Search results for: radiation exposure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3076

Search results for: radiation exposure

3046 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches

Authors: S. Sandri, G. M. Contessa, C. Poggi

Abstract:

An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.

Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection

Procedia PDF Downloads 327
3045 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field

Authors: Sergei Voychuk

Abstract:

Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.

Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response

Procedia PDF Downloads 290
3044 Chromosomal Damage in Human Lymphocytes by Ultraviolet Radiation

Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo

Abstract:

Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios States and skin cancers. Objective: Identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for a groups 1 to 3 seconds (p<0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.

Keywords: ultraviolet rays, lymphocytes, chromosome breakpoints, photodamage

Procedia PDF Downloads 398
3043 Ultraviolet Radiation and Chromosomal Damage in Human Lymphocytes

Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo

Abstract:

Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios states and skin cancers. Objective: To identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from the heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin, and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for groups 1 to 3 seconds (p < 0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.

Keywords: chromosome breakpoints, lymphocytes, photodamage, ultraviolet rays

Procedia PDF Downloads 548
3042 Differences in Vitamin D Status in Caucasian and Asian Women Following Ultraviolet Radiation (UVR) Exposure

Authors: O. Hakim, K. Hart, P. McCabe, J. Berry, L. E. Rhodes, N. Spyrou, A. Alfuraih, S. Lanham-New

Abstract:

It is known that skin pigmentation reduces the penetration of ultraviolet radiation (UVR) and thus photosynthesis of 25(OH)D. However, the ethnic differences in 25(OH)D production remain to be fully elucidated. This study aimed to investigate the differences in vitamin D production between Asian and Caucasian postmenopausal women, in response to a defined, controlled UVB exposure. Seventeen women; nine white Caucasian (skin phototype II and III), eight South Asian women (skin phototype IV and V) participated in the study, acting as their controls. Three blood samples were taken for measurement of 25(OH)D during the run-in period (nine days, no sunbed exposure) after which all subjects underwent an identical UVR exposure protocol irrespective of skin colour (nine days, three sunbed sessions: 6, 8 and 8 minutes respectively with approximately 80% of body surface exposed). Skin tone was measured four times during the study. Both groups showed a gradual increase in 25(OH)D with final levels significantly higher than baseline (p<0.01). 25(OH)D concentration mean from a baseline of 43.58±19.65 to 57.80±17.11 nmol/l among Caucasian and from 27.03±23.92 to 44.73±17.74 nmol/l among Asian women. The baseline status of vitamin D was classified as deficient among the Asian women and insufficient among the Caucasian women. The percentage increase in vitamin D3 among Caucasians was 39.86% (21.02) and 207.78% (286.02) in Asian subjects respectively. This greater response to UVR exposure reflects the lower baseline levels of the Asian subjects. The mixed linear model analysis identified a significant effect of duration of UVR exposure on the production of 25(OH)D. However, the model shows no significant effect of ethnicity and skin tone on the production of 25(OH)D. These novel findings indicate that people of Asian ethnicity have the full capability to produce a similar amount of vitamin D compared to the Caucasian group; initial vitamin D concentration influences the amount of UVB needed to reach equal serum concentrations.

Keywords: ethnicity, Caucasian, South Asian, vitamin D, ultraviolet radiation, UVR

Procedia PDF Downloads 502
3041 Investigation on Scattered Dose Rate and Exposure Parameters during Diagnostic Examination Done with an Overcouch X-Ray Tube in Nigerian Teaching Hospital

Authors: Gbenga Martins, Christopher J. Olowookere, Lateef Bamidele, Kehinde O. Olatunji

Abstract:

The aims of this research are to measure the scattered dose rate during an X-ray examination in an X-ray room, compare the scattered dose rate with exposure parameters based on the body region examined, and examine the X-ray examination done with an over couch tube. The research was carried out using Gamma Scout software installation on the computer system (Laptop) to record the radiation counts, pulse rate, and dose rate. The measurement was employed by placing the detector at 900 to the incident X-ray. Proforma was used for the collection of patients’ data such as age, sex, examination type, and initial diagnosis. Data such as focus skin distance (FSD), body mass index (BMI), body thickness of the patients, the beam output (kVp) were collected at Obafemi Awolowo University, Ile-Ife, Western Nigeria. Total number of 136 patients was considered during this research. Dose rate range between 14.21 and 86.78 µSv/h for the plain abdominal region, 85.70 and 2.86 µSv/h for the lumbosacral region,1.3 µSv/yr and 3.6 µSv/yr in the pelvis region, 2.71 µSv/yr and 28.88 µSv/yr for leg region, 3.06 µSv/yr and 29.98 µSv/yr in hand region. The results of this study were compared with those of other studies carried out in other countries. The findings of this study indicated that the number of exposure parameters selected for each diagnostic examination contributed to the dose rate recorded. Therefore, these results call for a quality assurance program (QAP) in diagnostic X-ray units in Nigerian hospitals.

