Activation in kidney Se-GP and G6PD by Aur is also controlled, apparently through Nrf2. Results of the non-parametric Spearman correlation analysis indicated the strong positive correlation between GR and G6PD only in the liver in WT control mice (r=+0.972; p < 0.005) and in the kidney KO control mice (r=+0.958; p < 0.005). The observed low content of GSH in the liver of KO mice indicated an increase in its participation in the neutralization of toxic substances with the absence of induction of GSH-dependent enzymes, such as GST, GR, Se-GP, and Se-iGP. Activation of CytP450 in kidney and spleen and Cat in the liver in KO mice probably revealed another regulatory mechanism for these enzymes. Conclusion: Thereby, obtained results testify that Aur can modulate the activity of genes and antioxidant enzymatic redox-system of GSH, responsible for the control of intracellular reduction-oxidation status.

Keywords: auraptene, glutathione, GST, Nrf2

Procedia PDF Downloads 105
27 Selection and Identification of Some Spontaneous Plant Species Having the Ability to Grow Naturally on Crude Oil Contaminated Soil for a Possible Approach to Decontaminate and Rehabilitate an Industrial Area

Authors: Salima Agoun-Bahar, Ouzna Abrous-Belbachir, Souad Amelal

Abstract:

Industrial areas generally contain heavy metals; thus, negative consequences can appear in the medium and long term on the fauna and flora, but also on the food chain, which man constitutes the final link. The SONATRACH Company has become aware of the importance of environmental protection by setting up a rehabilitation program for polluted sites in order to avoid major ecological disasters and find both curative and preventive solutions. The aim of this work consists to study industrial pollution located around a crude oil storage tank in the Algiers refinery of Sidi R'cine and to select the plants which accumulate the most heavy metals for possible use in phytotechnology. Sampling of whole plants with their soil clod was realized around the pollution source at a depth of twenty centimeters, then transported to the laboratory to identify them. The quantification of heavy metals, lead, zinc, copper, and nickel was carried out by atomic absorption spectrophotometry with flame in the soil and at the level of the aerial and underground parts of the plants. Ten plant species were recorded in the polluted site, three of them belonging to the grass family with a dominance percentage higher than 50%, followed by three other species belonging to the Composite family represented by 12% and one species for each of the families Linaceae, Plantaginaceae, Papilionaceae, and Boraginaceae. Koeleria phleoïdes L. and Avena sterilis L. of the grass family seem to be the dominant plants, although they are quite far from the pollution source. Lead pollution of soils is the most pronounced for all stations, with values varying from 237.5 to 2682.5 µg.g⁻¹. Other peaks are observed for zinc (1177 µg.g⁻¹) and copper (635 µg.g⁻¹) at station 8 and nickel (1800 µg.g⁻¹) at station 10. Among the inventoried plants, some species accumulate a significant amount of metals: Trifolium sp and K.phleoides for lead and zinc, P.lanceolata and G.tomentosa for nickel, and A.clavatus for zinc. K.phloides is a very interesting species because it accumulates an important quantity of heavy metals, especially in its aerial part. This can be explained by its use of the phytoextraction technique, which will facilitate the recovery of the pollutants by the simple removal of shoots.

Keywords: heavy metals, industrial pollution, phytotechnology, rehabilitation

Procedia PDF Downloads 35
26 Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water

Authors: Feleke Terefe Fanta

Abstract:

The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent.

Keywords: waste water, copper doped zeolite x, adsorption heavy metal, disinfection

Procedia PDF Downloads 43
25 Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus

Authors: Aasaithambi Kalaiselvi, Michael Gabriel Paulraj, Ekambaram Nakkeeran

Abstract:

Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest.

Keywords: Cinnamomum verum, niosomes, entrapment efficiency, bactericidal and fungicidal, mosquito larvicidal activity

Procedia PDF Downloads 122
24 The Staphylococcus aureus Exotoxin Recognition Using Nanobiosensor Designed by an Antibody-Attached Nanosilica Method

Authors: Hamed Ahari, Behrouz Akbari Adreghani, Vadood Razavilar, Amirali Anvar, Sima Moradi, Hourieh Shalchi

Abstract:

Considering the ever increasing population and industrialization of the developmental trend of humankind's life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective and even in most of the cases, the precision in the practical techniques like the bacterial cultivation and other techniques suffer from operator errors or the errors of the mixtures used. Hence with the advent of nanotechnology, the design of selective and smart sensors is one of the greatest industrial revelations of the quality control of food products that in few minutes time, and with a very high precision can identify the volume and toxicity of the bacteria. Methods and Materials: In this technique, based on the bacterial antibody connection to nanoparticle, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nanometer in form of solid powder were utilized with Notrino brand. Then the suspension produced from agent-linked nanosilica which was connected to bacterial antibody was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of 10-3, so that in case any toxin exists in the sample, a connection between toxin antigen and antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle attached antibody was measured using spectrophotometry. The gene of 23S rRNA that is conserved in all Staphylococcus spp., also used as control. The accuracy of the test was monitored by using serial dilution (l0-6) of overnight cell culture of Staphylococcus spp., bacteria (OD600: 0.02 = 107 cell). It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. Result: The results indicate that the sensor detects up to 10-4 density. Additionally, the sensitivity of the sensors was examined after 60 days, the sensor by the 56 days had confirmatory results and started to decrease after those time periods. Conclusions: Comparing practical nano biosensory to conventional methods like that culture and biotechnology methods(such as polymerase chain reaction) is accuracy, sensitiveness and being unique. In the other way, they reduce the time from the hours to the 30 minutes.

