Search results for: shifted Jacobi polynomials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 365

Search results for: shifted Jacobi polynomials

365 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial

Authors: Shubham Jaiswal

Abstract:

During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative

Procedia PDF Downloads 445
364 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix

Authors: Shubham Jaiswal

Abstract:

During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method

Procedia PDF Downloads 439
363 An Audit of Climate Change and Sustainability Teaching in Medical School

Authors: M. Tiachachat, M. Mihoubi

Abstract:

The Bell polynomials are special polynomials in combinatorial analysis that have a wide range of applications in mathematics. They have interested many authors. The exponential partial Bell polynomials have been well reduced to some special combinatorial sequences. Numerous researchers had already been interested in the above polynomials, as evidenced by many articles in the literature. Inspired by this work, in this work, we propose a family of special polynomials named after the 2-successive partial Bell polynomials. Using the combinatorial approach, we prove the properties of these numbers, derive several identities, and discuss some special cases. This family includes well-known numbers and polynomials such as Stirling numbers, Bell numbers and polynomials, and so on. We investigate their properties by employing generating functions

Keywords: 2-associated r-Stirling numbers, the exponential partial Bell polynomials, generating function, combinatorial interpretation

Procedia PDF Downloads 110
362 Polar Bergman Polynomials on Domain with Corners

Authors: Laskri Yamina, Rehouma Abdel Hamid

Abstract:

In this paper we present a new class named polar of monic orthogonal polynomials with respect to the area measure supported on G, where G is a bounded simply-connected domain in the complex planeℂ. We analyze some open questions and discuss some ideas properties related to solving asymptotic behavior of polar Bergman polynomials over domains with corners and asymptotic behavior of modified Bergman polynomials by affine transforms in variable and polar modified Bergman polynomials by affine transforms in variable. We show that uniform asymptotic of Bergman polynomials over domains with corners and by Pritsker's theorem imply uniform asymptotic for all their derivatives.

Keywords: Bergman orthogonal polynomials, polar rthogonal polynomials, asymptotic behavior, Faber polynomials

Procedia PDF Downloads 445
361 Hamilton-Jacobi Treatment of Damped Motion

Authors: Khaled I. Nawafleh

Abstract:

In this work, we apply the method of Hamilton-Jacobi to obtain solutions of Hamiltonian systems in classical mechanics with two certain structures: the first structure plays a central role in the theory of time-dependent Hamiltonians, whilst the second is used to treat classical Hamiltonians, including dissipation terms. It is proved that the generalization of problems from the calculus of variation methods in the nonstationary case can be obtained naturally in Hamilton-Jacobi formalism. Then, another expression of geometry of the Hamilton Jacobi equation is retrieved for Hamiltonians with time-dependent and frictional terms. Both approaches shall be applied to many physical examples.

Keywords: Hamilton-Jacobi, time dependent lagrangians, dissipative systems, variational principle

Procedia PDF Downloads 179
360 Chebyshev Polynomials Relad with Fibonacci and Lucas Polynomials

Authors: Vandana N. Purav

Abstract:

Fibonacci and Lucas polynomials are special cases of Chebyshev polynomial. There are two types of Chebyshev polynomials, a Chebyshev polynomial of first kind and a Chebyshev polynomial of second kind. Chebyshev polynomial of second kind can be derived from the Chebyshev polynomial of first kind. Chebyshev polynomial is a polynomial of degree n and satisfies a second order homogenous differential equation. We consider the difference equations which are related with Chebyshev, Fibonacci and Lucas polynomias. Thus Chebyshev polynomial of second kind play an important role in finding the recurrence relations with Fibonacci and Lucas polynomials.

Keywords:

Procedia PDF Downloads 368
359 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations

Authors: Bharti Gupta, V. K. Kukreja

Abstract:

A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.

Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates

Procedia PDF Downloads 223
358 Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions

Authors: Edamana Krishnan, Khalil Al-Ghafri

Abstract:

In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed.

Keywords: travelling wave solutions, solitary wave solutions, compactons, Jacobi elliptic functions, mapping methods

Procedia PDF Downloads 305
357 Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices

Authors: Manideepa Saha, Jahnavi Chakrabarty

Abstract:

Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods.

Keywords: convergence, Gauss-Seidel, iterative method, Jacobi, SOR

Procedia PDF Downloads 188
356 Hosoya Polynomials of Mycielskian Graphs

Authors: Sanju Vaidya, Aihua Li

Abstract:

Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry.

