Search results for: resistant starch
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1237

Search results for: resistant starch

1117 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections

Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu

Abstract:

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Keywords: Methicillin-resistant Staphylococcus aureus, dihydroxyacetone kinase, essential genes, drug target, phosphoryl group donor

Procedia PDF Downloads 370
1116 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers

Authors: Sujosh Nandi, Proshanta Guha

Abstract:

Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.

Keywords: cross linking agent, guar gum, organic acids, potato starch

Procedia PDF Downloads 84
1115 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch

Procedia PDF Downloads 224
1114 Mimosa Tannin – Starch - Sugar Based Wood Adhesive

Authors: Salise Oktay, Nilgün Kizilcan, Başak Bengü

Abstract:

At present, formaldehyde based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine – urea formaldehyde (MUF), etc. are mostly used in wood based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde based wood adhesives are produced from non- renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood based panel industry requirements. In this study, as formaldehyde free adhesive, Mimosa tannin, starch, sugar based wood adhesivewas synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity, and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate the chemical structures of the cured adhesivesamples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in a laboratory scale, and mechanical, physical properties of the boards were investigated. Besides, the formaldehyde contents of the boards were determined by using the perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use wood based panel industry with some developments.

Keywords: bio-based wood adhesives, mimosa tannin, corn starch, sugar, polycarboxyclic acid

Procedia PDF Downloads 199
1113 Egyptian Soil Isolate Shows Promise as a Source of a New Broad-spectrum Antimicrobial Agent Against Multidrug-resistant Pathogens

Authors: Norhan H. Mahdally, Bathini Thissera Riham A. ElShiekh, Noha M. Elhosseiny, Mona T. Kashef, Ali M. El Halawany, Mostafa E. Rateb, Ahmed S. Attia

Abstract:

Multidrug-resistant (MDR) pathogens pose a global threat to healthcare settings. The exhaustion of the current antibiotic arsenal and the scarcity of new antimicrobials in the pipeline aggravate this threat and necessitate a prompt and effective response. This study focused on two major pathogens that can cause serious infections: carbapenem-resistant Acinetobacter baumannii (CRAB) and methicillin-resistant Staphylococcus aureus (MRSA). Multiple soil isolates were collected from several locations throughout Egypt and screened for their conventional and non-conventional antimicrobial activities against MDR pathogens. One isolate exhibited potent antimicrobial activity and was subjected to multiple rounds of fractionation. After fermentation and bio-guided fractionation, we identified pure microbial secondary metabolites with two scaffolds that exhibited promising effects against CRAB and MRSA. Scaling up and chemical synthesis of derivatives of the identified metabolite resulted in obtaining a more potent derivative, which we designated as 2HP. Cytotoxicity studies indicated that 2HP is well-tolerated by human cells. Ongoing work is focusing on formulating the new compound into a nano-formulation to enhance its delivery. Also, to have a better idea about how this compound works, a proteomic approach is currently underway. Our findings suggest that 2HP is a potential new broad-spectrum antimicrobial agent. Further studies are needed to confirm these findings and to develop 2HP into a safe and effective treatment for MDR infections.

Keywords: broad-spectrum antimicrobials, carbapenem-resistant acinetobacter baumannii, drug discovery, methicillin-resistant staphylococcus aureus, multidrug-resistant, natural products

Procedia PDF Downloads 44
1112 Phytochemical Constituents and Bioactive Properties of Glinus oppositifolius (L.) Aug. DC. against Bacterial Pathogens

Authors: Juliana Janet R. Martin-Puzon, Demetrio L. Valle, Windell L. Rivera

Abstract:

This study aimed to determine the presence of bioactive phytochemical constituents and evaluate the in vitro antibacterial activities of Glinus oppositifolius or carpet weed, a plant valued for its use in traditional medicine and as a vegetable. The leaves, stems, and roots were extracted using chloroform, ethanol, and methanol. Phytochemical screening revealed that the entire G. oppositifolius plant, i.e. roots, stems, and leaves, is a rich source of alkaloids, flavonoids, glycosides, saponins, sterols, tannins, and triterpenes. The antibacterial activity of the leaf and stem extracts were evaluated through disc diffusion, minimum inhibitory concentration, and bactericidal concentration assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing (ESβL+), carbapenem-resistant Enterobacteriaceae (CRE), and metallo-β-lactamase-producing (MβL+) Pseudomonas aeruginosa and Acinetobacter baumannii. The leaf extracts revealed antibacterial activities, inhibiting the growth of non-resistant and multidrug-resistant (MDR) strains of the Gram-negative bacteria E. coli, P. aeruginosa, and A. baumanii. In conclusion, the various biological activities of G. oppositifolius, including its antibacterial activity, are due to the presence of diverse bioactive secondary metabolites. The presence of phytochemical compounds in G. oppositifolius is scientific evidence on its use for treatment of many ailments. Thus, the results demonstrate the great potential of the plant as a new, alternative source of antimicrobials and other components with therapeutic value.