Keywords: exotoxin, nanobiosensor, recognition, Staphylococcus aureus

Procedia PDF Downloads 357
23 Monitoring the Pollution Status of the Goan Coast Using Genotoxicity Biomarkers in the Bivalve, Meretrix ovum

Authors: Avelyno D'Costa, S. K. Shyama, M. K. Praveen Kumar

Abstract:

The coast of Goa, India receives constant anthropogenic stress through its major rivers which carry mining rejects of iron and manganese ores from upstream mining sites and petroleum hydrocarbons from shipping and harbor-related activities which put the aquatic fauna such as bivalves at risk. The present study reports the pollution status of the Goan coast by the above xenobiotics employing genotoxicity studies. This is further supplemented by the quantification of total petroleum hydrocarbons (TPHs) and various trace metals (iron, manganese, copper, cadmium, and lead) in gills of the estuarine clam, Meretrix ovum as well as from the surrounding water and sediment, over a two-year sampling period, from January 2013 to December 2014. Bivalves were collected from a probable unpolluted site at Palolem and a probable polluted site at Vasco, based upon the anthropogenic activities at these sites. Genotoxicity was assessed in the gill cells using the comet assay and micronucleus test. The quantity of TPHs and trace metals present in gill tissue, water and sediments were analyzed using spectrofluorometry and atomic absorption spectrophotometry (AAS), respectively. The statistical significance of data was analyzed employing Student’s t-test. The relationship between DNA damage and pollutant concentrations was evaluated using multiple regression analysis. Significant DNA damage was observed in the bivalves collected from Vasco which is a region of high industrial activity. Concentrations of TPHs and trace metals (iron, manganese, and cadmium) were also found to be significantly high in gills of the bivalves collected from Vasco compared to those collected from Palolem. Further, the concentrations of these pollutants were also found to be significantly high in the water and sediments at Vasco compared to that of Palolem. This may be due to the lack of industrial activity at Palolem. A high positive correlation was observed between the pollutant levels and DNA damage in the bivalves collected from Vasco suggesting the genotoxic nature of these pollutants. Further, M. ovum can be used as a bioindicator species for monitoring the level of pollution of the estuarine/coastal regions by TPHs and trace metals.

Keywords: comet assay, metals, micronucleus test, total petroleum Hydrocarbons

Procedia PDF Downloads 204
22 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 182
21 Functionalization of Carbon-Coated Iron Nanoparticles with Fluorescent Protein

Authors: A. G. Pershina, P. S. Postnikov, M. E. Trusova, D. O. Burlakova, A. E. Sazonov

Abstract:

Invention of magnetic-fluorescent nanocomposites is a rapidly developing area of research. The magnetic-fluorescent nanocomposite attractiveness is connected with the ability of simultaneous management and control of such nanocomposites by two independent methods based on different physical principles. These nanocomposites are applied for the solution of various essential scientific and experimental biomedical problems. The aim of this research is development of principle approach to nanobiohybrid structures with magnetic and fluorescent properties design. The surface of carbon-coated iron nanoparticles (Fe@C) were covalently modified by 4-carboxy benzenediazonium tosylate. Recombinant fluorescent protein TagGFP2 (Eurogen) was obtained in E. coli (Rosetta DE3) by standard laboratory techniques. Immobilization of TagGFP2 on the nanoparticles surface was provided by the carbodiimide activation. The amount of COOH-groups on the nanoparticle surface was estimated by elemental analysis (Elementar Vario Macro) and TGA-analysis (SDT Q600, TA Instruments. Obtained nanocomposites were analyzed by FTIR spectroscopy (Nicolet Thermo 5700) and fluorescence microscopy (AxioImager M1, Carl Zeiss). Amount of the protein immobilized on the modified nanoparticle surface was determined by fluorimetry (Cary Eclipse) and spectrophotometry (Unico 2800) with the help of preliminary obtained calibration plots. In the FTIR spectra of modified nanoparticles the adsorption band of –COOH group around 1700 cm-1 and bands in the region of 450-850 cm-1 caused by bending vibrations of benzene ring were observed. The calculated quantity of active groups on the surface was equal to 0,1 mmol/g of material. The carbodiimide activation of COOH-groups on nanoparticles surface results to covalent immobilization of TagGFP2 fluorescent protein (0.2 nmol/mg). The success of immobilization was proved by FTIR spectroscopy. Protein characteristic adsorption bands in the region of 1500-1600 cm-1 (amide I) were presented in the FTIR spectrum of nanocomposite. The fluorescence microscopy analysis shows that Fe@C-TagGFP2 nanocomposite possesses fluorescence properties. This fact confirms that TagGFP2 protein retains its conformation due to immobilization on nanoparticles surface. Magnetic-fluorescent nanocomposite was obtained as a result of unique design solution implementation – the fluorescent protein molecules were fixed to the surface of superparamagnetic carbon-coated iron nanoparticles using original diazonium salts.

