Search results for: sorption capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4108

Search results for: sorption capacity

4018 Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis

Authors: Vera Marcantonio, Marcello De Falco, Mauro Capocelli, Álvaro Amado-Fierro, Teresa A. Centeno, Enrico Bocci

Abstract:

Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS.

Keywords: biomass gasification, hydrogen, aspen plus, sorption enhance gasification

Procedia PDF Downloads 31
4017 Evaluation of Flange Bending Capacity near Member End Using a Finite Element Analysis Approach

Authors: Alicia Kamischke, Souhail Elhouar, Yasser Khodair

Abstract:

The American Institute of Steel Construction (AISC) Specification (360-10) provides equations for calculating the capacity of a W-shaped steel member to resist concentrated forces applied to its flange. In the case of flange local bending, the capacity equations were primarily formulated for an interior point along the member, which is defined to be at a distance larger than ten flange thicknesses away from the member’s end. When a concentrated load is applied within ten flange thicknesses from the member’s end, AISC requires a fifty percent reduction to be applied to the flange bending capacity. This reduction, however, is not supported by any research. In this study, finite element modeling is used to investigate the actual reduction in capacity near the end of such a steel member. The results indicate that the AISC equation for flange local bending is quite conservative for forces applied at less than ten flange thicknesses from the member’s end and a new equation is suggested for the evaluation of available flange local bending capacity within that distance.

Keywords: flange local bending, concentrated forces, column, flange capacity

Procedia PDF Downloads 647
4016 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation

Authors: Ahmed S. Abdulrasool

Abstract:

Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.

Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall

Procedia PDF Downloads 352
4015 Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam

Authors: Andri Hidayat, Zufialdi Zakaria, Raden Irvan Sophian

Abstract:

Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence.

Keywords: ultimate bearing capacity, type of foundation, consolidation, land subsidence, Batam

Procedia PDF Downloads 335
4014 Synthesis of Magnetic Chitosan Beads and Its Cross-Linked Derivatives for Sorption of Zinc Ions from Water Samples of Yamuna and Hindon Rivers in India

Authors: Priti Rani, Rajni Johar, P. S. Jassal

Abstract:

The magnetic chitosan beads (MCB) were synthesized using co-precipitation method and made to react with epichlorohydrin (ECH) to get the cross-linked derivative (ECH-MCB). The beads were characterized by FTIR, SEM, EDX, and TGA. It is found that zinc metal ion sorption efficiency of ECH-MCB is significantly higher than MCB. Various factors affecting the uptake behavior of metal ions, such as pH, adsorbent dosage, contact time, and temperature effects, were investigated. The adsorption parameters fitted well with Langmuir and Freundlich isotherms. The equilibrium parameter RL values support that the adsorption (0 < RL < 1) is favorable and spontaneous process. The thermodynamic parameters confirm that it is an endothermic reaction, which results in an increase in the randomness of adsorption process. The beads were regenerated using ethylene diamine tetraacetic acid (EDTA) for further use. These beads prove as promising materials for the removal of pollutants from industrial wastewater. Water samples from Yamuna and Hindon rivers were analysed for the detection of Zn (II) ions.

Keywords: chitosan magnetic beads, EDTA, epichlorohydrin, removal efficiency

Procedia PDF Downloads 114
4013 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis

Authors: Jure Galović, Peter Hofmann

Abstract:

Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.

Keywords: dynamic applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage

Procedia PDF Downloads 125
4012 Establishing Digital Forensics Capability and Capacity among Malaysia's Law Enforcement Agencies: Issues, Challenges and Recommendations

Authors: Sarah Taylor, Nor Zarina Zainal Abidin, Mohd Zabri Adil Talib

Abstract:

Although cybercrime is on the rise, yet many Law Enforcement Agencies in Malaysia faces difficulty in establishing own digital forensics capability and capacity. The main reasons are undoubtedly because of the high cost and difficulty in convincing their management. A survey has been conducted among Malaysia’s Law Enforcement Agencies owning a digital forensics laboratory to understand their history of building digital forensics capacity and capability, the challenges and the impact of having own laboratory to their case investigation. The result of the study shall be used by other Law Enforcement Agencies in justifying to their management to establish own digital forensics capability and capacity.

