Search results for: semi arid areas
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8801

Search results for: semi arid areas

8651 Effects of Adding Gypsum in Agricultural Land on Mitigating Splash Erosion on Sandy Loam and Loam Soil Textures, Afghanistan

Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani

Abstract:

Splash erosion in field has affected by factors; slope, rain intensity, soil properties, and plant cover. And also, soil erosion affects not only farmland productivity but also water quality downstream. There are a number of potential soil conservation practices, but many of these are complicated and relatively expensive, such as buffer strips, agro-forestry, counter banking, catchment canal, terracing, surface mulching, reduced tillage, etc. However, mitigation soil and water loss in agricultural land, particularly in arid and semi-arid climatic conditions, is indispensable for environmental protection and agricultural production. The objective of this study is to evaluate the effects of adding gypsum mineral on mitigating splash erosion caused by rain drop. The research was conducted in soil laboratory Badam Bagh Agricultural Researching Farm, Kabul, Afghanistan. The stainless steel cores were used, and constant water pressure was controlled by a Mariotte’s bottle with kinetic energy of raindrops 2.36 x 10⁻⁵J. Gypsum mineral was applied at a rate of 5 and 10 t ha⁻¹ and using a sandy loam and loam soil textures. The result was showed an average soil loss from sandy loam soil texture; control was 8.22%, 4.31% and 4.06% similar from loam soil texture, control was 7.26%, 2.89%, and 2.72% respectively. The application of gypsum mineral significantly (P < 0.05) reduced dispersion of soil particles caused by the impact of raindrops compared to control. Therefore, it was concluded that the addition of gypsum was effective as a measure for mitigating splash erosion.

Keywords: gypsum, soil loss, splash erosion, Afghanistan

Procedia PDF Downloads 101
8650 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 6
8649 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate

Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad

Abstract:

Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.

Keywords: land abandonment, land use, nutrient's depletion, soil erosion

Procedia PDF Downloads 308
8648 Cataloguing Beetle Fauna (Insecta: Coleoptera) of India: Estimating Diversity, Distribution, and Taxonomic Challenges

Authors: Devanshu Gupta, Kailash Chandra, Priyanka Das, Joyjit Ghosh

Abstract:

Beetles, in the insect order Coleoptera are the most species-rich group on this planet today. They represent about 40% of the total insect diversity of the world. With a considerable range of landform types including significant mountain ranges, deserts, fertile irrigational plains, and hilly forested areas, India is one of the mega-diverse countries and includes more than 0.1 million faunal species. Despite having rich biodiversity, the efforts to catalogue the beetle diversity of the extant species/taxa reported from India have been less. Therefore, in this paper, the information on the beetle fauna of India is provided based on the data available with the museum collections of Zoological Survey of India and taxa extracted from zoological records and published literature. The species were listed with their valid names, synonyms, type localities, type depositories, and their distribution in states and biogeographic zones of India. The catalogue also incorporates the bibliography on Indian Coleoptera. The exhaustive species inventory, prepared by us include distributional records from Himalaya, Trans Himalaya, Desert, Semi-Arid, Western Ghats, Deccan Peninsula, Gangetic Plains, Northeast, Islands, and Coastal areas of the country. Our study concludes that many of the species are still known from their type localities only, so there is need to revisit and resurvey those collection localities for the taxonomic evaluation of those species. There are species which exhibit single locality records, and taxa-specific biodiversity assessments are required to be undertaken to understand the distributional range of such species. The primary challenge is taxonomic identifications of the species which were described before independence, and the type materials are present in overseas museums. For such species, taxonomic revisions of the different group of beetles are required to solve the problems of identification and classification.