Keywords: carbon-coated iron nanoparticles, diazonium salts, fluorescent protein, immobilization

Procedia PDF Downloads 311
20 Effect of Aronia Juice on Cellular Redox Status in Women with Aerobic Training Activity

Authors: Ana Jelenkovic, Nevena Kardum, Vuk Stevanovic, Ivana Šarac, Kristina Dmitrovic, Stevan Stevanovic, Maria Glibetic

Abstract:

Physical activity is well known for its beneficial health implications, however, excess oxygen consumption may impair oxidative status of the cell and affect membrane fatty acid (FA) composition. Polyphenols are well-established antioxidants, which can incorporate in cell membranes and protect them from oxidation. Therefore, our aim was to investigate how an 8-week aerobic training alters erythrocyte FA composition and activities of enzymes (superoxide dismutase, glutathione peroxidase and catalase), and to what extent polyphenol-rich Aronia juice (AJ) counteracts these potential alterations. We included 28 healthy women aged 19-29, with mean body mass index (BMI) of 21.2±2.7kg/m² and assigned them into three groups. The first group performed 1 hour of aerobic training three times per week (T); the second group trained in the same way and received 100 ml/day AJ as a part of their regular diet (TAJ), while the third group was the control one (C). Study analyses were performed at baseline and at the end of the intervention and included: anthropometric and biochemical measurements, determination of erythrocyte FA profile with gas-liquid chromatography and determination of enzymes’ activity with spectrophotometry. Statistical analyses were carried out with SPSS 20.0, with p < 0.05 considered as significant. The paired t-test revealed a significant decrease in the saturated FA content and in ω6/ω3 ratio in TAJ group. Furthermore, ω3 and docosahexaenoic acid (DHA) content increased, as well as the percentage of polyunsaturated FA and unsaturation index, which clearly pointed out that AJ supplementation with aerobic training protected cellular membranes from lipid peroxidation. No significant changes were observed in the two other groups. The between-group comparisons (ANCOVA) confirmed the synergistic effect of AJ supplementation and physical activity: DHA and ω3 contents were much higher, while ω6/ω3 ratio was significantly lower in the TAJ group compared with C. We also found that after the 8 weeks period, participants in TAJ group had a higher unsaturation index and lower saturated FA concentration than subjects from T group, suggesting that AJ polyphenols might be involved in that particular pathway. We found no significant changes in enzymes’ activities apart from a significantly higher superoxide dismutase activity in T group compared with the other two groups. Our results imply that supplementation with polyphenol-rich AJ may prevent membrane lipids from peroxidation in healthy subjects with regular aerobic activity.

Keywords: Aronia juice, aerobic training, fatty acids, oxidative status

Procedia PDF Downloads 142
19 Effect of Pulsed Electrical Field on the Mechanical Properties of Raw, Blanched and Fried Potato Strips

Authors: Maria Botero-Uribe, Melissa Fitzgerald, Robert Gilbert, Kim Bryceson, Jocelyn Midgley

Abstract:

French fry manufacturing involves a series of processes in which structural properties of potatoes are modified to produce crispy french fries which consumers enjoy. In addition to the traditional french fry manufacturing process, the industry is applying a relatively new process called pulsed electrical field (PEF) to the whole potatoes. There is a wealth of information on the technical treatment conditions of PEF, however, there is a lack of information about its effect on the structural properties that affect texture and its synergistic interactions with the other manufacturing steps of french fry production. The effect of PEF on starch gelatinisation properties of Russet Burbank potato was measured using a Differential Scanning Calorimeter. Cation content (K+, Ca2+ and Mg2+) was determined by inductively coupled plasma optical emission spectrophotometry. Firmness, and toughness of raw and blanched potatoes were determined in an uniaxial compression test. Moisture content was determined in a vacuum oven and oil content was measured using the soxhlet system with hexane. The final texture of the french fries – crispness - was determined using a three bend point test. Triangle tests were conducted to determine if consumers were able to perceive sensory differences between French fries that were PEF treated and those without treatment. The concentration of K+, Ca2+ and Mg2+ decreased significantly in the raw potatoes after the PEF treatment. The PEF treatment significantly increased modulus of elasticity, compression strain, compression force and toughness in the raw potato. The PEF-treated raw potato were firmer and stiffer, and its structure integrity held together longer, resisted higher force before fracture and stretched further than the untreated ones. The strain stress relationship exhibited by the PEF-treated raw potato could be due to an increase in the permeability of the plasmalema and tonoplasm allowing Ca2+ and Mg2+ cations to reach the cell wall and middle lamella, and be available for cross linking with the pectin molecule. The PEF-treated raw potato exhibited a slightly higher onset gelatinisation temperatures, similar peak temperatures and lower gelatinisation ranges than the untreated raw potatoes. The final moisture content of the french fries was not significantly affected by the PEF treatment. Oil content in the PEF- treated potatoes was lower than the untreated french fries, however, not statistically significant at 5 %. The PEF treatment did not have an overall significant effect on french fry crispness (modulus of elasticity), flexure stress or strain. The triangle tests show that most consumers could not detect a difference between French fries that received a PEF treatment from those that did not.