Keywords: X-radiation, exposure parameters, dose rate, pulse rate, number of counts, tube current, tube potential, diagnostic examination, scattered radiation

Procedia PDF Downloads 71
3040 Crosslinking of Unsaturated Elastomers in Presence of Aromatic Chlorine-Containing Compounds

Authors: Shiraz M. Mammadov, Elvin M. Aliyev, Adil A. Garibov

Abstract:

The role of the disulfochloride benzene in unsaturated rubbers (SKIN, SKN-26) which is in the systems of SKIN+disulfochloride benzene and SKN-26+disulfochloride benzene was studied by the radiation exposure. By the usage of physical, chemical and spectral methods the changes in the molecular structure of the rubber were shown after irradiation by y-rays at 300 kGy. The outputs and the emergence of the crosslinking in the elastomers for each system depending on absorbed dose were defined. It is suggested that the mechanism of radiation occurs by the heterogeneous transformation of elastomers in the presence of disulfochloride benzene.

Keywords: acrylonitrile-butadiene rubber, crosslinking, polyfunctional monomers, radiation, sensitizier, vulcanization

Procedia PDF Downloads 415
3039 Protective Effect of Herniarin on Ionizing Radiation-Induced Impairments in Brain

Authors: Sophio Kalmakhelidze, Eka Shekiladze, Tamar Sanikidze, Mikheil Gogebashvili, Nazi Ivanishvili

Abstract:

Radiation-induced various degrees of brain injury and cognitive impairment have been described after cranial radiotherapy of brain tumors. High doses of ionizing radiation have a severe impact on the central nervous system, resulting in morphological and behavioral impairments. Structures of the limbic system are especially sensitive to radiation exposure. Hence, compounds or drugs that can reduce radiation-induced impairments can be used as promising antioxidants or radioprotectors. In our study Mice whole-body irradiation with 137Cs was performed at a dose rate of 1,1 Gy/min for a total dose of 5 Gy with a “Gamma-capsule-2”. Irradiated mice were treated with Herniarin (20 mg/kg) for five days before irradiation and the same dose was administrated after one hour of irradiation. The immediate and delayed effects of ionizing radiation, as well as, protective effect of Herniarin was evaluated during early and late post-irradiation periods. The results reveal that ionizing radiation (5 Gy) alters the structure of the hippocampus in adult mice during the late post-irradiation period resulting in the decline of memory formation and learning process. Furthermore, Simple Coumarin-Herniarin reveals a radiosensitizing effect reducing morphological and behavioral alterations.

Keywords: ionizing radiation, cognitive impairments, hippocampus, limbic system, Herniarin

Procedia PDF Downloads 29
3038 Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding

Authors: Jiahui Song, Ravindra P. Joshi

Abstract:

One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%.

Keywords: bio-shielding, electrostatic, magnetostatic, radiation

Procedia PDF Downloads 356
3037 Effect of Electromagnetic Radiation on Reproductive System of Male Rat

Authors: Rohit Gautam, Kumari Vandana Singh, Jayprakash Nirala, Nina Nancy Murmu, Ramovatar Meena, Paulraj Rajamani

Abstract:

Mobile phones have become a vital part of everyone’s life. Mobile phone and mobile phone towers emit RF-EMR (Radiofrequency Electromagnetic Radiation), which becomes a cause of concern to the general public. The study was designed to evaluate the effect of 3G (RF-EMR) on the reproductive system of male Wistar rats. Adult male Wistar rats were used for the study. Animals were divided into two groups, RF-exposed, and sham-exposed (control). RF-exposed rats were exposed to radio frequency radiation (2100 MHz) for 2 hours/day for 45 days. Emitted power density and specific absorption rate (SAR) values were measured during exposure. At the end of the exposure, testis and epididymis were excised out, and their weights were recorded. Sperm cell count, morphology, viability, and reactive oxygen species (ROS) levels were checked. Lipid peroxidation and sperm mitochondrial activity were measured. Histopathology of testis and ultrastructure analysis of sperm were also checked. Result showed a decrease in organ weight and sperm count with alteration in the sperm morphology in exposed group rats. A significant decrease in sperm viability, membrane integrity, and mitochondrial activity was found. Also, an increase in lipid peroxidation and ROS level were found in exposed group animals as compared to control. It may be concluded that exposure to radiofrequency radiation emits from mobile phones leads to oxidative stress-mediated changes in reproductive parameters.

