Search results for: quantum chemical calculation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6025

Search results for: quantum chemical calculation

5965 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2

Authors: Rayenne Djemil

Abstract:

The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.

Keywords: echanism, quantum mechanics, oxidation, linoleic acid H

Procedia PDF Downloads 410
5964 Quantum Coherence Sets the Quantum Speed Limit for Mixed States

Authors: Debasis Mondal, Chandan Datta, S. K. Sazim

Abstract:

Quantum coherence is a key resource like entanglement and discord in quantum information theory. Wigner- Yanase skew information, which was shown to be the quantum part of the uncertainty, has recently been projected as an observable measure of quantum coherence. On the other hand, the quantum speed limit has been established as an important notion for developing the ultra-speed quantum computer and communication channel. Here, we show that both of these quantities are related. Thus, cast coherence as a resource to control the speed of quantum communication. In this work, we address three basic and fundamental questions. There have been rigorous attempts to achieve more and tighter evolution time bounds and to generalize them for mixed states. However, we are yet to know (i) what is the ultimate limit of quantum speed? (ii) Can we measure this speed of quantum evolution in the interferometry by measuring a physically realizable quantity? Most of the bounds in the literature are either not measurable in the interference experiments or not tight enough. As a result, cannot be effectively used in the experiments on quantum metrology, quantum thermodynamics, and quantum communication and especially in Unruh effect detection et cetera, where a small fluctuation in a parameter is needed to be detected. Therefore, a search for the tightest yet experimentally realisable bound is a need of the hour. It will be much more interesting if one can relate various properties of the states or operations, such as coherence, asymmetry, dimension, quantum correlations et cetera and QSL. Although, these understandings may help us to control and manipulate the speed of communication, apart from the particular cases like the Josephson junction and multipartite scenario, there has been a little advancement in this direction. Therefore, the third question we ask: (iii) Can we relate such quantities with QSL? In this paper, we address these fundamental questions and show that quantum coherence or asymmetry plays an important role in setting the QSL. An important question in the study of quantum speed limit may be how it behaves under classical mixing and partial elimination of states. This is because this may help us to choose properly a state or evolution operator to control the speed limit. In this paper, we try to address this question and show that the product of the time bound of the evolution and the quantum part of the uncertainty in energy or quantum coherence or asymmetry of the state with respect to the evolution operator decreases under classical mixing and partial elimination of states.

Keywords: completely positive trace preserving maps, quantum coherence, quantum speed limit, Wigner-Yanase Skew information

Procedia PDF Downloads 316
5963 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1

Authors: Mohamed Mehdi Kadri

Abstract:

The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.

Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin

Procedia PDF Downloads 63
5962 External Noise Distillation in Quantum Holography with Undetected Light

Authors: Sebastian Töpfer, Jorge Fuenzalida, Marta Gilaberte Basset, Juan P. Torres, Markus Gräfe

Abstract:

This work presents an experimental and theoretical study about the noise resilience of quantum holography with undetected photons. Quantum imaging has become an important research topic in the recent years after its first publication in 2014. Following this research, advances towards different spectral ranges in detection and different optical geometries have been made. Especially an interest in the field of near infrared to mid infrared measurements has developed, because of the unique characteristic, that allows to sample a probe with photons in a different wavelength than the photons arriving at the detector. This promising effect can be used for medical applications, to measure in the so-called molecule fingerprint region, while using broadly available detectors for the visible spectral range. Further advance the development of quantum imaging methods have been made by new measurement and detection schemes. One of which is quantum holography with undetected light. It combines digital phase shifting holography with quantum imaging to extent the obtainable sample information, by measuring not only the object transmission, but also its influence on the phase shift experienced by the transmitted light. This work will present extended research for the quantum holography with undetected light scheme regarding the influence of external noise. It is shown experimentally and theoretically that the samples information can still be at noise levels of 250 times higher than the signal level, because of its information being transmitted by the interferometric pattern. A detailed theoretic explanation is also provided.

Keywords: distillation, quantum holography, quantum imaging, quantum metrology

Procedia PDF Downloads 26
5961 Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation

Authors: N. Q. Bau, N. V. Nghia

Abstract:

The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature T of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAl. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.

Keywords: rectangular quantum wire, acoustomagnetoelectric field, electron-phonon interaction, kinetic equation method

Procedia PDF Downloads 301
5960 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 426
5959 Quantum Mechanics Approach for Ruin Probability

Authors: Ahmet Kaya

Abstract:

Incoming cash flows and outgoing claims play an important role to determine how is companies’ profit or loss. In this matter, ruin probability provides to describe vulnerability of the companies against ruin. Quantum mechanism is one of the significant approaches to model ruin probability as stochastically. Using the Hamiltonian method, we have performed formalisation of quantum mechanics < x|e-ᵗᴴ|x' > and obtained the transition probability of 2x2 and 3x3 matrix as traditional and eigenvector basis where A is a ruin operator and H|x' > is a Schroedinger equation. This operator A and Schroedinger equation are defined by a Hamiltonian matrix H. As a result, probability of not to be in ruin can be simulated and calculated as stochastically.

Keywords: ruin probability, quantum mechanics, Hamiltonian technique, operator approach

Procedia PDF Downloads 299
5958 Structural and Magnetic Properties of Undoped and Ni Doped CdZnS

Authors: Sabit Horoz, Ahmet Ekicibil, Omer Sahin, M. Akyol

Abstract:

In this study, CdZnS and Ni-doped CdZnS quantum dots(QDs) were prepared by the wet-chemical method at room temperature using mercaptoethanol as a capping agent. The structural and magnetic properties of the CdZnS and CdZnS doped with different concentrations of Ni QDs were examined by XRD and magnetic susceptibility measurements, respectively. The average particles size of cubic QDs obtained by full-width half maxima (FWHM) analysis, increases with increasing doping concentrations. The investigation of the magnetic properties showed that the Ni-doped samples exhibit signs of ferromagnetism, on the other hand, un-doped CdZnS is diamagnetic.