Keywords: french fries, mechanical properties, PEF, potatoes

Procedia PDF Downloads 211
18 Controlling the Release of Cyt C and L- Dopa from pNIPAM-AAc Nanogel Based Systems

Authors: Sulalit Bandyopadhyay, Muhammad Awais Ashfaq Alvi, Anuvansh Sharma, Wilhelm R. Glomm

Abstract:

Release of drugs from nanogels and nanogel-based systems can occur under the influence of external stimuli like temperature, pH, magnetic fields and so on. pNIPAm-AAc nanogels respond to the combined action of both temperature and pH, the former being mostly determined by hydrophilic-to-hydrophobic transitions above the volume phase transition temperature (VPTT), while the latter is controlled by the degree of protonation of the carboxylic acid groups. These nanogels based systems are promising candidates in the field of drug delivery. Combining nanogels with magneto-plasmonic nanoparticles (NPs) introduce imaging and targeting modalities along with stimuli-response in one hybrid system, thereby incorporating multifunctionality. Fe@Au core-shell NPs possess optical signature in the visible spectrum owing to localized surface plasmon resonance (LSPR) of the Au shell, and superparamagnetic properties stemming from the Fe core. Although there exist several synthesis methods to control the size and physico-chemical properties of pNIPAm-AAc nanogels, yet, there is no comprehensive study that highlights the dependence of incorporation of one or more layers of NPs to these nanogels. In addition, effective determination of volume phase transition temperature (VPTT) of the nanogels is a challenge which complicates their uses in biological applications. Here, we have modified the swelling-collapse properties of pNIPAm-AAc nanogels, by combining with Fe@Au NPs using different solution based methods. The hydrophilic-hydrophobic transition of the nanogels above the VPTT has been confirmed to be reversible. Further, an analytical method has been developed to deduce the average VPTT which is found to be 37.3°C for the nanogels and 39.3°C for nanogel coated Fe@Au NPs. An opposite swelling –collapse behaviour is observed for the latter where the Fe@Au NPs act as bridge molecules pulling together the gelling units. Thereafter, Cyt C, a model protein drug and L-Dopa, a drug used in the clinical treatment of Parkinson’s disease were loaded separately into the nanogels and nanogel coated Fe@Au NPs, using a modified breathing-in mechanism. This gave high loading and encapsulation efficiencies (L Dopa: ~9% and 70µg/mg of nanogels, Cyt C: ~30% and 10µg/mg of nanogels respectively for both the drugs. The release kinetics of L-Dopa, monitored using UV-vis spectrophotometry was observed to be rather slow (over several hours) with highest release happening under a combination of high temperature (above VPTT) and acidic conditions. However, the release of L-Dopa from nanogel coated Fe@Au NPs was the fastest, accounting for release of almost 87% of the initially loaded drug in ~30 hours. The chemical structure of the drug, drug incorporation method, location of the drug and presence of Fe@Au NPs largely alter the drug release mechanism and the kinetics of these nanogels and Fe@Au NPs coated with nanogels.

Keywords: controlled release, nanogels, volume phase transition temperature, l-dopa

Procedia PDF Downloads 297
17 Co-pyrolysis of Sludge and Kaolin/Zeolite to Stabilize Heavy Metals

Authors: Qian Li, Zhaoping Zhong

Abstract:

Sewage sludge, a typical solid waste, has inevitably been produced in enormous quantities in China. Still worse, the amount of sewage sludge produced has been increasing due to rapid economic development and urbanization. Compared to the conventional method to treat sewage sludge, pyrolysis has been considered an economic and ecological technology because it can significantly reduce the sludge volume, completely kill pathogens, and produce valuable solid, gas, and liquid products. However, the large-scale utilization of sludge biochar has been limited due to the considerable risk posed by heavy metals in the sludge. Heavy metals enriched in pyrolytic biochar could be divided into exchangeable, reducible, oxidizable, and residual forms. The residual form of heavy metals is the most stable and cannot be used by organisms. Kaolin and zeolite are environmentally friendly inorganic minerals with a high surface area and heat resistance characteristics. So, they exhibit the enormous potential to immobilize heavy metals. In order to reduce the risk of leaching heavy metals in the pyrolysis biochar, this study pyrolyzed sewage sludge mixed with kaolin/zeolite in a small rotary kiln. The influences of additives and pyrolysis temperature on the leaching concentration and morphological transformation of heavy metals in pyrolysis biochar were investigated. The potential mechanism of stabilizing heavy metals in the co-pyrolysis of sludge blended with kaolin/zeolite was explained by scanning electron microscopy, X-ray diffraction, and specific surface area and porosity analysis. The European Community Bureau of Reference sequential extraction procedure has been applied to analyze the forms of heavy metals in sludge and pyrolysis biochar. All the concentrations of heavy metals were examined by flame atomic absorption spectrophotometry. Compared with the proportions of heavy metals associated with the F4 fraction in pyrolytic carbon prepared without additional agents, those in carbon obtained by co-pyrolysis of sludge and kaolin/zeolite increased. Increasing the additive dosage could improve the proportions of the stable fraction of various heavy metals in biochar. Kaolin exhibited a better effect on stabilizing heavy metals than zeolite. Aluminosilicate additives with excellent adsorption performance could capture more released heavy metals during sludge pyrolysis. Then heavy metal ions would react with the oxygen ions of additives to form silicate and aluminate, causing the conversion of heavy metals from unstable fractions (sulfate, chloride, etc.) to stable fractions (silicate, aluminate, etc.). This study reveals that the efficiency of stabilizing heavy metals depends on the formation of stable mineral compounds containing heavy metals in pyrolysis biochar.