Keywords: hosoya polynomial, mycielskian graph, graph vulnerability measure, topological index

Procedia PDF Downloads 69
355 Bernstein Type Polynomials for Solving Differential Equations and Their Applications

Authors: Yilmaz Simsek

Abstract:

In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values.

Keywords: generating functions, Bernstein basis functions, Bernstein polynomials, Bezier curves, differential equations

Procedia PDF Downloads 274
354 Numerical Solution of Space Fractional Order Solute Transport System

Authors: Shubham Jaiswal

Abstract:

In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.

Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system

Procedia PDF Downloads 261
353 Numerical Simulation of Laser ‎Propagation through Turbulent ‎Atmosphere Using Zernike ‎Polynomials

Authors: Mohammad Moradi ‎

Abstract:

In this article, propagation of a laser beam through turbulent ‎atmosphere is evaluated. At first the laser beam is simulated and then ‎turbulent atmosphere will be simulated by using Zernike polynomials. ‎Some parameter like intensity, PSF will be measured for four ‎wavelengths in different Cn2.

Keywords: laser beam propagation, phase screen, turbulent atmosphere, Zernike ‎polynomials

Procedia PDF Downloads 511
352 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation

Procedia PDF Downloads 234
351 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude

Abstract:

In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.

Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm

Procedia PDF Downloads 149
350 Some Results on the Generalized Higher Rank Numerical Ranges

Authors: Mohsen Zahraei

Abstract:

‎In this paper, ‎the notion of ‎rank-k numerical range of rectangular complex matrix polynomials‎ ‎are introduced. ‎Some algebraic and geometrical properties are investigated. ‎Moreover, ‎for ε>0 the notion of Birkhoff-James approximate orthogonality sets for ε-higher ‎rank numerical ranges of rectangular matrix polynomials is also introduced and studied. ‎The proposed definitions yield a natural generalization of the standard higher rank numerical ranges.

Keywords: ‎‎Rank-k numerical range‎, ‎isometry‎, ‎numerical range‎, ‎rectangular matrix polynomials

Procedia PDF Downloads 459
349 Forward Stable Computation of Roots of Real Polynomials with Only Real Distinct Roots

Authors: Nevena Jakovčević Stor, Ivan Slapničar

Abstract:

Any polynomial can be expressed as a characteristic polynomial of a complex symmetric arrowhead matrix. This expression is not unique. If the polynomial is real with only real distinct roots, the matrix can be chosen as real. By using accurate forward stable algorithm for computing eigen values of real symmetric arrowhead matrices we derive a forward stable algorithm for computation of roots of such polynomials in O(n^2 ) operations. The algorithm computes each root to almost full accuracy. In some cases, the algorithm invokes extended precision routines, but only in the non-iterative part. Our examples include numerically difficult problems, like the well-known Wilkinson’s polynomials. Our algorithm compares favorably to other method for polynomial root-finding, like MPSolve or Newton’s method.

Keywords: roots of polynomials, eigenvalue decomposition, arrowhead matrix, high relative accuracy

Procedia PDF Downloads 417
348 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

Authors: Weihua Ruan, Kuan-Chou Chen

Abstract:

This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.

Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models

Procedia PDF Downloads 377
347 Fractional Order Differentiator Using Chebyshev Polynomials

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh Kumar Pandey

Abstract:

A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method.

Keywords: fractional order derivative, chebyshev polynomials, signals, S-G differentiator

Procedia PDF Downloads 648
346 A Survey on Routh-Hurwitz Stability Criterion

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Routh-Hurwitz stability criterion is a powerful approach to determine stability of linear time invariant systems. On the other hand, applying this criterion to characteristic equation of a system, whose stability or marginal stability can be determined. Although the command roots (.) of MATLAB software can be easily used to determine the roots of a polynomial, the characteristic equation of closed loop system usually includes parameters, so software cannot handle it; however, Routh-Hurwitz stability criterion results the region of parameter changes where the stability is guaranteed. Moreover, this criterion has been extended to characterize the stability of interval polynomials as well as fractional-order polynomials. Furthermore, it can help us to design stable and minimum-phase controllers. In this paper, theory and application of this criterion will be reviewed. Also, several illustrative examples are given.

Keywords: Hurwitz polynomials, Routh-Hurwitz stability criterion, continued fraction expansion, pure imaginary roots

Procedia PDF Downloads 328
345 Mapping Methods to Solve a Modified Korteweg de Vries Type Equation

Authors: E. V. Krishnan

Abstract:

In this paper, we employ mapping methods to construct exact travelling wave solutions for a modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic functions, kink solutions and singular wave solutions in terms of hyperbolic functions.