Keywords: checklist, taxonomy, museum collections, biogeographic zones

Procedia PDF Downloads 213
8647 The Study of Stable Isotopes (18O, 2H & 13C) in Kardeh River and Dam Reservoir, North-Eastern Iran

Authors: Hossein Mohammadzadeh, Mojtaba Heydarizad

Abstract:

Among various water resources, the surface water has a dominant role in providing water supply in the arid and semi-arid region of Iran. Andarokh-Kardeh basin is located in 50 km from Mashhad city - the second biggest city of Iran (NE of Iran), draining by Kardeh river which provides a significant portion of potable and irrigation water needs for Mashhad. The stable isotopes (18O, 2H,13C-DIC, and 13C-DOC), as reliable and precious water fingerprints, have been measured in Kardeh river (Kharket, Mareshk, Jong, All and Kardeh stations) and in Kardeh dam reservoirs (at five different sites S1 to S5) during March to June 2011 and June 2012. On δ18O vs. δ2H diagram, the river samples were plotted between Global and Eastern Mediterranean Meteoric Water lines (GMWL and EMMWL) which demonstrate that various moisture sources are providing humidity for precipitation events in this area. The enriched δ18O and δ2H values (-6.5 ‰ and -44.5 ‰ VSMOW) of Kardeh dam reservoir are compared to Kardeh river (-8.6‰and-54.4‰), and its deviation from Mashhad meteoric water line (MMWL- δ2H=7.16δ18O+11.22) is due to evaporation from the open surface water body. The enriched value of δ 13C-DIC and high amount of DIC values (-7.9 ‰ VPDB and 57.23 ppm) in the river and Kardeh dam reservoir (-7.3 ‰ VPDB and 55.53 ppm) is due to dissolution of Mozdooran Carbonate Formation lithology (Jm1 to Jm3 units) (contains enriched δ13C DIC values of 9.2‰ to 27.7‰ VPDB) in the region. Because of the domination of C3 vegetations in Andarokh_Kardeh basin, the δ13C-DOC isotope of the river (-28.4‰ VPDB) and dam reservoir (-32.3‰ VPDB) demonstrate depleted values. Higher DOC concentration in dam reservoir (2.57 ppm) compared to the river (0.72 ppm) is due to more biologogical activities and organic matters in dam reservoir.

Keywords: Dam reservoir, Iran, Kardeh river, Khorasan razavi, Stable isotopes

Procedia PDF Downloads 244
8646 Allelopathic Potential of Canola and Wheat to Control Weeds in Soybean (Glycine max)

Authors: Alireza Dadkhah

Abstract:

A filed experiment was done to develop management practices to reduce the use of synthetic herbicides, in the arid and semi-arid agricultural ecosystems of north east of Iran. Five treatments including I: chopped residues of canola (Brasica vulgaris), II: chopped residues of wheat (Triticum aestivum) both were separately incorporated to 25 cm depth soil, 20 days before sowing, III: shoot aqueous extract of canola, IV: shoot aqueous extract of wheat which were separately sprayed at post emergence stage and V: without any residues and spraying as control. The weed control treatments reduced the total weed cover, weed density and biomass of weed. The reduction in weed density with canola and wheat residues incorporation were up to 67.5 and 62.2% respectively, at 40 days after sowing and 65.3% and 75.6%, respectively, at 90 days after sowing, compared to control. However, post emergence spraying of shoot aqueous extract of canola and wheat, suppressed weed density up to 41.8 and 36.6% at 40 days after sowing and 54.2% and 52.7% at 90 days after sowing respectively, compared to control. Weed control treatments reduced weed cover (%), weed biomass and weeds stem length. Incorporation of canola and wheat residues in soil reduced weed cover (%) by 62.5% and 63% respectively, while spraying of shoot water extract of canola and wheat suppressed weed cover (%) by 39.6% and 40.4% respectively at 90 days after sowing. Application of canola and wheat residues increased soybean yield by 45.4% and 69.5% respectively, compared to control while post emergence application of shoot aqueous extract of canola and wheat increased soybean yield by 22% and 29.8% respectively.

Keywords: allelopathy, Bio-herbicide, Brassica oleracea, plant residues, Triticum aestivum

Procedia PDF Downloads 645
8645 Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents

Authors: Ying Zhao, Xingyan Bin

Abstract:

Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data.