Keywords: co-pyrolysis, heavy metals, immobilization mechanism, sewage sludge

Procedia PDF Downloads 36
16 Different Response of Pure Arctic Char Salvelinus alpinus and Hybrid (Salvelinus alpinus vs. Salvelinus fontinalis Mitchill) to Various Hyperoxic Regimes

Authors: V. Stejskal, K. Lundova, R. Sebesta, T. Vanina, S. Roje

Abstract:

Pure strain of Arctic char (AC) Salvelinus alpinus and hybrid (HB) Salvelinus alpinus vs. Salvelinus fontinalis Mitchill belong to fish, which with great potential for culture in recirculating aquaculture systems (RAS). Aquaculture of these fish currently use flow-through systems (FTS), especially in Nordic countries such as Iceland (biggest producer), Norway, Sweden, and Canada. Four different water saturation regimes included normoxia (NOR), permanent hyperoxia (HYP), intermittent hyperoxia (HYP ± ) and regimes where one day of normoxia was followed by one day of hyperoxia (HYP1/1) were tested during 63 days of experiment in both species in two parallel experiments. Fish were reared in two identical RAS system consisted of 24 plastic round tanks (300 L each), drum filter, biological filter with moving beads and submerged biofilter. The temperature was maintained using flow-through cooler during at level of 13.6 ± 0.8 °C. Different water saturation regimes were achieved by mixing of pure oxygen (O₂) with water in three (one for each hyperoxic regime) mixing tower equipped with flowmeter for regulation of gas inflow. The water in groups HYP, HYP1/1 and HYP± was enriched with oxygen up to saturation of 120-130%. In HYP group was this level kept during whole day. In HYP ± group was hyperoxia kept for daylight phase (08:00-20:00) only and during night time was applied normoxia in this group. The oxygen saturation of 80-90% in NOR group was created using intensive aeration in header tank. The fish were fed with commercial feed to slight excess at 2 h intervals within the light phase of the day. Water quality parameters like pH, temperature and level of oxygen was monitoring three times (7 am, 10 am and 6 pm) per day using handy multimeter. Ammonium, nitrite and nitrate were measured in two day interval using spectrophotometry. Initial body weight (BW) was 40.9 ± 8.7 g and 70.6 ± 14.8 in AC and HB group, respectively. Final survival of AC ranged from 96.3 ± 4.6 (HYP) to 100 ± 0.0% in all other groups without significant differences among these groups. Similarly very high survival was reached in trial with HB with levels from 99.2 ± 1.3 (HYP, HYP1/1 and NOR) to 100 ± 0.0% (HYP ± ). HB fish showed best growth performance in NOR group reached final body weight (BW) 180.4 ± 2.3 g. Fish growth under different hyperoxic regimes was significantly reduced and final BW was 164.4 ± 7.6, 162.1 ± 12.2 and 151.7 ± 6.8 g in groups HY1/1, HYP ± and HYP, respectively. AC showed different preference for hyperoxic regimes as there were no significant difference in BW among NOR, HY1/1 and HYP± group with final values of 72.3 ± 11.3, 68.3 ± 8.4 and 77.1 ± 6.1g. Significantly reduced growth (BW 61.8 ± 6.8 g) was observed in HYP group. It is evident from present study that there are differences between pure bred Arctic char and hybrid in relation to hyperoxic regimes. The study was supported by projects 'CENAKVA' (No. CZ.1.05/2.1.00/01.0024), 'CENAKVA II' (No. LO1205 under the NPU I program), NAZV (QJ1510077) and GAJU (No. 060/2016/Z).