Keywords: antibacterial, Glinus oppositifolius, multidrug-resistant, secondary metabolites

Procedia PDF Downloads 539
1111 Structural and Magnetic Properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method and Annealing Effect

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jaromir Havlica, Zuzana Kozakova, Jiri Masilko, Lukas Kalina, Miroslava Hajdúchová, Vojtěch Enev, Jaromir Wasserbauer

Abstract:

In this work, we investigated the structural and magnetic properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) doped CoFe2O4 spinel ferrite nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed the effect of annealing temperature on size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles and particles were in the range of 10-100 nm. The magnetic properties of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with annealing temperature/ particle size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles was observed. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, rare-earth ions, spinel ferrite nanoparticles, magnetic properties

Procedia PDF Downloads 324
1110 Bio-Genetic Activities Associated with Resistant in Peppers to Phytophthora capsici

Authors: Mehdi Nasr-Esfahani, Leila Mohammad Bagheri, Ava Nasr-Esfahani

Abstract:

Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. In this study, a diverse collection of 37 commercial edible and ornamental pepper genotypes infected with P. capsici were investigated for biomass parameters and enzymatic activity of peroxidase or peroxide reductases (EC), superoxide dismutase (SOD), polyphenol oxidase (PPOs), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Seven candidate DEG genes were also evaluated on resistant and susceptible pepper cultivars, through measuring product formation, using spectrophotometry and real-time polymerase chain reaction. All the five enzymes and seven defense-gene candidates were up-regulated in all inoculated pepper accessions to P. capsici. But, the enzymes and DEG genes were highly expressed in resistant cv. 19OrnP-PBI, 37ChillP-Paleo, and “23CherryP-Orsh". The expression level of enzymes were 1.5 to 5.6-fold higher in the resistant peppers, than the control non-inoculated genotypes. Also, the transcriptional levels of related candidate DEG genes were 3.16 to 5.90-fold higher in the resistant genotypes. There was a direct and high correlation coefficient between resistance, bio-mass parameters, enzymatic activity, and resistance gene expression. The related enzymes and candidate genes expressed herein will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.

Keywords: AP2/ERF, cDNA, enzymes, MIP gene, q-RTPCR, XLOC

Procedia PDF Downloads 124
1109 Identification of Two Novel Carbapenemase Gene Variants from a Carbapenem-Resistant Aeromonas Veronii Environmental Isolate

Authors: Rafael Estrada, Cristian Ruiz Rueda

Abstract:

Carbapenems are last-resort antibiotics used in clinical settings to treat antibiotic-resistant bacterial infections. Thus, the emergence and spread of resistance to carbapenems is a major public health concern. Here, we have studied a carbapenem-resistant Aeromonas veronii strain previously isolated from a water sample from Sam Simeon Creek (Hearst San Simeon State Park, CA). Analysis of this isolate using disk-diffusion, CarbaNP, eCIM and mCIM assays revealed that it was resistant to amoxicillin-clavulanic acid and all carbapenems tested and that this isolate produced a potentially novel carbapenemase of the Metallo-β-lactamase family. Whole genome sequencing analysis revealed that this A. veronii isolate carries a novel variant of the blacₚₕₐ class β-carbapenemase gene that was closely related to the blacₚₕₐ₇ gene of Aeromonas jandaei. This isolate also carried a novel variant of the blaₒₓₐ class D carbapenemase gene that was most closely related to the blaₒₓₐ-₉₁₂ gene found in other Aeromonas veronii isolates. Finally, we also identified a novel class C β-lactamase gene moderately related to the blaFₒₓ-₁₇ gene of Providencia stuartii and other blaFₒₓ variants identified in Klebsiella pneumoniae, Escherichia coli and other Enterobacteriaceae. Overall, our findings reveal that environmental isolates are an important reservoir of multiple carbapenemases and other β-lactamases of clinical significance.