Keywords: semi-supervised clustering, hierarchical agglomerative clustering, reference trees, distance constraints

Procedia PDF Downloads 501
8644 Fuzzy Climate Control System for Hydroponic Green Forage Production

Authors: Germán Díaz Flórez, Carlos Alberto Olvera Olvera, Domingo José Gómez Meléndez, Francisco Eneldo López Monteagudo

Abstract:

In recent decades, population growth has exerted great pressure on natural resources. Two of the most scarce and difficult to obtain resources, arable land, and water, are closely interrelated, to the satisfaction of the demand for food production. In Mexico, the agricultural sector uses more than 70% of water consumption. Therefore, maximize the efficiency of current production systems is inescapable. It is essential to utilize techniques and tools that will enable us to the significant savings of water, labor and fertilizer. In this study, we present a production module of hydroponic green forage (HGF), which is a viable alternative in the production of livestock feed in the semi-arid and arid zones. The equipment in addition to having a forage production module, has a climate and irrigation control system that operated with photovoltaics. The climate control, irrigation and power management is based on fuzzy control techniques. The fuzzy control provides an accurate method in the design of controllers for nonlinear dynamic physical phenomena such as temperature and humidity, besides other as lighting level, aeration and irrigation control using heuristic information. In this working, firstly refers to the production of the hydroponic green forage, suitable weather conditions and fertigation subsequently presents the design of the production module and the design of the controller. A simulation of the behavior of the production module and the end results of actual operation of the equipment are presented, demonstrating its easy design, flexibility, robustness and low cost that represents this equipment in the primary sector.

Keywords: fuzzy, climate control system, hydroponic green forage, forage production module

Procedia PDF Downloads 362
8643 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions

Authors: Oustani Mabrouka, Halilat Med Tahar

Abstract:

The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.

Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw

Procedia PDF Downloads 204
8642 New Evaluation of the Richness of Cactus (Opuntia) in Active Biomolecules and their Use in Agri-Food, Cosmetic, and Pharmaceutical

Authors: Lazhar Zourgui

Abstract:

Opuntia species are used as local medicinal interventions for chronic diseases and as food sources, mainly because they possess nutritional properties and biological activities. Opuntia ficus-indica (L.) Mill, commonly known as prickly pear or nopal cactus, is the most economically valuable plant in the Cactaceae family worldwide. It is a tropical or subtropical plant native to tropical and subtropical America, which can grow in arid and semi-arid climates. It belongs to the family of angiosperms dicotyledons Cactaceae of which about 1500 species of cacti are known. The Opuntia plant is distributed throughout the world and has great economic potential. There are differences in the phytochemical composition of Opuntia species between wild and domesticated species and within the same species. It is an interesting source of plant bioactive compounds. Bioactive compounds are compounds with nutritional benefits and are generally classified into phenolic and non-phenolic compounds and pigments. Opuntia species are able to grow in almost all climates, for example, arid, temperate, and tropical climates, and their bioactive compound profiles change depending on the species, cultivar, and climatic conditions. Therefore, there is an opportunity for the discovery of new compounds from different Opuntia cultivars. Health benefits of prickly pear are widely demonstrated: There is ample evidence of the health benefits of consuming prickly pear due to its source of nutrients and vitamins and its antioxidant properties due to its content of bioactive compounds. In addition, prickly pear is used in the treatment of hyperglycemia and high cholesterol levels, and its consumption is linked to a lower incidence of coronary heart disease and certain types of cancer. It may be effective in insulin-independent type 2 diabetes mellitus. Opuntia ficus-Indica seed oil has shown potent antioxidant and prophylactic effects. Industrial applications of these bioactive compounds are increasing. In addition to their application in the pharmaceutical industries, bioactive compounds are used in the food industry for the production of nutraceuticals and new food formulations (juices, drinks, jams, sweeteners). In my lecture, I will review in a comprehensive way the phytochemical, nutritional, and bioactive compound composition of the different aerial and underground parts of Opuntia species. The biological activities and applications of Opuntia compounds are also discussed.

Keywords: medicinal plants, cactus, Opuntia, actives biomolecules, biological activities

Procedia PDF Downloads 55
8641 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions

Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud

Abstract:

When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.

Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort

Procedia PDF Downloads 260
8640 Sustainable Desert Traditional Architecture of the Central Region of Saudi Arabia

Authors: Hisham Mortada

Abstract:

For thousands of years mud houses have represented the practical wisdom and spirituality of people, particularly those of desert regions, who learned how to use local materials to build homes that fitted the environmental and cultural conditions which they lived in. As a case study, the central region of Saudi Arabia exhibits a tradition of earth architecture that is unique in style, culture and sustainability. Aiming to contribute towards the local debate of the suitability of the traditional mud architecture for today’s lifestyle of Saudis, this paper explores the sustainable nature of the traditional adobe architecture of this hot arid region from environmental, social and technical points of view.