Keywords: recirculating aquaculture systems, Salmonidae, hyperoxia, abiotic factors

Procedia PDF Downloads 140
15 Development of Polylactic Acid Insert with a Cinnamaldehyde-Betacyclodextrin Complex for Cape Gooseberry (Physalis Peruviana L.) Packed

Authors: Gómez S. Jennifer, Méndez V. Camila, Moncayo M. Diana, Vega M. Lizeth

Abstract:

The cape gooseberry is a climacteric fruit; Colombia is one of the principal exporters in the world. The environmental condition of temperature and relative moisture decreases the titratable acidity and pH. These conditions and fruit maturation result in the fungal proliferation of Botrytis cinerea disease. Plastic packaging for fresh cape gooseberries was used for mechanical damage protection but created a suitable atmosphere for fungal growth. Beta-cyclodextrins are currently implemented as coatings for the encapsulation of hydrophobic compounds, for example, with bioactive compounds from essential oils such as cinnamaldehyde, which has a high antimicrobial capacity. However, it is a volatile substance. In this article, the casting method was used to obtain a polylactic acid (PLA) polymer film containing the beta-cyclodextrin-cinnamaldehyde inclusion complex, generating an insert that allowed the controlled release of the antifungal substance in packed cape gooseberries to decrease contamination by Botrytis cinerea in a latent state during storage. For the encapsulation technique, three ratios for the cinnamaldehyde: beta-cyclodextrin inclusion complex were proposed: (25:75), (40:60), and (50:50). Spectrophotometry, colorimetry in L*a*b* coordinate space and scanning electron microscopy (SEM) were made for the complex characterization. Subsequently, two ratios of tween and water (40:60) and (50:50) were used to obtain the polylactic acid (PLA) film. To determine mechanical and physical parameters of colourimetry in L*a*b* coordinate space, atomic force microscopy and stereoscopy were done to determine the transparency and flexibility of the film; for both cases, Statgraphics software was used to determine the best ratio in each of the proposed phases, where for encapsulation it was (50:50) with an encapsulation efficiency of 65,92%, and for casting the ratio (40:60) obtained greater transparency and flexibility that permitted its incorporation into the polymeric packaging. A liberation assay was also developed under ambient temperature conditions to evaluate the concentration of cinnamaldehyde inside the packaging through gas chromatography for three weeks. It was found that the insert had a controlled release. Nevertheless, a higher cinnamaldehyde concentration is needed to obtain the minimum inhibitory concentration for the fungus Botrytis cinerea (0.2g/L). The homogeneity of the cinnamaldehyde gas phase inside the packaging can be improved by considering other insert configurations. This development aims to impact emerging food preservation technologies with the controlled release of antifungals to reduce the affectation of the physico-chemical and sensory properties of the fruit as a result of contamination by microorganisms in the postharvest stage.

Keywords: antifungal, casting, encapsulation, postharvest

Procedia PDF Downloads 40
14 Development of the Food Market of the Republic of Kazakhstan in the Field of Milk Processing

Authors: Gulmira Zhakupova, Tamara Tultabayeva, Aknur Muldasheva, Assem Sagandyk

Abstract:

The development of technology and production of products with increased biological value based on the use of natural food raw materials are important tasks in the policy of the food market of the Republic of Kazakhstan. For Kazakhstan, livestock farming, in particular sheep farming, is the most ancient and developed industry and way of life. The history of the Kazakh people is largely connected with this type of agricultural production, with established traditions using dairy products from sheep's milk. Therefore, the development of new technologies from sheep’s milk remains relevant. In addition, one of the most promising areas for the development of food technology for therapeutic and prophylactic purposes is sheep milk products as a source of protein, immunoglobulins, minerals, vitamins, and other biologically active compounds. This article presents the results of research on the study of milk processing technology. The objective of the study is to study the possibilities of processing sheep milk and its role in human nutrition, as well as the results of research to improve the technology of sheep milk products. The studies were carried out on the basis of sanitary and hygienic requirements for dairy products in accordance with the following test methods. To perform microbiological analysis, we used the method for identifying Salmonella bacteria (Horizontal method for identifying, counting, and serotyping Salmonella) in a certain mass or volume of product. Nutritional value is a complex of properties of food products that meet human physiological needs for energy and basic nutrients. The protein mass fraction was determined by the Kjeldahl method. This method is based on the mineralization of a milk sample with concentrated sulfuric acid in the presence of an oxidizing agent, an inert salt - potassium sulfate, and a catalyst - copper sulfate. In this case, the amino groups of the protein are converted into ammonium sulfate dissolved in sulfuric acid. The vitamin composition was determined by HPLC. To determine the content of mineral substances in the studied samples, the method of atomic absorption spectrophotometry was used. The study identified the technological parameters of sheep milk products and determined the prospects for researching sheep milk products. Microbiological studies were used to determine the safety of the study product. According to the results of the microbiological analysis, no deviations from the norm were identified. This means high safety of the products under study. In terms of nutritional value, the resulting products are high in protein. Data on the positive content of amino acids were also obtained. The results obtained will be used in the food industry and will serve as recommendations for manufacturers.

Keywords: dairy, milk processing, nutrition, colostrum

Procedia PDF Downloads 20
13 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry

Authors: Paulomi Polly Burey, Mark Lynch

Abstract:

It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.

Keywords: chemistry, food science, future pedagogy, STEM education

Procedia PDF Downloads 138
12 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography

Authors: Sudhanshu Sharma

Abstract:

Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.