Keywords: β-lactamases, carbapenem, antibiotic-resistant, aeromonas veronii

Procedia PDF Downloads 51
1108 Evaluation of Essential Oils Toxicity on Resistant and Susceptible House Fly Strains

Authors: Xing Ping Hu, Yuexun Tian, Jerome Hogsette

Abstract:

Housefly, Musca domestica L., is a serious urban nuisance and public health/food safety concern. This study evaluated the topical toxicity of 17 essential oil components and 3 plant essential oils against permethrin-resistant adult females and insecticide-susceptible house fly strains. Results show that thymol had the lowest LD₅₀ values against permethrin-resistant strain (43.77 and 41.10 ug per fly) and permethrin-susceptible strain (35.19 and 29.16 ug per fly) at both 24- and 48-hours post treatments; (+)-Pulegone had the lowest LD₉₅ values against the permethrin-resistant strain (0.15 and 0.10 mg per fly) at 24- and 48-hours post treatments, whereas plant thyme oil had the lowest LD₉₅ value of 0.17 mg per fly at post-24h and post-48h against the permethrin-susceptible strain. Additionally, the LD₅₀s was slightly but not significantly negatively correlated with the boiling points of the compounds tested; but showed no correlation with the density and LogP. These results indicate that specific essential oils and compounds have topical insecticidal properties against house flies with low dose. They may have the potential for development as botanical insecticides.

Keywords: urban pest, public health, pest management, botanical chemical

Procedia PDF Downloads 354
1107 Neuropsychological Deficits in Drug-Resistant Epilepsy

Authors: Timea Harmath-Tánczos

Abstract:

Drug-resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily doses. About a third of patients with epilepsy suffer from drug resistance. Cognitive assessment has a crucial role in the diagnosis and clinical management of epilepsy. Previous studies have addressed the clinical targets and indications for measuring neuropsychological functions; best to our knowledge, no studies have examined it in a Hungarian therapy-resistant population. To fill this gap, we investigated the Hungarian diagnostic protocol between 18 and 65 years of age. This study aimed to describe and analyze neuropsychological functions in patients with drug-resistant epilepsy and identify factors associated with neuropsychology deficits. We perform a prospective case-control study comparing neuropsychological performances in 50 adult patients and 50 healthy individuals between March 2023 and July 2023. Neuropsychological functions were examined in both patients and controls using a full set of specific tests (general performance level, motor functions, attention, executive facts., verbal and visual memory, language, and visual-spatial functions). Potential risk factors for neuropsychological deficit were assessed in the patient group using a multivariate analysis. The two groups did not differ in age, sex, dominant hand and level of education. Compared with the control group, patients with drug-resistant epilepsy showed worse performance on motor functions and visuospatial memory, sustained attention, inhibition and verbal memory. Neuropsychological deficits could therefore be systematically detected in patients with drug-resistant epilepsy in order to provide neuropsychological therapy and improve quality of life. The analysis of the classical and complex indices of the special neuropsychological tasks presented in the presentation can help in the investigation of normal and disrupted memory and executive functions in the DRE.

Keywords: drug-resistant epilepsy, Hungarian diagnostic protocol, memory, executive functions, cognitive neuropsychology

Procedia PDF Downloads 45
1106 Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits

Authors: Maletsema Alina Mofokeng, Nemera Shargie

Abstract:

Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits.

Keywords: accessions, genetic diversity, nutritional quality, sorghum

Procedia PDF Downloads 229
1105 Differentially Response of Superoxide Dismutase in Wheat Susceptible and Resistant Cultivars against FHB

Authors: M. Sorahi Nobar, V. Niknam, H. Ebrahimzadeh, H. Soltanloo

Abstract:

Fusarium graminearum is one of the most destructive crop diseases in the world. Infection occurs during the flowering period in warm and humid conditions. It causes reduction in yield. Moreover, harvested grain is often contaminated with mycotoxins and its acetylated derivatives. Fusarium mycotoxines are potent inhibitor of protein synthesis, and thereby presents hazards for both human and animal health. A rapid production of reactive oxygen intermediates, primarily superoxide and hydrogen peroxide at the site of attempted infection considered as key feature underlying successful pathogen recognition. Here, we compared the time course activity of superoxide dismutase (SOD) as a first line of defenses against ROS- induced oxidative burst between FHB- resistant Sumai3 and susceptible Falat at 48, 96 and 144 hours after infection. Our results showed that Sumai3 SOD activity increased with time and reached the highest-level 4 days after infection while in susceptible cultivar Falat, SOD activity decreased during the first 96 h. after infection. Decreased was followed by an increased at 6 days after infection. According to our results rapid induction of SOD activity in resistant cultivar may play an important role in resistance against FHB in wheat.