Keywords: digital forensics, digital forensics capacity and capability, laboratory, law enforcement agency

Procedia PDF Downloads 192
4011 Road Transition Design on Freeway Tunnel Entrance and Exit Based on Traffic Capacity

Authors: Han Bai, Tong Zhang, Lemei Yu, Doudou Xie, Liang Zhao

Abstract:

Road transition design on freeway tunnel entrance and exit is one vital factor in realizing smooth transition and improving traveling safety for vehicles. The goal of this research is to develop a horizontal road transition design tool that considers the transition technology of traffic capacity consistency to explore its accommodation mechanism. The influencing factors of capacity are synthesized and a modified capacity calculation model focusing on the influence of road width and lateral clearance is developed based on the VISSIM simulation to calculate the width of road transition sections. To keep the traffic capacity consistency, the right side of the transition section of the tunnel entrance and exit is divided into three parts: front arc, an intermediate transition section, and end arc; an optimization design on each transition part is conducted to improve the capacity stability and horizontal alignment transition. A case study on the Panlong Tunnel in Ji-Qing freeway illustrates the application of the tool.

Keywords: traffic safety, road transition, freeway tunnel, traffic capacity

Procedia PDF Downloads 285
4010 Effect of Superabsorbent for the Improvement of Car Seat's Thermal Comfort

Authors: Funda Buyuk Mazari, Adnan Mazari, Antonin Havelka, Jakub Wiener, Jawad Naeem

Abstract:

The use of super absorbent polymers (SAP) for moisture absorption and comfort is still unexplored. In this research the efficiency of different SAP fibrous webs are determined under different moisture percentage to examine the sorption and desorption efficiency. The SAP fibrous web with low thickness and high moisture absorption are tested with multilayer sandwich structure of car seat cover to determine the moisture absorption through cover material. Sweating guarded hot plate (SGHP) from company Atlas is used to determine the moisture permeability of different car seat cover with superabsorbent layer closed with impermeable polyurethane foam. It is observed that the SAP fibrous layers are very effective in absorbing and desorbing water vapor under extreme high and low moisture percentages respectively. In extreme humid condition (95 %RH) the 20g of SAP layer absorbs nearly 3g of water vapor per hour and reaches the maximum absorption capacity in 6 hours.

Keywords: car seat, comfort, SAF, superabsorbent

Procedia PDF Downloads 420
4009 Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data

Authors: Odai Ibrahim Mohammed Al Balasmeh, Tapas Karmaker, Richa Babbar

Abstract:

In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition.

Keywords: satellite data, normalize differences vegetation index, NDVI, normalize differences water index, NDWI, reservoir capacity, sedimentation, t-test hypothesis

Procedia PDF Downloads 129
4008 Energy Analysis and Integration of the H₂ Production from Biomass Fast Pyrolysis and in Line Sorption Enhanced Steam Reforming

Authors: P. Comendador, M. Suarez, L. Olazar, M. Cortazar, M. Artetxe, G. Lopez, M. Olazar

Abstract:

H₂ production from fast biomass pyrolysis and line Steam Reforming (SR) has been extensively studied in the last years. However, Sorption Enhanced Steam Reforming (SESR) is gaining attention as an alternative to the conventional SR since it allows obtaining higher H₂ yields and a purity near 100 % in the product stream. In this work, both alternatives were compared through an energy analysis. The processes were modeled with PRO II v.2021 software. First, general energy balances were carried out in order to identify the total energy requirements in a wide range of operating conditions. At H₂ yield optimum conditions for both processes (steam to biomass ratio of 2 and temperature of 600 ºC), the total energy requirement for the SR alternative is 936 kJ/kgH₂, whereas for the SESR alternative is 1134 kJ/kgH₂. Then, the energy needs were grouped into operation stages, aiming at identifying the energy sinks and sources of the processes. It was determined that the SESR alternative is more energy intensive due to the need for a calcination stage for regenerating the sorbent. Finally, a configuration of the SESR alternative with energy integration was developed in order to compensate for the energy demand.

Keywords: Biomass valorization, CO₂ capture, Energy analysis, H₂ production

Procedia PDF Downloads 51
4007 Study of Nitrogen Species Fate and Transport in Subsurface: To Assess the Impact of Wastewater Irrigation

Authors: C. Mekala, Indumathi M. Nambi

Abstract:

Nitrogen pollution in groundwater arising from wastewater and fertilizer application through vadose zone is a major problem and it causes a prime risk to groundwater based drinking water supplies. Nitrogenous compounds namely ammonium, nitrate and nitrite fate and transport in soil subsurface were studied experimentally. The major process like sorption, leaching, biotransformation involving microbial growth kinetics, and biological clogging due to biomass growth were assessed and modeled with advection-dispersion reaction equations for ammonium, nitrate and acetate in a saturated, heterogeneous soil medium. The transport process was coupled with freundlich sorption and monod inhibition kinetics for immobile bacteria and permeability reduction due to biomass growth will be verified and validated with the numerical model. This proposed mathematical model will be very helpful in the development of a management model for a sustainable and safe wastewater reuse strategies such as irrigation and groundwater recharge.