Keywords: electromagnetic radiation, oxidative stress, reactive oxygen species, sperm

Procedia PDF Downloads 134
3036 Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts

Authors: Pei-Hsiu Chiang, Ling Hong Huang, Hsin-I Chang

Abstract:

In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin.

Keywords: atomic force microscope, hyaluronic acid, UVA radiation, dermal fibroblasts

Procedia PDF Downloads 355
3035 The Effect of Varying Cone Beam Computed Tomography Image Resolution and Field-of-View Centralization on the Effective Radiation Dose

Authors: Fatima M. Jadu, Asmaa A. Alzahrani, Maha A. Almutairi, Salma O. Al-Amoudi, Mawya A. Khafaji

Abstract:

Introduction: Estimating the potential radiation risk for a widely used imaging technique such as cone beam CT (CBCT) is crucial. The aim of this study was to examine the effect of varying two CBCT technical factors, the voxel size (VOX) and the Field-of-View (FOV) centralization, on the radiation dose. Methodology: The head and neck slices of a RANDO® man phantom (Alderson Research Laboratories) were used with nanoDot™ OSLD dosimeters to measure the absorbed radiation dose at 25 predetermined sites. Imaging was done using the i-CAT® (Imaging Science International, Hatfield, PA, USA) CBCT unit. The VOX was changed for every three cycles of exposures from 0.2mm to 0.3mm and then 0.4mm. Then the FOV was centered on the maxilla and mandible alternatively while holding all other factors constant. Finally, the effective radiation dose was calculated for each view and voxel setting. Results: The effective radiation dose was greatest when the smallest VOX was chosen. When the FOV was centered on the maxilla, the highest radiation doses were recorded in the eyes and parotid glands. While on the mandible, the highest radiation doses were recorded in the sublingual and submandibular glands. Conclusion: Minor variations in the CBCT exposure factors significantly affect the effective radiation dose and thus the radiation risk to the patient. Therefore, extreme care must be taken when choosing these parameters especially for vulnerable patients such as children.

Keywords: CBCT, cone beam CT, effective dose, field of view, mandible, maxilla, resolution, voxel

Procedia PDF Downloads 231
3034 The Influence of Phosphate Fertilizers on Radiological Situation of Cultivated Lands: ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs Concentrations in Soil

Authors: Grzegorz Szaciłowski, Marta Konop, Małgorzata Dymecka, Jakub Ośko

Abstract:

In 1996, the European Council Directive 96/29/EURATOM pointed phosphate fertilizers to have a potentially negative influence on the environment from the radiation protection point of view. Fertilizers along with irrigation and crop rotation were the milestones that allowed to increase agricultural productivity. Firstly based on natural materials such as compost, manure, fish processing waste, etc., and since the 19th century created synthetically, fertilizers caused a boom in crop yield and helped to propel global food production, especially after World War II. In this work the concentrations of ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs in selected fertilizers and soil samples were determined. The results were used to calculate the annual addition of natural radionuclides and increment of the external radiation exposure caused by the use of studied fertilizers. Soils intended for different types of crops were sampled in early spring when no vegetation had occurred yet. Analysed fertilizers were those with which the soil was previously fertilized. For gamma radionuclides, a high purity germanium detector GX3520 from Canberra was used. The polonium concentration was determined by radiochemical separation followed by measurement by means of alpha spectrometry. The spectrometer used in this study was equipped with 450 cm² PIPS detector from Canberra. Obtained results showed significant differences in radionuclide composition between phosphate and nitrogenous fertilizers (e.g. the radium equivalent activity for phosphate fertilizer was 207.7 Bq/kg in comparison to <5.6 Bq/kg for nitrogenous fertilizer). The calculated increase of external radiation exposure due to use of phosphate fertilizer ranged between 3.4 and 5.4 nG/h, which represents up to 10% of the polish average outdoor exposure due to terrestrial gamma radiation (45 nGy/h).