Keywords: Fusarium graminearum, mycotoxins, resistant cultivar, superoxide dismutase

Procedia PDF Downloads 413
1104 Removal of Heavy Metal Ions from Aqueous Solution by Polymer Enhanced Ultrafiltration Using Unmodified Starch as Biopolymer

Authors: Nurul Huda Baharuddin, Nik Meriam Nik Sulaiman, Mohammed Kheireddine Aroua

Abstract:

The effects of pH, polymer concentration, and metal ions feed concentration for four selected heavy metals Zn (II), Pb (II), Cr (III) and Cr (VI) were tested by using Polymer Enhanced Ultrafiltration (PEUF). An alternative biopolymer namely unmodified starch is proposed as a binding reagent in consequences, as compared to commonly used water-soluble polymers namely polyethylene glycol (PEG) and polyethyleneimine (PEI) in the removal of selected four heavy metal ions. The speciation species profiles of four selected complexes ions namely Zn (II), Pb (II), Cr (III) and Cr (VI) and the present of hydroxides ions (OH-) in variously charged ions were investigated by available software at certain pH range. In corresponds to identify the potential of complexation behavior between metal ion-polymers, potentiometric titration studies were obtained at first before carried out experimental works. Experimental works were done using ultrafiltration systems obtained by laboratory ultrafiltration bench scale equipped with 10 kDa polysulfone hollow fiber membrane. Throughout the laboratory works, the rejection coefficient and permeate flux were found to be significantly affected by the main operating parameter, namely the effects of pH, polymer composition and metal ions concentrations. The interaction of complexation between two binding polymers namely unmodified starch and PEG were occurred due to physical attraction of metal ions to the polymer on the molecular surface with high possibility of chemical occurrence. However, these selected metal ions are mainly complexes by polymer functional groups whenever there is interaction with PEI polymer. For study of single metal ions solutions, Zn (II) ions' rejections approaching over 90% were obtained at pH 7 for each tested polymer. This behavior was similar to Pb (II), Cr (III) and Cr (VI); where the rejections were obtained at lower acidic pH and increased at neutral pH of 7. Different behavior was found by Cr (VI) ions where a high rejection was only achieved at acidic pH region with PEI. Polymer concentration and metal ions concentration are found to have a significant effect on rejections. For mixed metal ion solutions, the behavior of metal ion rejections was similar to single metal ion solutions for investigation on the effects of pH. Rejection values were high at pH 7 for Zn (II) pH 7 for Zn (II) and Cr (III) ions, corresponding to higher rejections with unmodified starch. Pb (II) ions obtained high rejections when tested with PEG whenever carried out in mixed metal ion solutions. High Cr (VI) ions' rejection was found with PEI in single and mixed metal ions solutions at neutral pH range. The influence of starch’s granule structure towards the rejections of these four selected metal ions is found to be attracted in a non-ionic manner. No significant effects on permeate flux were obtained when tested at different pH ranges, polymer concentrations and metal ions feed either by single or mixtures metal ions solutions. Canizares Model was employed as the theoretical model to predict permeate flux and metal ions retention on the study of heavy metal ions removal.

Keywords: polyethyleneimine, polyethylene glycol, polymer-enhanced ultrafiltration, unmodified starch

Procedia PDF Downloads 132
1103 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models

Authors: Sina Gharevali

Abstract:

Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.

Keywords: nanoparticles, copper, staphylococcus, aureus

Procedia PDF Downloads 65
1102 Tensile Retention Properties of Thermoplastic Starch Based Biocomposites Modified with Glutaraldehyde

Authors: Jen-Taut Yeh, Yuan-jing Hou, Li Cheng, Ya Zhou Wang, Zhi Yu Zhang

Abstract:

Tensile retention properties of bacterial cellulose (BC) reinforced thermoplastic starch (TPS) resins were successfully improved by reacting with glutaraldehyde (GA) in their gelatinization processes. Small amounts of poly (lactic acid) (PLA) were blended with GA modified TPS resins to improve their processability. As evidenced by the newly developed ether (-C-O-C-) stretching bands on FT-IR spectra of TPS100BC0.02GAx series specimens, hydroxyl groups of TPS100BC0.02 resins were successfully reacted with the aldehyde groups of GA molecules during their modification processes. The retention values of tensile strengths (σf) of TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens improved significantly and reached a maximal value as GA contents approached an optimal value at 0.5 part per hundred parts of TPS resin (PHR). By addition of 0.5 PHR GA in biocomposite specimens, the initial tensile strength and elongation at break values of (TPS100BC0.02GA0.5)75PLA25 specimen improved to 24.6 MPa and 5.6%, respectively, which were slightly improved than those of (TPS100BC0.02)75PLA25 specimen. However, the retention values of tensile strengths of (TPS100BC0.02GA0.5)75PLA25 specimen reached around 82.5%, after placing the specimen under 20oC/50% relative humidity for 56 days, which were significantly better than those of the (TPS100BC0.02)75PLA25 specimen. In order to understand these interesting tensile retention properties found for (TPS100BC0.02GAx)75PLA25 specimens. Thermal analyses of initial and aged TPS100BC0.02, TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens were also performed in this investigation. Possible reasons accounting for the significantly improved tensile retention properties of TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens are proposed.