Keywords: travelling wave solutions, Jacobi elliptic functions, solitary wave solutions, Korteweg-de Vries equation

Procedia PDF Downloads 331
344 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity

Authors: Muna Alghabshi, Edmana Krishnan

Abstract:

A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.

Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method

Procedia PDF Downloads 314
343 The K-Distance Neighborhood Polynomial of a Graph

Authors: Soner Nandappa D., Ahmed Mohammed Naji

Abstract:

In a graph G = (V, E), the distance from a vertex v to a vertex u is the length of shortest v to u path. The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity. The k-distance neighborhood of v, for 0 ≤ k ≤ e(v), is Nk(v) = {u ϵ V (G) : d(v, u) = k}. In this paper, we introduce a new distance degree based topological polynomial of a graph G is called a k- distance neighborhood polynomial, denoted Nk(G, x). It is a polynomial with the coefficient of the term k, for 0 ≤ k ≤ e(v), is the sum of the cardinalities of Nk(v) for every v ϵ V (G). Some properties of k- distance neighborhood polynomials are obtained. Exact formulas of the k- distance neighborhood polynomial for some well-known graphs, Cartesian product and join of graphs are presented.

Keywords: vertex degrees, distance in graphs, graph operation, Nk-polynomials

Procedia PDF Downloads 549
342 Quantization of Damped Systems Based on the Doubling of Degrees of Freedom

Authors: Khaled I. Nawafleh

Abstract:

In this paper, it provide the canonical approach for studying dissipated oscillators based on the doubling of degrees of freedom. Clearly, expressions for Lagrangians of the elementary modes of the system are given, which ends with the familiar classical equations of motion for the dissipative oscillator. The equation for one variable is the time reversed of the motion of the second variable. it discuss in detail the extended Bateman Lagrangian specifically for a dual extended damped oscillator time-dependent. A Hamilton-Jacobi analysis showing the equivalence with the Lagrangian approach is also obtained. For that purpose, the techniques of separation of variables were applied, and the quantization process was achieved.

Keywords: doubling of degrees of freedom, dissipated harmonic oscillator, Hamilton-Jacobi, time-dependent lagrangians, quantization

Procedia PDF Downloads 68
341 On Hankel Matrices Approach to Interpolation Problem in Infinite and Finite Fields

Authors: Ivan Baravy

Abstract:

Interpolation problem, as it was initially posed in terms of polynomials, is well researched. However, further mathematical developments extended it significantly. Trigonometric interpolation is widely used in Fourier analysis, while its generalized representation as exponential interpolation is applicable to such problem of mathematical physics as modelling of Ziegler-Biersack-Littmark repulsive interatomic potentials. Formulated for finite fields, this problem arises in decoding Reed--Solomon codes. This paper shows the relation between different interpretations of the problem through the class of matrices of special structure - Hankel matrices.

Keywords: Berlekamp-Massey algorithm, exponential interpolation, finite fields, Hankel matrices, Hankel polynomials

Procedia PDF Downloads 520
340 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation

Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan

Abstract:

We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.

Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics

Procedia PDF Downloads 334
339 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: channel estimation, inter-cell interference, pilot contamination attacks, wireless communications

Procedia PDF Downloads 217
338 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem

Procedia PDF Downloads 403
337 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method

Procedia PDF Downloads 308
336 Hawking Radiation of Grumiller Black

Authors: Sherwan Kher Alden Yakub Alsofy

Abstract:

In this paper, we consider the relativistic Hamilton-Jacobi (HJ) equation and study the Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrophysics. GBH is also known as Rindler modified Schwarzschild BH. Our aim is not only to investigate the effect of the Rindler parameter A on the Hawking temperature (TH ), but to examine whether there is any discrepancy between the computed horizon temperature and the standard TH as well. For this purpose, in addition to its naive coordinate system, we study on the three regular coordinate systems which are Painlev´-Gullstrand (PG), ingoing Eddington- Finkelstein (IEF) and Kruskal-Szekeres (KS) coordinates. In all coordinate systems, we calculate the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by using the HJ equation. It has been shown in detail that the considered HJ method is concluded with the conventional TH in all these coordinate systems without giving rise to the famous factor- 2 problem. Furthermore, in the PG coordinates Parikh-Wilczek’s tunneling (PWT) method is employed in order to show how one can integrate the quantum gravity (QG) corrections to the semiclassical tunneling rate by including the effects of self-gravitation and back reaction. We then show how these corrections yield a modification in the TH.

Keywords: ingoing Eddington, Finkelstein, coordinates Parikh-Wilczek’s, Hamilton-Jacobi equation

Procedia PDF Downloads 615