Keywords: nitrogen species transport, transformation, biological clogging, biokinetic parameters, contaminant transport model, saturated soil

Procedia PDF Downloads 360
4006 Impact of the Operation and Infrastructure Parameters to the Railway Track Capacity

Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Matej Babin

Abstract:

The railway transport is considered as a one of the most environmentally friendly mode of transport. With future prediction of increasing of freight transport there are lines facing problems with demanded capacity. Increase of the track capacity could be achieved by infrastructure constructive adjustments. The contribution shows how the travel time can be minimized and the track capacity increased by changing some of the basic infrastructure and operation parameters, for example, the minimal curve radius of the track, the number of tracks, or the usable track length at stations. Calculation of the necessary parameter changes is based on the fundamental physical laws applied to the train movement, and calculation of the occupation time is dependent on the changes of controlling the traffic between the stations.

Keywords: curve radius, maximum curve speed, track mass capacity, reconstruction

Procedia PDF Downloads 306
4005 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils

Procedia PDF Downloads 132
4004 Probabilistic Analysis of Bearing Capacity of Isolated Footing using Monte Carlo Simulation

Authors: Sameer Jung Karki, Gokhan Saygili

Abstract:

The allowable bearing capacity of foundation systems is determined by applying a factor of safety to the ultimate bearing capacity. Conventional ultimate bearing capacity calculations routines are based on deterministic input parameters where the nonuniformity and inhomogeneity of soil and site properties are not accounted for. Hence, the laws of mathematics like probability calculus and statistical analysis cannot be directly applied to foundation engineering. It’s assumed that the Factor of Safety, typically as high as 3.0, incorporates the uncertainty of the input parameters. This factor of safety is estimated based on subjective judgement rather than objective facts. It is an ambiguous term. Hence, a probabilistic analysis of the bearing capacity of an isolated footing on a clayey soil is carried out by using the Monte Carlo Simulation method. This simulated model was compared with the traditional discrete model. It was found out that the bearing capacity of soil was found higher for the simulated model compared with the discrete model. This was verified by doing the sensitivity analysis. As the number of simulations was increased, there was a significant % increase of the bearing capacity compared with discrete bearing capacity. The bearing capacity values obtained by simulation was found to follow a normal distribution. While using the traditional value of Factor of safety 3, the allowable bearing capacity had lower probability (0.03717) of occurring in the field compared to a higher probability (0.15866), while using the simulation derived factor of safety of 1.5. This means the traditional factor of safety is giving us bearing capacity that is less likely occurring/available in the field. This shows the subjective nature of factor of safety, and hence probability method is suggested to address the variability of the input parameters in bearing capacity equations.

Keywords: bearing capacity, factor of safety, isolated footing, montecarlo simulation

Procedia PDF Downloads 144
4003 Bonding Capacity of GFRP Sheet on Strengthen Concrete Beams After Influenced the Marine Environment

Authors: Mufti Amir Sultan, Rudy Djamaluddin, Rita Irmawaty

Abstract:

Structures built in aggressive environments such as in the sea/marine environment need to be carefully designed, due to the possibility of chloride ion penetration into the concrete. One way to reduce the strength degradation in such environment is to use FRP, which is attached to the surface of reinforced concrete using epoxy. A series of the specimen of reinforced concrete beams with dimension 100×120×600 mm were casted. Beams were immersed in the sea for 3 months (BL3), 6 months (BL6), and 12 months (BL12). Three specimens were prepared control beam without immersion to the sea (B0). The study presented is focused on determining the effect of the marine environment to the capacity of GFRP as flexural external reinforcement elements. The result indicated that the bonding capacity of BL3, BL6, and BL12 compared to B0 decreased for 7.91%, 11.99%, and 37.83%, respectively. The decreasing was caused by the weakening of the bonding capacity GFRP due to the influence of the marine environment.

Keywords: flexural, GFRP, marine environment, bonding capacity

Procedia PDF Downloads 319
4002 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution

Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka

Abstract:

Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.

Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal

Procedia PDF Downloads 257
4001 Improving Cyclability and Capacity of Lithium Oxygen Batteries via Low Rate Pre-Activation

Authors: Zhihong Luo, Guangbin Zhu, Lulu Guo, Zhujun Lyu, Kun Luo

Abstract:

Cycling life has become the threshold for the prospective application of Li-O₂ batteries, and the protection of Li anode has recently regarded as the key factor to the performance. Herein, a simple low rate pre-activation (20 cycles at 0.5 Ag⁻¹ and a capacity of 200 mAh g⁻¹) was employed to effectively improve the performance and cyclability of Li-O₂ batteries. The charge/discharge cycles at 1 A g⁻¹ with a capacity of 1000 mAh g⁻¹ were maintained for up to 290 times versus 55 times for the cell without pre-activation. The ultimate battery capacity and high rate discharge property were also largely enhanced. Morphology, XRD and XPS analyses reveal that the performance improvement is in close association with the formation of the smooth and compact surface layer formed on the Li anode after low rate pre-activation, which apparently alleviated the corrosion of Li anode and the passivation of cathode during battery cycling, and the corresponding mechanism was also discussed.

Keywords: lithium oxygen battery, pre-activation, cyclability, capacity

Procedia PDF Downloads 116
4000 Sorption of Crystal Violet from Aqueous Solution Using Chitosan−Charcoal Composite

Authors: Kingsley Izuagbe Ikeke, Abayomi O. Adetuyi

Abstract:

The study investigated the removal efficiency of crystal violet from aqueous solution using chitosan-charcoal composite as adsorbent. Deproteination was carried out by placing 200g of powdered snail shell in 4% w/v NaOH for 2hours. The sample was then placed in 1% HCl for 24 hours to remove CaCO3. Deacetylation was done by boiling in 50% NaOH for 2hours. 10% Oxalic acid was used to dissolve the chitosan before mixing with charcoal at 55°C to form the composite. The composite was characterized by Fourier Transform Infra-Red and Scanning Electron Microscopy measurements. The efficiency of adsorption was evaluated by varying pH of the solution, contact time, initial concentration and adsorbent dose. Maximum removal of crystal violet by composite and activated charcoal was attained at pH10 while maximum removal of crystal violet by chitosan was achieved at pH 8. The results showed that adsorption of both dyes followed the pseudo-second-order rate equation and fit the Langmuir and Freundlich isotherms. The data showed that composite was best suited for crystal violet removal and also did relatively well in the removal of alizarin red. Thermodynamic parameters such as enthalpy change (ΔHº), free energy change (ΔGº) and entropy change (ΔSº) indicate that adsorption process of Crystal Violet was endothermic, spontaneous and feasible respectively.

Keywords: crystal violet, chitosan−charcoal composite, extraction process, sorption

Procedia PDF Downloads 387
3999 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom

Authors: D. E. Egirani, J. E. Andrews, A. R. Baker

Abstract:

This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared  to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.

Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity

Procedia PDF Downloads 456
3998 Parameters Affecting Load Capacity of Reinforced Concrete Ring Deep Beams

Authors: Atef Ahmad Bleibel

Abstract:

Most codes of practice, like ACI 318-14, require the use of strut-and-tie modeling to analyze and design reinforced concrete deep beams. Though, investigations that conducted on deep beams do not include ring deep beams of influential parameters. This work presents an analytical parametric study using strut-and-tie modeling stated by ACI 318-14 to predict load capacity of 20 reinforced concrete ring deep beam specimens with different parameters. The parameters that were under consideration in the current work are ring diameter (Dc), number of supports (NS), width of ring beam (bw), concrete compressive strength (f'c) and width of bearing plate (Bp). It is found that the load capacity decreases by about 14-36% when ring diameter increases by about 25-75%. It is also found that load capacity increases by about 62-189% when number of supports increases by about 33-100%, while the load capacity increases by about 25-75% when the beam ring width increases by about 25-75%. Finally, it is found that load capacity increases by about 24-76% when compressive strength increases by about 24-76%, while the load capacity increases by about 5-16% when Bp increases by about 25-75%.

Keywords: load parameters, reinforced concrete, ring deep beam, strut and tie

Procedia PDF Downloads 67
3997 The Relationship between Absorptive Capacity and Green Innovation

Authors: R. Hashim, A. J. Bock, S. Cooper

Abstract:

Absorptive capacity generally facilitates the adoption of innovation. How does this relationship change when economic return is not the sole driver of innovation uptake? We investigate whether absorptive capacity facilitates the adoption of green innovation based on a survey of 79 construction companies in Scotland. Based on the results of multiple regression analyses, we confirm that existing knowledge utilisation (EKU), knowledge building (KB) and external knowledge acquisition (EKA) are significant predictors of green process GP), green administrative (GA) and green technical innovation (GT), respectively. We discuss the implications for theories of innovation adoption and knowledge enhancement associated with environmentally-friendly practices.