Keywords: biocomposite, strength retention, thermoplastic starch, tensile retention

Procedia PDF Downloads 341
1101 Methicillin Resistant Staphylococcus aureus Specific Bacteriophage Isolation from Sewage Treatment Plant and in vivo Analysis of Phage Efficiency in Swiss Albino Mice

Authors: Pratibha Goyal, Nupur Mathur, Anuradha Singh

Abstract:

Antibiotic resistance is the worldwide threat to human health in this century. Excessive use of antibiotic after their discovery in 1940 makes certain bacteria to become resistant against antibiotics. Most common antibiotic-resistant bacteria include Staphylococcus aureus, Salmonella typhi, E.coli, Klebsiella pneumonia, and Streptococcus pneumonia. Among all Staphylococcus resistant strain called Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for several lives threatening infection in human commonly found in the hospital environment. Our study aimed to isolate bacteriophage against MRSA from the hospital sewage treatment plant and to analyze its efficiency In Vivo in Swiss albino mice model. Sewage sample for the isolation of bacteriophages was collected from SDMH hospital sewage treatment plant in Jaipur. Bacteriophages isolated by the use of enrichment technique and after characterization, isolated phages used to determine phage treatment efficiency in mice. Mice model used to check the safety and suitability of phage application in human need which in turn directly support the use of natural bacteriophage rather than synthetic chemical to kill pathogens. Results show the plaque formation in-vitro and recovery of MRSA infected mice during the experiment. Favorable lytic efficiency determination of MRSA and Salmonella presents a natural way to treat lethal infections caused by Multidrug-resistant bacteria by using their natural host-pathogen relationship.

Keywords: antibiotic resistance, bacteriophages, methicillin resistance Staphylococcus aureus, pathogens, phage therapy, Salmonella typhi

Procedia PDF Downloads 114
1100 Time to Second Line Treatment Initiation Among Drug-Resistant Tuberculosis Patients in Nepal

Authors: Shraddha Acharya, Sharad Kumar Sharma, Ratna Bhattarai, Bhagwan Maharjan, Deepak Dahal, Serpahine Kaminsa

Abstract:

Background: Drug-resistant (DR) tuberculosis (TB) continues to be a threat in Nepal, with an estimated 2800 new cases every year. The treatment of DR-TB with second line TB drugs is complex and takes longer time with comparatively lower treatment success rate than drug-susceptible TB. Delay in treatment initiation for DR-TB patients might further result in unfavorable treatment outcomes and increased transmission. This study thus aims to determine median time taken to initiate second-line treatment among Rifampicin Resistant (RR) diagnosed TB patients and to assess the proportion of treatment delays among various type of DR-TB cases. Method: A retrospective cohort study was done using national routine electronic data (DRTB and TB Laboratory Patient Tracking System-DHIS2) on drug resistant tuberculosis patients between January 2020 and December 2022. The time taken for treatment initiation was computed as– days from first diagnosis as RR TB through Xpert MTB/Rif test to enrollment on second-line treatment. The treatment delay (>7 days after diagnosis) was calculated. Results: Among total RR TB cases (N=954) diagnosed via Xpert nationwide, 61.4% were enrolled under shorter-treatment regimen (STR), 33.0% under longer treatment regimen (LTR), 5.1% for Pre-extensively drug resistant TB (Pre-XDR) and 0.4% for Extensively drug resistant TB (XDR) treatment. Among these cases, it was found that the median time from diagnosis to treatment initiation was 6 days (IQR:2-15.8). The median time was 5 days (IQR:2.0-13.3) among STR, 6 days (IQR:3.0-15.0) among LTR, 30 days (IQR:5.5-66.8) among Pre-XDR and 4 days (IQR:2.5-9.0) among XDR TB cases. The overall treatment delay (>7 days after diagnosis) was observed in 42.4% of the patients, among which, cases enrolled under Pre-XDR contributed substantially to treatment delay (72.0%), followed by LTR (43.6%), STR (39.1%) and XDR (33.3%). Conclusion: Timely diagnosis and prompt treatment initiation remain fundamental focus of the National TB program. The findings of the study, however suggest gaps in timeliness of treatment initiation for the drug-resistant TB patients, which could bring adverse treatment outcomes. Moreover, there is an alarming delay in second line treatment initiation for the Pre-XDR TB patients. Therefore, this study generates evidence to identify existing gaps in treatment initiation and highlights need for formulating specific policies and intervention in creating effective linkage between the RR TB diagnosis and enrollment on second line TB treatment with intensified efforts from health providers for follow-ups and expansion of more decentralized, adequate, and accessible diagnostic and treatment services for DR-TB, especially Pre-XDR TB cases, due to the observed long treatment delays.