Keywords: desert architecture, alternative materials, Saudi Arabia, arid climate, green architecture

Procedia PDF Downloads 343
8639 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 32
8638 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu

Abstract:

Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame

Procedia PDF Downloads 35
8637 Recommending Appropriate Type of Green Roof Considering Urban Typology and Climatic Zoning in Iran

Authors: Ghazal Raheb

Abstract:

Population growth in big cities of Iran has led to limitation of land resources, more consumption of non-renewable sources of energy and many environmental problems. Emerging of overbuilt urban areas and decreasing amount of green spaces cause the appearance of an undesirable landscape in the cities. Green roof technology is a solution to improve environmental concerns in urban areas which combines green spaces with buildings as the private or semi-private spaces. Successful implementation in different areas definitely depends on accommodation of green roof type with the environment and urban and building typology in Iran. This paper is aiming to provide some recommendation for selecting appropriate type of green roof and executive solutions considering to climatic zoning and urban situation in Iran. Two main aspects which have been considered are environmental and urban typology factors.

Keywords: green roof, urban typology, climate zone, landscape

Procedia PDF Downloads 465
8636 The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment

Authors: Meshari Al-Harbi

Abstract:

A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere.

Keywords: aerosol, pollution, respirable particulates, trace-metals

Procedia PDF Downloads 281
8635 Effect of Waste Wool Sheep on the Growth and Antioxidant Activity of Lettuce on Boron Toxicity

Authors: Ozge Sahin, Aydin Gunes, Hasan Sabri Ozturk

Abstract:

Boron (B) toxicity an important agricultural problem as a limiting factor on yield, which is especially arid and semi-arid region. Big amounts of waste wool need to use an alternative, which is rich in protein such as collagen, elastin and keratin. Amino acid has a fundamental role on protein, which is an essential element in biological parameters materials and changes in its availability and metabolism. Therefore, this study aimed to study the effect of waste wool sheep hydrolysate to evaluate and compare for its boron toxicity on lettuce (Lactuca sativa L. Semental). Boron was applied at 20 mg B kg-¹ (Boron) from H₃BO₄ and 250 mg N kg-¹ from waste sheep wool hydrolysate (AA) to the soil. Dry weight of lettuce was increased by AA treatment. Boron (B) concentrations of inner leaf was decreased by AA treatment, and similar result was found for outer leaf, and moreover by the Boron+AA treatment, B concentrations was lower than the Boron treatment. Nitrogen concentrations of outer leaf was the highest at the Boron+AA and AA treatments. H²O² content of lettuce was not statistically significant. But superoxide oxidase (SOD, EC 1.15.1.1) activity was higher at the Boron treatment, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) activity of plant was highest at the AA treatment. Similarly, relative chlorophyll was highest AA and then, Boron+AA, control, respectively. Our results indicate that these parameters can be used to evaluate the stress level as well as to develop models that could help prevent the damage inflicted by B toxicity in lettuce plants. When the compare of the Boron and Boron+AA, due to the AA application, plant weight was increased, whereas B concentration was decreased due to the effect of amino acid. Amino acid treatment had positive effect on the boron stress condition, that the antioxidant defense system was supported our results.

Keywords: waste seep wool hydrolysate, boron, lettuce, antioxidant enzyme activity

Procedia PDF Downloads 30
8634 Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods

Authors: S. M. Hashemy Shahdany

Abstract:

Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes.

Keywords: equitable water distribution, precise agriculture, sustainable agriculture, water shortage

Procedia PDF Downloads 428
8633 Soil Degradati̇on Mapping Using Geographic Information System, Remote Sensing and Laboratory Analysis in the Oum Er Rbia High Basin, Middle Atlas, Morocco

Authors: Aafaf El Jazouli, Ahmed Barakat, Rida Khellouk

Abstract:

Mapping of soil degradation is derived from field observations, laboratory measurements, and remote sensing data, integrated quantitative methods to map the spatial characteristics of soil properties at different spatial and temporal scales to provide up-to-date information on the field. Since soil salinity, texture and organic matter play a vital role in assessing topsoil characteristics and soil quality, remote sensing can be considered an effective method for studying these properties. The main objective of this research is to asses soil degradation by combining remote sensing data and laboratory analysis. In order to achieve this goal, the required study of soil samples was taken at 50 locations in the upper basin of Oum Er Rbia in the Middle Atlas in Morocco. These samples were dried, sieved to 2 mm and analyzed in the laboratory. Landsat 8 OLI imagery was analyzed using physical or empirical methods to derive soil properties. In addition, remote sensing can serve as a supporting data source. Deterministic potential (Spline and Inverse Distance weighting) and probabilistic interpolation methods (ordinary kriging and universal kriging) were used to produce maps of each grain size class and soil properties using GIS software. As a result, a correlation was found between soil texture and soil organic matter content. This approach developed in ongoing research will improve the prospects for the use of remote sensing data for mapping soil degradation in arid and semi-arid environments.

Keywords: Soil degradation, GIS, interpolation methods (spline, IDW, kriging), Landsat 8 OLI, Oum Er Rbia high basin

Procedia PDF Downloads 133
8632 Effect of Saline Ground Water on Economics of Bitter-Gourd (Momordica charantia L.) Cultivation and Soil Characteristics in Semi Arid Region

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Due to the declining freshwater availability to agriculture in many areas, the utilization of saline irrigation requires more consideration. For this purpose, the effects of saline irrigation on the economics of crop yield and soil salinity should be understood. A two-year field experiment was carried out during 2017-18 with three replications to investigate the effect of saline groundwater on the economics of bitter gourd production and soil salinity status after harvesting the crop. Two irrigation treatments, i.e., fresh quality irrigation water (IT₁ EC 0.56 dS.m⁻¹ (control) and other is saline groundwater ( IT₂ EC 2.56 dS.m⁻¹) were used under drip system of irrigation. Cost-benefit analysis is often used to assess adaptation approaches. In this study, it has been observed that the salts under IT₁ (fresh quality water) and IT₂ (saline groundwater) did not accumulate in the wetted zone. However, the salts were observed deposited at wetted periphery under both the treatments after the crop end at all the three sampling depths under drip system of irrigation. Moreover, the costs and benefits associated with different irrigation treatments for two consecutive seasons for bitter-gourd cultivation were also investigated, and it was found that the average gross returns per hectare in season 1 were USD 5008.22 and 4454.78 under irrigation treatment IT₁ and IT₂ respectively. Whereas in season 2 the average gross returns per hectare were 3713.47 and 3140.51 under IT₁ and IT₂ respectively.

Keywords: ground-water, soil salinity, drip irrigation, wetted zone, wetted periphery, cost benefit analysis

Procedia PDF Downloads 121
8631 Impact of Extension Services Pastoralists’ Vulnerability to Climate Change in Northern Guinea Savannah of Nigeria

Authors: Sidiqat A. Aderinoye-Abdulwahab, Lateef L. Adefalu, Jubril O. Animashaun

Abstract:

Pastoralists in Nigeria are situated in dry regions - where water and pasture for livestock are particularly scarce, as well as areas with poor availability of social amenities and infrastructure. This study therefore explored how extension service could be used to reduce the exposure of nomads to effects of seasonality, climate change, and the poor environmental conditions. The study was carried out in Northern guinea Savannah region of Nigeria because pastoralists have settled there in large numbers due to desertification and low rainfall in the arid regions. A multi-stage sampling procedure was used to arrive at the selection of two states (Kwara and Nassarawa) in the region. A total of 63 respondents were randomly chosen using simple random sampling. Focus group discussions and questionnaire were used to gather information while the data was analysed using content analysis. The facilities required by the sampled households are milking machine, cheese making machine, and preservatives to increase the shelf life of cheese. Whilst, the extension service required are demonstration on cheese making, training and seminars on animal husbandry. Additionally, livestock of pastoralists often encroach on farmers’ plots which usually result in pastoralist-farmer conflicts. The study thus recommends diversification of economic activity from livestock to non-livestock related activities as well as creation of grazing routes to reduce pastoralist/farmer conflict.