Keywords: absorptive capacity, construction industry, environmental, green innovation

Procedia PDF Downloads 475
3996 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas

Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang

Abstract:

An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.

Keywords: axial capacity, cyclic loading, pile ageing, shallow gas

Procedia PDF Downloads 297
3995 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 302
3994 Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction

Authors: Isha Rathore, Peeyush Jain, Elangovan Rajasekar

Abstract:

The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented.

Keywords: thermal capacity, tuning, peak demand reduction, parametric analysis

Procedia PDF Downloads 134
3993 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: cooperative networks, normalized capacity, sensing time

Procedia PDF Downloads 589
3992 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 104
3991 Development of Zinc Oxide Coated Carbon Nanoparticles from Pineapples Leaves Using SOL Gel Method for Optimal Adsorption of Copper ion and Reuse in Latent Fingerprint

Authors: Bienvenu Gael Fouda Mbanga, Zikhona Tywabi-Ngeva, Kriveshini Pillay

Abstract:

This work highlighted a new method for preparing Nitrogen carbon nanoparticles fused on zinc oxide nanoparticle nanocomposite (N-CNPs/ZnONPsNC) to remove copper ions (Cu²+) from wastewater by sol-gel method and applying the metal-loaded adsorbent in latent fingerprint application. The N-CNPs/ZnONPsNC showed to be an effective sorbent for optimum Cu²+ sorption at pH 8 and 0.05 g dose. The Langmuir isotherm was found to best fit the process, with a maximum adsorption capacity of 285.71 mg/g, which was higher than most values found in other research for Cu²+ removal. Adsorption was spontaneous and endothermic at 25oC. In addition, the Cu²+-N-CNPs/ZnONPsNC was found to be sensitive and selective for latent fingerprint (LFP) recognition on a range of porous surfaces. As a result, in forensic research, it is an effective distinguishing chemical for latent fingerprint detection.

Keywords: latent fingerprint, nanocomposite, adsorption, copper ions, metal loaded adsorption, adsorbent

Procedia PDF Downloads 41
3990 The Experimental Study of Cold-Formed Steel Truss Connections Capacity: Screw and Adhesive Connection

Authors: Indra Komara, Kıvanç Taşkin, Endah Wahyuni, Priyo Suprobo

Abstract:

A series of connection tests that were composed of Cold-Formed Steel (CFS) sections were made to investigate the capacity of connections in a roof truss frame. The connection is controlled by using the two-different type of connection i.e. screws connection and adhesive. The variation of screws is also added applying 1 screw, 2 screws, and 3 screws. On the other hand, the percentage of adhesively material is increased by the total area of screws connection which is 50%, 75%, and 100%. Behaviors illustrated by each connection are examined, and the design capacities projected from the current CFS design codes are appealed to the experimental results of the connections. This research analyses the principal factors assisting in the ductile response of the CFS truss frame connection measured to propose recommendations for connection design, and novelty so that the connection respond plastically with a significant capacity for no brittle failure. Furthermore, the comparison connection was considered for the analysis of the connection capacity, which was estimated from the specimen’s maximum load capacity and the load-deformation behavior.

Keywords: adhesive, bolts, capacity, cold-formed steel, connections, truss

Procedia PDF Downloads 252
3989 Analysis of Information Sharing and Capacity Constraint on Backlog Bullwhip Effect in Two Level Supply Chain

Authors: Matloub Hussaina

Abstract:

This paper investigates the impact of information sharing and capacity constraints on backlog bullwhip effect of Automatic Pipe Line Inventory and Order Based Production Control System (APIOBPCS). System dynamic simulation using iThink Software has been applied. It has been found that smooth ordering by Tier 1 can be achieved when Tier 1 has medium capacity constraints. Simulation experiments also show that information sharing helps to reduce 50% of backlog bullwhip effect in capacitated supply chains. This knowledge is of value per se, giving supply chain operations managers and designers a practical way in to controlling the backlog bullwhip effect. Future work should investigate the total cost implications of capacity constraints and safety stocks in multi-echelon supply chain.

Keywords: supply chain dynamics, information sharing, capacity constraints, simulation, APIOBPCS

Procedia PDF Downloads 277