Keywords: drug-resistant, tuberculosis, treatment initiation, Nepal, treatment delay

Procedia PDF Downloads 47
1099 Bacteriocin-Antibiotic Synergetic Consortia: Augmenting Antimicrobial Activity and Expanding the Inhibition Spectrum of Vancomycin Resistant and Methicillin Resistant Staphylococcus aureus

Authors: Asma Bashir, Neha Farid, Kashif Ali, Kiran Fatima

Abstract:

Background: Bacteriocins are a subclass of antimicrobial peptides that are becoming extremely important in treatments. It is possible to utilise bacteriocins in place of or in addition to traditional antibiotics. It is possible to treat a variety of infections, including Vancomycin-Resistant Staphylococcus aureus (VRSA) and Methicillin-Resistant Staphylococcus aureus (MRSA), using the targeted spectrum of activity of these microorganisms. Method: This study aimed to examine the efficiency of antibiotics and bacteriocin against VRSA and MRSA. The effects of bacteriocins, such as enterocin KAE01, enterocin KAE03, enterocin KAE05, and enterocin KAE06 isolated from Enterococcus faecium strains, alone and in combination with vancomycin and methicillin antibiotics were examined. The selection technique utilized the minimum inhibitory concentrations (MICs) against Gram-positive indicator strain ATCC 6538 Methicillin-Resistant Staphylococcus aureus (MRSA) and indicator strain KSA 02 Vancomycin-Resistant Staphylococcus aureus (VRSA). Results: We report the isolation and identification of enterocins KAE01, KAE03, KAE05, and KAE06 from food isolates of Enterococcus faecium (KAE01, KAE03, KAE05, and KAE06). After isolating the protein, it was partially purified with ammonium sulphate precipitation and purified with fast protein liquid chromatography (FPLC) procedures. Combinations of enterocin KAE01, 1 citric acid, 1 lactic acid, and microcin J25, 1 reuterin, 1 citric acid, and microcin J25, 1 reuterin, 1 lactic acid shown synergistic benefits (FIC index = 0.5) against Vancomycin-Resistant Staphylococcus aureus (VRSA). In addition, a moderately synergistic (FIC index = 0.75) interaction was seen between pediocin PA-1, 1 citric acid, 1 lactic acid, and reuterin 1 citric acid, 1 lactic acid against L. ivanovii HPB28. In the presence of acids, nisin Z exhibited a modestly synergistic effect (FIC index = 0.625-0.75); however, it exhibited additive effects (FIC index = 1) when combined with reuterin or pediocin PA-1 against L. ivanovii HPB28. The efficacy of synergistic consortiums against Gram-positive bacteria was examined. Conclusion: Combining antimicrobials with various modes of action boosted efficacy and expanded the spectrum of inhibition, particularly against multidrug-resistant pathogens, according to our research.

Keywords: Enterococcus faecium, bacteriocin, antimicrobial resistance, antagonistic activity, vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus aureus

Procedia PDF Downloads 120
1098 An Update on Linezolid against Methicillin-Resistant Staphylococcus Aureus Clinical Isolates from Pakistan

Authors: Tayaba Dastgeer, Farhan Rasheed, Muhammad Saeed, Maqsood Ahmad, Zia Ashraf, Abdul Waheed, Muhammad Kamran, Mohsin Khurshid

Abstract:

Objectives: The study aimed to determine the efficacy of linezolid against clinical isolates of methicillin-resistant staphylococcus aureus (MRSA). Methodology: This cross-sectional study was conducted in the microbiology department of Allama Iqbal Medical College Lahore from August 2017 to September 2019. Isolates were confirmed as MRSA via the presence of the mec-A gene. Confirmed MRSA isolates were processed for susceptibility testing against different antimicrobials, especially linezolid, via the disc diffusion method. Zone sizes were interpreted according to CLSI guidelines. Results: Various types of clinical samples were included in the study; however, the highest frequency of MRSA isolates was found in pus samples, followed by other clinical samples. Among hospitalized patients, most MRSA isolates were obtained from patients in the surgical ward. Of 243 mec-A gene detected isolates, Vancomycin and linezolid showed 100% susceptibility, chloramphenicol showed declining resistance 78 (32.09%), and emerging sensitivity 165 (67.90%) against MRSA. Conclusion: Linezolid is a very efficient drug against MRSA, but the use of this novel drug must be conserved for vancomycin-resistant Staphylococcus aureus or when more resistant pathogens are suspected.

Keywords: MRSA, chloramphenicol, linezolid, nosocomial infections

Procedia PDF Downloads 60
1097 Multi-Resistant Enterobacter Cloacae Dacryocystitis and Preseptal Cellulitis: Case and Review of Literature

Authors: Michael Kvopka, Ezekiel Kingston

Abstract:

A 61-year-old man with no significant past medical history presented to a quaternary ophthalmic referral center with acute right-sided medial canthal pain, periorbital edema, and erythema despite oral antibiotic therapy. CT imaging confirmed the presence of right preseptal cellulitis and lacrimal sac aspiration identified multi-resistant Enterobacter cloacae. A diagnosis of acute right-sided dacryocystitis with preseptal cellulitis was made. He was successfully treated with broadening of antibiotic therapy to intravenous meropenem. The symptomatic resolution was noted on follow-up without evidence of disease recurrence. To the Authors’ best knowledge, this is the first reported case of multi-resistant E. cloacae dacryocystitis and preseptal cellulitis. The management of this patient required a multi-disciplinary approach, so the Authors believe this report is relevant to general ophthalmologists and oculoplastic sub-specialists.

Keywords: enterobacter, dacryocystitis, preseptal cellulitis, antibiotic resistance

Procedia PDF Downloads 193
1096 Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions

Authors: Ji-Sun Lee, Soong-Keun Hyun, Jin-Ho Kim

Abstract:

In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

Keywords: glass composition, fiber diameter, continuous filament fiber, continuous spinning, physical properties

Procedia PDF Downloads 284
1095 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize

Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu

Abstract:

The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.

Keywords: maize weevil, resistant, parameters, mechanisms, preference

Procedia PDF Downloads 280
1094 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria

Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh

Abstract:

Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.

Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app

Procedia PDF Downloads 114
1093 Seasonal Effect of Antibiotic Resistant Bacteria into the Environment from Treated Sewage Effluents

Authors: S. N. Al-Bahry, S. K. Al-Musharafi, I. Y. Mahmoud

Abstract:

Recycled treated sewage effluents (TSE) is used for agriculture, Public park irrigation and industrial purposes. TSE was found to play a major role in the distribution of antibiotic resistant bacteria into the environment. Fecal coliform and enterococci counts were significantly higher during summer compared to winter seasons. Oman has low annual rainfall with annual average temperature varied between 15-45oC. The main source of potable water is from seawater desalination. Resistance of the isolates to 10 antibiotics (Amikacin, Ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, Tetracycline, Tobramycin, and Trimethoprim) was tested. Both fecal coliforms and enterococci were multiple resistant to 2-10 antibiotics. However, temperature variation during summer and winter did not affect resistance of the isolates to antibiotics. The significance of this investigation may be indicator to the environmental TSE pollution.

Keywords: antibiotic resistance, bacteria, environment, sewage treated effluent

Procedia PDF Downloads 383
1092 Understanding the Mechanisms of Salmonella Typhimurium Resistance to Cannabidiol (CDB)

Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel A. Abugri, Robertson K. Boakai, Olufemi S. Ajayi

Abstract:

The recalcitrance of pathogenic bacteria indicates that millions of people who are at risk of infection arising from chronic diseases, surgery, organ transplant, diabetes, and several other debilitating diseases present an aura of potentially untreatable illness due to resistance development. Antimicrobial resistance has successfully become a global health menace, and resistances are often acquired by bacteria through health-care-related incidence (HRI) orchestrated by multi-drug resistant (MDR) and extended drug-resistant pathogens (EDRP). To understand the mechanisms S. Typhimurium uses to resist CDB, we study the abundance of LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of susceptible and resistant S. Typhimurium. Using qPCR, we also analyzed the expression of selected genes known for enabling resistance in S. Typhimurium. We found high abundance of LPS, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of and high expression of resistant genes in S. Typhimurium compared to the susceptible strain. LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid and genes such as Fims, integrons, blaTEM are important indicators of resistance development of S. typhimurium.