Keywords: ²¹⁰Po, alpha spectrometry, exposure, gamma spectrometry, phosphate fertilizer, soil

Procedia PDF Downloads 270
3033 A Questionnaire Survey Reviewing Radiographers' Knowledge of Computed Tomography Exposure Parameters

Authors: Mohammad Rawashdeh, Mark McEntee, Maha Zaitoun, Mostafa Abdelrahman, Patrick Brennan, Haytham Alewaidat, Sarah Lewis, Charbel Saade

Abstract:

Despite the tremendous advancements that have been generated by Computed Tomography (CT) in the field of diagnosis, concerns have been raised about the potential cancer induction risk from CT because of the exponentially increased use of it in medicine. This study aims at investigating the application and knowledge of practicing radiographers in Jordan about CT radiation. In order to collect the primary data of this study, a questionnaire was designed and distributed by social media using a snow-balling sampling method. The respondents (n=54) have answered 36 questions including the questions about their demographic information, knowledge about Diagnostic Reference Levels (DRLs), CT exposure and adaptation of pediatric patients exposure. The educational level of the respondents was either at a diploma degree (35.2%) or bachelor (64.8%). The results of this study have indicated a good level of general knowledge between radiographers about the relationship between image quality, exposure parameters, and patient dose. The level of knowledge related to DRL was poor where less than 7.4 percent of the sample members were able to give specific values for a number of common anatomical fields, including abdomen, brain, and chest. Overall, Jordanian radiographers need to gain more knowledge about the expected levels of the dose when applying good practice. Additional education on DRL or DRL inclusion in educational programs is highlighted.

Keywords: computed tomography, CT scan, DRLs, exposure parameters, image quality, radiation dose

Procedia PDF Downloads 111
3032 Status of Radiation Protection at Radiation Oncology, BPKM Cancer Hospital, Nepal

Authors: Surendra B. Chand, P. P. Chaurasia, M. P. Adhikari, R. N. Yadav

Abstract:

Objective: The objective of this work was to evaluate all the safety procedures toward the radiation protection for workers in the radiation oncology department. Materials and Methods: The annual thermoluminescent dosimeters (TLDs) reports for five years of the staffs were evaluated, radiation surveys were done in the control consoles, radiotherapy machines room and waiting areas of all machines using Aloka survey meter. Results: The five years TLD reports shows that the whole body dose of the individual staffs is found within the annual dose limit except the accidental exposures. Radiation exposures in the working areas are also safe limits. Conclusion: The radiation safety practices for radiation protection are satisfactory and the radiation workers of the departments are found working within the safe limit.

Keywords: radiation protection, safety, ICRP, dose limits, TLD, radiation devices

Procedia PDF Downloads 540
3031 Effect of Acute Dose of Mobile Phone Radiation on Life Cycle ‎of the Mosquito, Culex univittatus

Authors: Fatma H. Galal, Alaaeddeen M. Seufi

Abstract:

Due to the increasing usage of mobile phone, experiments were designed to investigate ‎the effect of acute dose exposure on the mosquito life cycle. 50 tubes (5 ml size) ‎containing 3 ml water and a first instar larva of the mosquito, Culex univittatus were put ‎between two mobile cell phones switched on talking mode for 4 continuous hours. A ‎control group of tubes (unexposed to radiation) were used. Larval and pupal durations ‎were calculated. Furthermore, adult emergence and sex ratio were observed for both ‎treated and control larvae. Results indicated that the employed dose of radiation reduced ‎total larval duration to about half the value of control. 1st, 2nd, 3rd and 4th larval ‎durations were reduced significantly by mobile radiation when compared to controls. ‎Meanwhile pupal duration was elongated significantly by mobile radiation when ‎compared to control. Sex ratio was significantly shifted in favor of females in the case of ‎radiated mosquitoes. Successful adult emergence was decreased significantly in the case ‎of radiated insects when compared to controls. Molecular studies to investigate the ‎effects of mobile radiation on insects and other model organisms are going on.‎

Keywords: mosquito, mobilr radiation, larval and pupal durations, sex ratio

Procedia PDF Downloads 159
3030 Study of Natural Radioactive and Radiation Hazard Index of Soil from Sembrong Catchment Area, Johor, Malaysia

Authors: M. I. A. Adziz, J. Sharib Sarip, M. T. Ishak, D. N. A. Tugi

Abstract:

Radiation exposure to humans and the environment is caused by natural radioactive material sources. Given that exposure to people and communities can occur through several pathways, it is necessary to pay attention to the increase in naturally radioactive material, particularly in the soil. Continuous research and monitoring on the distribution and determination of these natural radionuclides' activity as a guide and reference are beneficial, especially in an accidental exposure. Surface soil/sediment samples from several locations identified around the Sembrong catchment area were taken for the study. After 30 days of secular equilibrium with their daughters, the activity concentrations of the naturally occurring radioactive material (NORM) members, i.e. ²²⁶Ra, ²²⁸Ra, ²³⁸U, ²³²Th, and ⁴⁰K, were measured using high purity germanium (HPGe) gamma spectrometer. The results obtained showed that the radioactivity concentration of ²³⁸U ranged between 17.13 - 30.13 Bq/kg, ²³²Th ranged between 22.90 - 40.05 Bq/kg, ²²⁶Ra ranged between 19.19 - 32.10 Bq/kg, ²²⁸Ra ranged between 21.08 - 39.11 Bq/kg and ⁴⁰K ranged between 9.22 - 51.07 Bq/kg with average values of 20.98 Bq/kg, 27.39 Bq/kg, 23.55 Bq/kg, 26.93 Bq/kg and 23.55 Bq/kg respectively. The values obtained from this study were low or equivalent to previously reported in previous studies. It was also found that the mean/mean values obtained for the four parameters of the Radiation Hazard Index, namely radium equivalent activity (Raeq), external dose rate (D), annual effective dose and external hazard index (Hₑₓ), were 65.40 Bq/kg, 29.33 nGy/h, 19.18 ¹⁰⁻⁶Sv and 0.19 respectively. These obtained values are low compared to the world average values and the values of globally applied standards. Comparison with previous studies (dry season) also found that the values for all four parameters were low and equivalent. This indicates the level of radiation hazard in the area around the study is safe for the public.

Keywords: catchment area, gamma spectrometry, naturally occurring radioactive material (NORM), soil

Procedia PDF Downloads 67
3029 Evaluating Radiation Dose for Interventional Radiologists Performing Spine Procedures

Authors: Kholood A. Baron

Abstract:

While radiologist numbers specialized in spine interventional procedures are limited in Kuwait, the number of patients demanding these procedures is increasing rapidly. Due to this high demand, the workload of radiologists is increasing, which might represent a radiation exposure concern. During these procedures, the doctor’s hands are in very close proximity to the main radiation beam/ if not within it. The aim of this study is to measure the radiation dose for radiologists during several interventional procedures for the spine. Methods: Two doctors carrying different workloads were included. (DR1) was performing procedures in the morning and afternoon shifts, while (DR2) was performing procedures in the morning shift only. Comparing the radiation exposures that the hand of each doctor is receiving will assess radiation safety and help to set up workload regulations for radiologists carrying a heavy schedule of such procedures. Entrance Skin Dose (ESD) was measured via TLD (ThermoLuminescent Dosimetry) placed at the right wrist of the radiologists. DR1 was covering the morning shift in one hospital (Mubarak Al-Kabeer Hospital) and the afternoon shift in another hospital (Dar Alshifa Hospital). The TLD chip was placed in his gloves during the 2 shifts for a whole week. Since DR2 was covering the morning shift only in Al Razi Hospital, he wore the TLD during the morning shift for a week. It is worth mentioning that DR1 was performing 4-5 spine procedures/day in the morning and the same number in the afternoon and DR2 was performing 5-7 procedures/day. This procedure was repeated for 4 consecutive weeks in order to calculate the ESD value that a hand receives in a month. Results: In general, radiation doses that the hand received in a week ranged from 0.12 to 1.12 mSv. The ESD values for DR1 for the four consecutive weeks were 1.12, 0.32, 0.83, 0.22 mSv, thus for a month (4 weeks), this equals 2.49 mSv and calculated to be 27.39 per year (11 months-since each radiologist have 45 days of leave in each year). For DR2, the weekly ESD values are 0.43, 0.74, 0.12, 0.61 mSv, and thus, for a month, this equals 1.9 mSv, and for a year, this equals 20.9 mSv /year. These values are below the standard level and way below the maximum limit of 500 mSv per year (set by ICRP = International Council of Radiation Protection). However, it is worth mentioning that DR1 was a senior consultant and hence needed less fluoro-time during each procedure. This is evident from the low ESD values of the second week (0.32) and the fourth week (0.22), even though he was performing nearly 10-12 procedures in a day /5 days a week. These values were lower or in the same range as those for DR2 (who was a junior consultant). This highlighted the importance of increasing the radiologist's skills and awareness of fluoroscopy time effect. In conclusion, the radiation dose that radiologists received during spine interventional radiology in our setting was below standard dose limits.