Keywords: arid region, coping strategies, livestock, livelihood

Procedia PDF Downloads 346
8630 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 528
8629 Characterization of the State of Pollution by Nitrates in the Groundwater in Arid Zones Case of Eloued District (South-East of Algeria)

Authors: Zair Nadje, Attoui Badra, Miloudi Abdelmonem

Abstract:

This study aims to assess sensitivity to nitrate pollution and monitor the temporal evolution of nitrate contents in groundwater using statistical models and map their spatial distribution. The nitrate levels observed in the waters of the town of El-Oued differ from one aquifer to another. Indeed, the waters of the Quaternary aquifer are the richest in nitrates, with average annual contents varying from 6 mg/l to 85 mg/l, for an average of 37 mg/l. These levels are higher than the WHO standard (50 mg/l) for drinking water. At the water level of the Terminal Complex (CT) aquifer, the annual average nitrate levels vary from 14 mg/l to 37 mg/l, with an average of 18 mg/l. In the Terminal Complex, excessive nitrate levels are observed in the central localities of the study area. The spatial distribution of nitrates in the waters of the Quaternary aquifer shows that the majority of the catchment points of this aquifer are subject to nitrate pollution. This study shows that in the waters of the Terminal Complex aquifer, nitrate pollution evolves in two major areas. The first focus is South-North, following the direction of underground flow. The second is West-East, progressing towards the East zone. The temporal distribution of nitrate contents in the water of the Terminal Complex aquifer in the city of El-Oued showed that for decades, nitrate contents have suffered a decline after an increase. This evolution of nitrate levels is linked to demographic growth and the rapid urbanization of the city of El-Oued.

Keywords: anthropogenic activities, groundwater, nitrates, pollution, arid zones city of El-Oued, Algeria

Procedia PDF Downloads 8
8628 Genetic Variability and Heritability Among Indigenous Pearl Millet (Pennisetum Glaucum L. R. BR.) in Striga Infested Fields of Sudan Savanna, Nigeria

Authors: Adamu Usman, Grace Stanley Balami

Abstract:

Pearl millet (Pennisetum glaucum L. R. Br.) is a cereal cultivated in arid and semi-arid areas of the world. It supports more than 100 million people around the world. Parasitic weed (Striga hermonthica Del. Benth) is a major constraint to its production. Estimated yield losses are put at 10 - 95% depending on variety, ecology and cultural practices. Potentials in selection of traits in pearl millets for grain yield have been reported and it depends on genotypic variability and heritability among landraces. Variability and heritability among cultivars could offer opportunities for improvement. The study was conducted to determine the genetic variability among cultivars and estimate broad sense heritability among grain yield and related traits. F1 breeding populations were generated with 9 parental cultivars, viz; Ex-Gubio, Ex-Monguno, Ex-Baga as males and PEO 5984, Super-SOSAT, SOSAT-C88, Ex-Borno and LCIC9702 as females through Line × Tester mating during 2017 dry season at Lushi Irrigation Station, Bauchi Metropolitan in Bauchi State, Nigeria. The F1 population and the parents were evaluated during cropping season of 2018 at Bauchi and Maiduguri. Data collected were subjected to analysis of variance. Results showed significant difference among cultivars and among traits indicating variability. Number of plants at emergence, days to 50% flowering, days to 100% flowering, plant height, panicle length, number of plants at harvest, Striga count at 90 days after sowing, panicle weight and grain yield were significantly different. Significant variability offer opportunity for improvement as superior individuals can be isolated. Genotypic variance estimates of traits were largely greater than environmental variances except in plant height and 1000 seed weight. Environmental variances were low and in some cases negligible. The phenotypic variances of all traits were higher than genotypic variances. Similarly phenotypic coefficient of variation (PCV) was higher than genotypic coefficient of variation (GCV). High heritability was found in days to 50% flowering (90.27%), Striga count at 90 days after sowing (90.07%), number of plants at harvest (87.97%), days to 100% flowering (83.89%), number of plants at emergence (82.19%) and plant height (73.18%). Greater heritability estimates could be due to presence of additive gene. The result revealed wider variability among genotypes and traits. Traits having high heritability could easily respond to selection. High value of GCV, PCV and heritability estimates indicate that selection for these traits are possible and could be effective.