Keywords: antimicrobials, resistance, Cannabidiol, Salmonella, blaTEM, fimA, Lipopolysaccharide, Ergosterols

Procedia PDF Downloads 24
1091 An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus

Authors: S. Techaoei, K. Jarmkom, P. Eakwaropas, W. Khobjai

Abstract:

The objective of this research was focused on investigating in vitro antimicrobial activity of Phellinus linteus fruiting body extracts on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Phellinus linteus fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of Phellinus linteus crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus and 0.25 mg/ml. of Escherichia coli and Staphylococcus aureus, respectively. TLC chemical profile of extract was represented at Rf ≈ 0.71-0.76.

Keywords: Staphylococcus aureus, Escherichia coli, Phellinus linteus, Methicillin-resistant Staphylococcus aureus, antimicrobial activity

Procedia PDF Downloads 250
1090 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats

Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker

Abstract:

The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.

Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics

Procedia PDF Downloads 117
1089 Synthesis, Characterization, Validation of Resistant Microbial Strains and Anti Microbrial Activity of Substitted Pyrazoles

Authors: Rama Devi Kyatham, D. Ashok, K. S. K. Rao Patnaik, Raju Bathula

Abstract:

We have shown the importance of pyrazoles as anti-microbial chemical entities. These compounds have generally been considered significant due to their wide range of pharmacological acivities and their discovery motivates new avenues of research.The proposed pyrazoles were synthesized and evaluated for their anti-microbial activities. The Synthesized compounds were analyzed by different spectroscopic methods.

Keywords: pyrazoles, validation, resistant microbial strains, anti-microbial activities

Procedia PDF Downloads 134
1088 Mutations in rpoB, katG and inhA Genes: The Association with Resistance to Rifampicin and Isoniazid in Egyptian Mycobacterium tuberculosis Clinical Isolates

Authors: Ayman K. El Essawy, Amal M. Hosny, Hala M. Abu Shady

Abstract:

The rapid detection of TB and drug resistance, both optimizes treatment and improves outcomes. In the current study, respiratory specimens were collected from 155 patients. Conventional susceptibility testing and MIC determination were performed for rifampicin (RIF) and isoniazid (INH). Genotype MTBDRplus assay, which is a molecular genetic assay based on the DNA-STRIP technology and specific gene sequencing with primers for rpoB, KatG, and mab-inhA genes were used to detect mutations associated with resistance to rifampicin and isoniazid. In comparison to other categories, most of rifampicin resistant (61.5%) and isoniazid resistant isolates (47.1%) were from patients relapsed in treatment. The genotypic profile (using Genotype MTBDRplus assay) of multi-drug resistant (MDR) isolates showed missing of katG wild type 1 (WT1) band and appearance of mutation band katG MUT2. For isoniazid mono-resistant isolates, 80% showed katG MUT1, 20% showed katG MUT1, and inhA MUT1, 20% showed only inhA MUT1. Accordingly, 100% of isoniazid resistant strains were detected by this assay. Out of 17 resistant strains, 16 had mutation bands for katG distinguished high resistance to isoniazid. The assay could clearly detect rifampicin resistance among 66.7% of MDR isolates that showed mutation band rpoB MUT3 while 33.3% of them were considered as unknown. One mono-resistant rifampicin isolate did not show rifampicin mutation bands by Genotype MTBDRplus assay, but it showed an unexpected mutation in Codon 531 of rpoB by DNA sequence analysis. Rifampicin resistance in this strain could be associated with a mutation in codon 531 of rpoB (based on molecular sequencing), and Genotype MTBDRplus assay could not detect the associated mutation. If the results of Genotype MTBDRplus assay and sequencing were combined, this strain shows hetero-resistance pattern. Gene sequencing of eight selected isolates, previously tested by Genotype MTBDRplus assay, could detect resistance mutations mainly in codon 315 (katG gene), position -15 in inhA promotes gene for isoniazid resistance and codon 531 (rpoB gene) for rifampicin resistance. Genotyping techniques allow distinguishing between recurrent cases of reinfection or reactivation and supports epidemiological studies.

Keywords: M. tuberculosis, rpoB, KatG, inhA, genotype MTBDRplus

Procedia PDF Downloads 115