Keywords: lisnopril, surfactant, chromatography, micellar solutions

Procedia PDF Downloads 335
11 Characterization of Extra Virgin Olive Oil from Olive Cultivars Grown in Pothwar, Pakistan

Authors: Abida Mariam, Anwaar Ahmed, Asif Ahmad, Muhammad Sheeraz Ahmad, Muhammad Akram Khan, Muhammad Mazahir

Abstract:

The plant olive (Olea europaea L.) is known for its commercial significance due to nutritional and health benefits. Pakistan is ranked 4th among countries who import olive oil whereas, 70% of edible oil is imported to fulfil the needs of the country. There exists great potential for Olea europaea cultivation in Pakistan. The popularity and cultivation of olive fruit has increased in recent past due to its high socio-economic and health significance. There exist almost negligible data on the chemical composition of extra virgin olive oil extracted from cultivars grown in Pothwar, an area with arid climate conducive for growth of olive trees. Keeping in view these factors a study has been conducted to characterize the olive oil extracted from olive cultivars collected from Pothwar regions of Pakistan for their nutritional potential and value addition. Ten olive cultivars (Gemlik, Coratina, Sevillano, Manzanilla, Leccino, Koroneiki, Frantoio, Arbiquina, Earlik and Ottobratica) were collected from Barani Agriculture Research Institute, Chakwal. Extra Virgin Olive Oil (EVOO) was extracted by cold pressing and centrifuging of olive fruits. The highest amount of oil was yielded in Coratina (23.9%) followed by Frantoio (23.7%), Koroneiki (22.8%), Sevillano (22%), Ottobratica (22%), Leccino (20.5%), Arbiquina (19.2%), Manzanilla (17.2%), Earlik (14.4%) and Gemllik (13.1%). The extracted virgin olive oil was studied for various physico- chemical properties and fatty acid profile. The Physical and chemical properties i.e., characteristic odor and taste, light yellow color with no foreign matter, insoluble impurities (≤0.08), fee fatty acid (0.1 to 0.8), acidity (0.5 to 1.6 mg/g acid), peroxide value (1.5 to 5.2 meqO2/kg), Iodine value (82 to 90), saponification value (186 to 192 mg/g) and unsaponifiable matter (4 to 8g/kg), ultraviolet spectrophotometric analysis (k232 and k270), showed values in the acceptable range, established by PSQCA and IOOC set for extra virgin olive oil. Olive oil was analyzed by Near Infra-Red spectrophotometry (NIR) for fatty acids sin olive oils which were found as: palmitic, palmitoleic, stearic, oleic, linoleic and alpha-linolenic. Major fatty acid was Oleic acid in the highest percentage ranging from (55 to 66.1%), followed by linoleic (10.4 to 20.4%), palmitic (13.8 to 19.5%), stearic (3.9 to 4.4%), palmitoleic (0.3 to 1.7%) and alpha-linolenic (0.9 to 1.7%). The results were significant with differences in parameters analyzed for all ten cultivars which confirm that genetic factors are important contributors in the physico-chemical characteristics of oil. The olive oil showed superior physical and chemical properties and recommended as one of the healthiest forms of edible oil. This study will help consumers to be more aware of and make better choices of healthy oils available locally thus contributing towards their better health.

Keywords: characterization, extra virgin olive oil, oil yield, fatty acids

Procedia PDF Downloads 59
10 Characterization and Evaluation of the Dissolution Increase of Molecular Solid Dispersions of Efavirenz