Keywords: radiation protection, interventional radiology dosimetry, ESD measurements, radiologist radiation exposure

Procedia PDF Downloads 19
3028 Radioprotective Efficacy of Costus afer against the Radiation-Induced Hematology and Histopathology Damage in Mice

Authors: Idowu R. Akomolafe, Naven Chetty

Abstract:

Background: The widespread medical application of ionizing radiation has raised public concern about radiation exposure and, thus, associated cancer risk. The production of reactive oxygen species and free radicals as a result of radiation exposure can cause severe damage to deoxyribonucleic acid (DNA) of cells, thus leading to biological effect. Radiotherapy is an excellent modality in the treatment of cancerous cells, comes with a few challenges. A significant challenge is the exposure of healthy cells surrounding the tumour to radiation. The last few decades have witnessed lots of attention shifted to plants, herbs, and natural product as an alternative to synthetic compound for radioprotection. Thus, the study investigated the radioprotective efficacy of Costus afer against whole-body radiation-induced haematological, histopathological disorder in mice. Materials and Method: Fifty-four mice were randomly divided into nine groups. Animals were pretreated with the extract of Costus afer by oral gavage for six days before irradiation. Control: 6 mice received feed and water only; 6 mice received feed, water, and 3Gy; 6 mice received feed, water, and 6Gy; experimental: 6 mice received 250 mg/kg extract; 6 mice received 500 mg/kg extract; 6 mice received 250 mg/kg extract and 3Gy; 6 mice received 500 mg/kg extract and 3Gy; 6 mice received 250 mg/kg extract and 6Gy; 6 mice received 500 mg/kg extract and 6Gy in addition to feeding and water. The irradiation was done at the Radiotherapy and Oncology Department of Grey's Hospital using linear accelerator (LINAC). Thirty-six mice were sacrificed by cervical dislocation 48 hours after irradiation, and blood was collected for haematology tests. Also, the liver and kidney of the sacrificed mice were surgically removed for histopathology tests. The remaining eighteen (18) mice were used for mortality and survival studies. Data were analysed by one-way ANOVA, followed by Tukey's multiple comparison test. Results: Prior administration of Costus afer extract decreased the symptoms of radiation sickness and caused a significant delay in the mortality as demonstrated in the experimental mice. The first mortality was recorded on day-5 post irradiation, and this happened to the group E- that is, mice that received 6Gy but no extract. There was significant protection in the experimental mice, as demonstrated in the blood counts against hematopoietic and gastrointestinal damage when compared with the control. The protection was seen in the increase in blood counts of experimental animals and the number of survivor. The protection offered by Costus afer may be due to its ability to scavenge free radicals and restore gastrointestinal and bone marrow damage produced by radiation. Conclusions: The study has demonstrated that exposure of mice to radiation could cause modifications in the haematological and histopathological parameters of irradiated mice. However, the changes were relieved by the methanol extract of Costus afer, probably through its free radical scavenging and antioxidant properties.

Keywords: costus afer, hematological, mortality, radioprotection, radiotherapy

Procedia PDF Downloads 112
3027 Evaluation of the Gamma-H2AX Expression as a Biomarker of DNA Damage after X-Ray Radiation in Angiography Patients

Authors: Reza Fardid, Aliyeh Alipour

Abstract:

Introduction: Coronary heart disease (CHD) is the most common and deadliest diseases. A coronary angiography is an important tool for the diagnosis and treatment of this disease. Because angiography is performed by exposure to ionizing radiation, it can lead to harmful effects. Ionizing radiation induces double-stranded breaks in DNA, which is a potentially life-threatening injury. The purpose of the present study is an investigation of the phosphorylation of histone H2AX in the location of the double-stranded break in Peripheral blood lymphocytes as an indication of Biological effects of radiation on angiography patients. Materials and Methods: This method is based on measurement of the phosphorylation of histone (gamma-H2AX, gH2AX) level on serine 139 after formation of DNA double-strand break. 5 cc of blood from 24 patients with angiography were sampled before and after irradiation. Blood lymphocytes were removed, fixed and were stained with specific ϒH2AX antibodies. Finally, ϒH2AX signal as an indicator of the double-strand break was measured with Flow Cytometry Technique. Results and discussion: In all patients, an increase was observed in the number of breaks in double-stranded DNA after irradiation (20.15 ± 14.18) compared to before exposure (1.52 ± 0.34). Also, the mean of DNA double-strand break was showed a linear correlation with DAP. However, although induction of DNA double-strand breaks associated with radiation dose in patients, the effect of individual factors such as radiosensitivity and regenerative capacity should not be ignored. If in future we can measure DNA damage response in every patient angiography and it will be used as a biomarker patient dose, will look very impressive on the public health level. Conclusion: Using flow cytometry readings which are done automatically, it is possible to detect ϒH2AX in the number of blood cells. Therefore, the use of this technique could play a significant role in monitoring patients.