Keywords: variability, heritability, phenotypic, genotypic, striga

Procedia PDF Downloads 17
8627 The Influence of Different Green Roof Vegetation on Indoor Temperature in Semi-Arid Climate Cyprus

Authors: Sinem Yıldırım, Çimen Özburak, Özge Özden

Abstract:

Cities are facing a growing environmental issue as a result of the combined effect of urbanization and climate change. Climate change is the most conspicuousimpact on environmental issues. Nowadays, energy conservation is a very important subject for planners. It is known that green roofs can provide environmental benefits, which include building insulation and mitigating urban heat island effect within the cities. Some of the studies shown that green roofs regulate roof temperature and they have an effect on indoor temperatures of buildings. This research looks at the experimental investigation of different type green roof vegetation with control of no vegetation and their effect on indoor temperatures. The research has been carried out at Near East University Campus with the duration of four months in Nicosia, Cyprus. The experiment was consisting of four green roof types; three of them covered with vegetation, and one of them was not vegetated for control of the experiment. Each hut had 2.7 m2 roof areas, and the soil depth was 8 cm. Mediterranean climate drought resistant ground covers and shrubs were planted on the roof of the three huts. Three different vegetation type was used: 1-Low growing ground cover succulents 2-Mixture of low growing succulents and low shrubs 3-Mixture of low growing succulents, low shrubs, and high growing foliage plantsElitech RC-5 temperature data loggers were used in order to measure indoor temperatures of the huts. Research results were shown that the hut with a highly vegetated roof had the lowest temperatures during hot summer period in Cyprus.

Keywords: green roofs, indoor temperature, vegetation, mediterranean, cyprus

Procedia PDF Downloads 168
8626 Impact of Collieries on Groundwater in Damodar River Basin

Authors: Rajkumar Ghosh

Abstract:

The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.

Keywords: coal mining, groundwater, soil subsidence, water table, damodar river

Procedia PDF Downloads 46
8625 Acidity and Aridity: Soil Carbon Storage and Myeloablation

Authors: Tom Spears, Zotique Laframboise

Abstract:

Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 arid soil samples taken from 6 profiles in the Nepean Desert, Canada, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. We investigated the possible implications for tectonic platelet activity but identified none.

Keywords: soil, carbon storage, acidity, soil inorganic carbon (SIC)

Procedia PDF Downloads 449
8624 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.

Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation

Procedia PDF Downloads 115
8623 Earth Flat Roofs

Authors: Raúl García de la Cruz

Abstract:

In the state of Hidalgo and to the vicinity to the state of Mexico, there is a network of people who also share a valley bordered by hills with agave landscape of cacti and shared a bond of building traditions inherited from pre-Hispanic times and according to their material resources, habits and needs have been adapted in time. Weather has played an important role in the way buildings and roofs are constructed. Throughout the centuries, the population has developed very sophisticated building techniques like the flat roof, made out of a layer of earth; that is usually identified as belonging to architecture of the desert, but it can also be found in other climates, such as semi-arid and even template climates. It is an example of a constructive logic applied efficiently to various cultures proving its thermal isolation. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture , finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment. The objective of the research is the documentation of existing earth flat roofs in the state of Hidalgo and Mexico, as evidence of the importance of constructive system and its historical value in the area, considering its environmental, social aspects, also understanding the process of transformation of public housing at the time replaced the traditional techniques for industrial materials on a path towards urbanization. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture, finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment.

Keywords: earth roof, low impact building system, sustainable architecture, vernacular architecture

Procedia PDF Downloads 427
8622 Retrofitted Semi-Active Suspension System for a Eelectric Model Vehicle

Authors: Shiuh-Jer Huang, Yun-Han Yeh

Abstract:

A 40 steps manual adjusting shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system for a four-wheel drive electric vehicle. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. A fuzzy logic controller was designed to derive appropriate damping target based on vehicle running condition for semi-active suspension system to follow. The damping ratio control of each wheel axis suspension system is executed with a robust fuzzy sliding mode controller (FSMC). Different road surface conditions are chosen to evaluate the control performance of this semi-active suspension system based on wheel axis acceleration signal.

Keywords: semi-active suspension, electric vehicle, fuzzy sliding mode control, accelerometer

Procedia PDF Downloads 444