Authors: Leslie Raphael de M. Ferraz, Salvana Priscylla M. Costa, Tarcyla de A. Gomes, Giovanna Christinne R. M. Schver, Cristóvão R. da Silva, Magaly Andreza M. de Lyra, Danilo Augusto F. Fontes, Larissa A. Rolim, Amanda Carla Q. M. Vieira, Miracy M. de Albuquerque, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a drug used as first-line treatment of AIDS. However, it has poor aqueous solubility and wettability, presenting problems in the gastrointestinal tract absorption and bioavailability. One of the most promising strategies to improve the solubility is the use of solid dispersions (SD). Therefore, this study aimed to characterize SD EFZ with the polymers: PVP-K30, PVPVA 64 and SOLUPLUS in order to find an optimal formulation to compose a future pharmaceutical product for AIDS therapy. Initially, Physical Mixtures (PM) and SD with the polymers were obtained containing 10, 20, 50 and 80% of drug (w/w) by the solvent method. The best formulation obtained between the SD was selected by in vitro dissolution test. Finally, the drug-carrier system chosen, in all ratios obtained, were analyzed by the following techniques: Differential Scanning Calorimetry (DSC), polarization microscopy, Scanning Electron Microscopy (SEM) and spectrophotometry of absorption in the region of infrared (IR). From the dissolution profiles of EFV, PM and SD, the values of area Under The Curve (AUC) were calculated. The data showed that the AUC of all PM is greater than the isolated EFV, this result is derived from the hydrophilic properties of the polymers thus favoring a decrease in surface tension between the drug and the dissolution medium. In adittion, this ensures an increasing of wettability of the drug. In parallel, it was found that SD whom had higher AUC values, were those who have the greatest amount of polymer (with only 10% drug). As the amount of drug increases, it was noticed that these results either decrease or are statistically similar. The AUC values of the SD using the three different polymers, followed this decreasing order: SD PVPVA 64-EFV 10% > SD PVP-K30-EFV 10% > SD Soluplus®-EFV 10%. The DSC curves of SD’s did not show the characteristic endothermic event of drug melt process, suggesting that the EFV was converted to its amorphous state. The analysis of polarized light microscopy showed significant birefringence of the PM’s, but this was not observed in films of SD’s, thus suggesting the conversion of the drug from the crystalline to the amorphous state. In electron micrographs of all PM, independently of the percentage of the drug, the crystal structure of EFV was clearly detectable. Moreover, electron micrographs of the SD with the two polymers in different ratios investigated, we observed the presence of particles with irregular size and morphology, also occurring an extensive change in the appearance of the polymer, not being possible to differentiate the two components. IR spectra of PM corresponds to the overlapping of polymer and EFV bands indicating thereby that there is no interaction between them, unlike the spectra of all SD that showed complete disappearance of the band related to the axial deformation of the NH group of EFV. Therefore, this study was able to obtain a suitable formulation to overcome the solubility limitations of the EFV, since SD PVPVA 64-EFZ 10% was chosen as the best system in delay crystallization of the prototype, reaching higher levels of super saturation.

Keywords: characterization, dissolution, Efavirenz, solid dispersions

Procedia PDF Downloads 603
9 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification

Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado

Abstract:

DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.

Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles

Procedia PDF Downloads 209
8 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds

Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet

Abstract:

Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.

Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium

Procedia PDF Downloads 242
7 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 115
6 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 38
5 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles

Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster

Abstract:

Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.

Keywords: clay, enzyme, polyelectrolyte, formulation

Procedia PDF Downloads 237
4 Contamination by Heavy Metals of Some Environmental Objects in Adjacent Territories of Solid Waste Landfill

Authors: D. Kekelidze, G. Tsotadze, G. Maisuradze, L. Akhalbedashvili, M. Chkhaidze

Abstract:

Statement of Problem: The problem of solid wastes -dangerous sources of environmental pollution,is the urgent issue for Georgia as there are no waste-treatment and waste- incineration plants. Urban peripheral and rural areas, frequently along small rivers, are occupied by landfills without any permission. The study of the pollution of some environmental objects in the adjacent territories of solid waste landfill in Tbilisi carried out in 2020-2021, within the framework of project: “Ecological monitoring of the landfills surrounding areas and population health risk assessment”. Research objects: This research had goal to assess the ecological state of environmental objects (soil cover and surface water) in the territories, adjacent of solid waste landfill, on the base of changes heavy metals' (HM) concentration with distance from landfill. An open sanitary landfill for solid domestic waste in Tbilisi locates at suburb Lilo surrounded with densely populated villages. Content of following HM was determined in soil and river water samples: Pb, Cd, Cu, Zn, Ni, Co, Mn. Methodology: The HM content in samples was measured, using flame atomic absorption spectrophotometry (spectrophotometer of firm Perkin-Elmer AAnalyst 200) in accordance with ISO 11466 and GOST Р 53218-2008. Results and discussion: Data obtained confirmed migration of HM mainly in terms of the distance from the polygon that can be explained by their areal emissions and storage in open state, they could also get into the soil cover under the influence of wind and precipitation. Concentration of Pb, Cd, Cu, Zn always increases with approaching to landfill. High concentrations of Pb, Cd are characteristic of the soil covers of the adjacent territories around the landfill at a distance of 250, 500 meters.They create a dangerous zone, since they can later migrate into plants, enter in rivers and lakes. The higher concentrations, compared to the maximum permissible concentrations (MPC) for surface waters of Georgia, are observed for Pb, Cd. One of the reasons for the low concentration of HM in river water may be high turbidity – as is known, suspended particles are good natural sorbents that causes low concentration of dissolved forms. Concentration of Cu, Ni, Mn increases in winter, since in this season the rivers are switched to groundwater feeding. Conclusion: Soil covers of the areas adjacent to the landfill in Lilo are contaminated with HM. High concentrations in soils are characteristic of lead and cadmium. Elevated concentrations in comparison with the MPC for surface waters adopted in Georgia are also observed for Pb, Cd at checkpoints along and below (1000 m) of the landfill downstream. Data obtained confirm migration of HM to the adjacent territories of the landfill and to the Lochini River. Since the migration and toxicity of metals depends also on the presence of their mobile forms in water bodies, samples of bottom sediments should be taken too. Bottom sediments reflect a long-term picture of pollution, they accumulate HM and represent a constant source of secondary pollution of water bodies. The study of the physicochemical forms of metals is one of the priority areas for further research.

Keywords: landfill, pollution, heavy metals, migration

Procedia PDF Downloads 74
3 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 137