Keywords: coronary angiography, DSB of DNA, ϒH2AX, ionizing radiation

Procedia PDF Downloads 154
3026 The Analysis of Solar Radiation Exergy in Hakkari

Authors: Hasan Yildizhan

Abstract:

According to the Solar Energy Potential Atlas (GEPA) prepared by Turkish Ministry of Energy, Hakkari is ranked first in terms of sunshine duration and it is ranked eighth in terms of solar radiation energy. Accordingly, Hakkari has a rich potential of investment with regard to solar radiation energy. The part of the solar radiation energy arriving on the surface of the earth which is transposable to useful work is determined by means of exergy analysis. In this study, the radiation exergy values for Hakkari have been calculated and evaluated by making use of the monthly average solar radiation energy and temperature values measured by General Directorate of State Meteorology.

Keywords: solar radiation exergy, Hakkari, solar energy potential, Turkey

Procedia PDF Downloads 674
3025 Radon and Thoron Determination in Natural Ancient Mine Using Nuclear Track Detectors: Radiation Dose Assessment

Authors: L. Oufni, M. Amrane, R. Rabi

Abstract:

Radon (and thoron) is a naturally occurring radioactive noble gas, having variable distribution in the geological environment. The exposure of human beings to ionizing radiation from natural sources is a continuing and inescapable feature of life on earth. Radon, thoron and their short-lived decay products in the atmosphere are the most important contributors to human exposure from natural sources. The aim of this study is to determine alpha-and beta-activities per unit volume of air due to radon (222Rn), thoron (220Rn) and their progenies in the air of ancient mine of Aouli in which there is no working activity is situated at approximately 25 km north of the city of Midelt (Morocco), by using LR-115 type II and CR-39 solid state nuclear track detectors (SSNTDs). Equilibrium factors between radon and its daughters and between thoron and its progeny were evaluated in the studied atmospheres. The committed equivalent doses due to the 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the visitors of the considered ancient mine. The visitors in these mines spent a good amount of time. It was essential to let the staff know about these values and take the needed steps to prevent any health complications.

Keywords: radon, thoron, concentration, exposure dose, SSNTD, mine

Procedia PDF Downloads 505
3024 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications

Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin

Abstract:

Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.

Keywords: palm oil, radiation processing, surface coatings, VOC

Procedia PDF Downloads 158
3023 Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms

Authors: Chia-Hui Chen, Chien-Kuo Wang

Abstract:

Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface.

Keywords: full-field digital mammography, digital breast tomosynthesis, optically stimulated luminescent dosimeters, surface dose

Procedia PDF Downloads 390
3022 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.

Keywords: gamma irradiation, graphene oxide, nanocomposites, PVDF

Procedia PDF Downloads 245
3021 Estimation of Effective Radiation Dose Following Computed Tomography Urography at Aminu Kano Teaching Hospital, Kano Nigeria

Authors: Idris Garba, Aisha Rabiu Abdullahi, Mansur Yahuza, Akintade Dare

Abstract:

Background: CT urography (CTU) is efficient radiological examination for the evaluation of the urinary system disorders. However, patients are exposed to a significant radiation dose which is in a way associated with increased cancer risks. Objectives: To determine Computed Tomography Dose Index following CTU, and to evaluate organs equivalent doses. Materials and Methods: A prospective cohort study was carried at a tertiary institution located in Kano northwestern. Ethical clearance was sought and obtained from the research ethics board of the institution. Demographic, scan parameters and CT radiation dose data were obtained from patients that had CTU procedure. Effective dose, organ equivalent doses, and cancer risks were estimated using SPSS statistical software version 16 and CT dose calculator software. Result: A total of 56 patients were included in the study, consisting of 29 males and 27 females. The common indication for CTU examination was found to be renal cyst seen commonly among young adults (15-44yrs). CT radiation dose values in DLP, CTDI and effective dose for CTU were 2320 mGy cm, CTDIw 9.67 mGy and 35.04 mSv respectively. The probability of cancer risks was estimated to be 600 per a million CTU examinations. Conclusion: In this study, the radiation dose for CTU is considered significantly high, with increase in cancer risks probability. Wide radiation dose variations between patient doses suggest that optimization is not fulfilled yet. Patient radiation dose estimate should be taken into consideration when imaging protocols are established for CT urography.

Keywords: CT urography, cancer risks, effective dose, radiation exposure

Procedia PDF Downloads 300
3020 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 453
3019 Solar Radiation Studies for Islamabad, Pakistan

Authors: Sidra A. Shaikh, M. A. Ahmed, M. W. Akhtar

Abstract:

Global and diffuse solar radiation studies have been carried out for Islamabad (Lat: 330 43’ N, Long: 370 71’) to access the solar potential of the area using sunshine hour data. A detailed analysis of global solar radiation values measured using several methods is presented. These values are then compared with the NASA SSE model. The variation in direct and diffuse components of solar radiation is observed in summer and winter months for Islamabad along with the clearness index KT. The diffuse solar radiation is found maximum in the month of July. Direct and beam radiation is found to be high in the month of April to June. From the results it appears that with the exception of monsoon months, July and August, solar radiation for electricity generation can be utilized very efficiently throughout the year. Finally, the mean bias error (MBE), root mean square error (RMSE) and mean percent error (MPE) for global solar radiation are also presented.

Keywords: solar potential, global and diffuse solar radiation, Islamabad, errors

Procedia PDF Downloads 408
3018 Comparison of Radiation Dosage and Image Quality: Digital Breast Tomosynthesis vs. Full-Field Digital Mammography

Authors: Okhee Woo

Abstract:

Purpose: With increasing concern of individual radiation exposure doses, studies analyzing radiation dosage in breast imaging modalities are required. Aim of this study is to compare radiation dosage and image quality between digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM). Methods and Materials: 303 patients (mean age 52.1 years) who studied DBT and FFDM were retrospectively reviewed. Radiation dosage data were obtained by radiation dosage scoring and monitoring program: Radimetrics (Bayer HealthCare, Whippany, NJ). Entrance dose and mean glandular doses in each breast were obtained in both imaging modalities. To compare the image quality of DBT with two-dimensional synthesized mammogram (2DSM) and FFDM, 5-point scoring of lesion clarity was assessed and the better modality between the two was selected. Interobserver performance was compared with kappa values and diagnostic accuracy was compared using McNemar test. The parameters of radiation dosages (entrance dose, mean glandular dose) and image quality were compared between two modalities by using paired t-test and Wilcoxon rank sum test. Results: For entrance dose and mean glandular doses for each breasts, DBT had lower values compared with FFDM (p-value < 0.0001). Diagnostic accuracy did not have statistical difference, but lesion clarity score was higher in DBT with 2DSM and DBT was chosen as a better modality compared with FFDM. Conclusion: DBT showed lower radiation entrance dose and also lower mean glandular doses to both breasts compared with FFDM. Also, DBT with 2DSM had better image quality than FFDM with similar diagnostic accuracy, suggesting that DBT may have a potential to be performed as an alternative to FFDM.

Keywords: radiation dose, DBT, digital mammography, image quality

Procedia PDF Downloads 321
3017 Gene Expressions in Left Ventricle Heart Tissue of Rat after 150 Mev Proton Irradiation

Authors: R. Fardid, R. Coppes

Abstract:

Introduction: In mediastinal radiotherapy and to a lesser extend also in total-body irradiation (TBI) radiation exposure may lead to development of cardiac diseases. Radiation-induced heart disease is dose-dependent and it is characterized by a loss of cardiac function, associated with progressive heart cells degeneration. We aimed to determine the in-vivo radiation effects on fibronectin, ColaA1, ColaA2, galectin and TGFb1 gene expression levels in left ventricle heart tissues of rats after irradiation. Material and method: Four non-treatment adult Wistar rats as control group (group A) were selected. In group B, 4 adult Wistar rats irradiated to 20 Gy single dose of 150 Mev proton beam locally in heart only. In heart plus lung irradiate group (group C) 4 adult rats was irradiated by 50% of lung laterally plus heart radiation that mentioned in before group. At 8 weeks after radiation animals sacrificed and left ventricle heart dropped in liquid nitrogen for RNA extraction by Absolutely RNA® Miniprep Kit (Stratagen, Cat no. 400800). cDNA was synthesized using M-MLV reverse transcriptase (Life Technologies, Cat no. 28025-013). We used Bio-Rad machine (Bio Rad iQ5 Real Time PCR) for QPCR testing by relative standard curve method. Results: We found that gene expression of fibronectin in group C significantly increased compared to control group, but it was not showed significant change in group B compared to group A. The levels of gene expressions of Cola1 and Cola2 in mRNA did not show any significant changes between normal and radiation groups. Changes of expression of galectin target significantly increased only in group C compared to group A. TGFb1 expressions in group C more than group B showed significant enhancement compared to group A. Conclusion: In summary we can say that 20 Gy of proton exposure of heart tissue may lead to detectable damages in heart cells and may distribute function of them as a component of heart tissue structure in molecular level.

Keywords: gene expression, heart damage, proton irradiation, radiotherapy

Procedia PDF Downloads 456