Keywords: un-doped and Ni doped CdZnS Quantum Dots (QDs), co-precipitation method, structural and optical properties of QDs, diluted magnetic semiconductor materials (DMSMs)

Procedia PDF Downloads 262
5957 A Novel Way to Create Qudit Quantum Error Correction Codes

Authors: Arun Moorthy

Abstract:

Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.

Keywords: qudit, error correction, quantum, qubit

Procedia PDF Downloads 125
5956 Assessment of Exploitation Vulnerability of Quantum Communication Systems with Phase Encryption

Authors: Vladimir V. Nikulin, Bekmurza H. Aitchanov, Olimzhon A. Baimuratov

Abstract:

Quantum communication technology takes advantage of the intrinsic properties of laser carriers, such as very high data rates and low power requirements, to offer unprecedented data security. Quantum processes at the physical layer of encryption are used for signal encryption with very competitive performance characteristics. The ultimate range of applications for QC systems spans from fiber-based to free-space links and from secure banking operations to mobile airborne and space-borne networking where they are subjected to channel distortions. Under practical conditions, the channel can alter the optical wave front characteristics, including its phase. In addition, phase noise of the communication source and photo-detection noises alter the signal to bring additional ambiguity into the measurement process. If quantized values of photons are used to encrypt the signal, exploitation of quantum communication links becomes extremely difficult. In this paper, we present the results of analysis and simulation studies of the effects of noise on phase estimation for quantum systems with different number of encryption bases and operating at different power levels.

Keywords: encryption, phase distortion, quantum communication, quantum noise

Procedia PDF Downloads 520
5955 Many-Body Effect on Optical Gain of n+ Doping Tensile-Strained Ge/GeSiSn Quantum Wells

Authors: W. J. Fan, B. S. Ma

Abstract:

The many-body effect on band structure and optical gain of n+ doping tensile-strained Ge/GeSiSn quantum wells are investigated by using an 8-band k•p method. Phase diagram of Ge/GeSiSn quantum well is obtained. The E-k dispersion curves, band gap renormalization and optical gain spectra including many-body effect will be calculated and discussed. We find that the k.p method without many-body effect will overestimate the optical gain and transition energy.

Keywords: Si photonics, many-body effect, optical gain, Ge-on-Si, Quantum well

Procedia PDF Downloads 702
5954 Modeling and Simulation of InAs/GaAs and GaSb/GaAS Quantum Dot Solar Cells in SILVACO TCAD

Authors: Fethi Benyettou, Abdelkader Aissat, M. A. Benammar

Abstract:

In this work, we use Silvaco TCAD software for modeling and simulations of standard GaAs solar cell, InAs/GaAs and GaSb/GaAs p-i-n quantum dot solar cell. When comparing 20-layer InAs/GaAs, GaSb/GaAs quantum dots solar cells with standard GaAs solar cell, the conversion efficiency in simulation results increased from 16.48 % to 22.6% and 16.48% to 22.42% respectively. Also, the absorption range edge of photons with low energies extended from 900 nm to 1200 nm.

Keywords: SILVACO TCAD, the quantum dot, simulation, materials engineering

Procedia PDF Downloads 449
5953 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 102
5952 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.

Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon

Procedia PDF Downloads 337
5951 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 335
5950 To Ensure Maximum Voter Privacy in E-Voting Using Blockchain, Convolutional Neural Network, and Quantum Key Distribution

Authors: Bhaumik Tyagi, Mandeep Kaur, Kanika Singla

Abstract:

The advancement of blockchain has facilitated scholars to remodel e-voting systems for future generations. Server-side attacks like SQL injection attacks and DOS attacks are the most common attacks nowadays, where malicious codes are injected into the system through user input fields by illicit users, which leads to data leakage in the worst scenarios. Besides, quantum attacks are also there which manipulate the transactional data. In order to deal with all the above-mentioned attacks, integration of blockchain, convolutional neural network (CNN), and Quantum Key Distribution is done in this very research. The utilization of blockchain technology in e-voting applications is not a novel concept. But privacy and security issues are still there in a public and private blockchains. To solve this, the use of a hybrid blockchain is done in this research. This research proposed cryptographic signatures and blockchain algorithms to validate the origin and integrity of the votes. The convolutional neural network (CNN), a normalized version of the multilayer perceptron, is also applied in the system to analyze visual descriptions upon registration in a direction to enhance the privacy of voters and the e-voting system. Quantum Key Distribution is being implemented in order to secure a blockchain-based e-voting system from quantum attacks using quantum algorithms. Implementation of e-voting blockchain D-app and providing a proposed solution for the privacy of voters in e-voting using Blockchain, CNN, and Quantum Key Distribution is done.

Keywords: hybrid blockchain, secure e-voting system, convolutional neural networks, quantum key distribution, one-time pad

Procedia PDF Downloads 51
5949 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection

Authors: Pradthana Sianglam, Wittaya Ngeontae

Abstract:

A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.

Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion

Procedia PDF Downloads 336
5948 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau

Abstract:

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Keywords: the light–effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons-optical phonon scattering

Procedia PDF Downloads 303
5947 An Ab Initio Molecular Orbital Theory and Density Functional Theory Study of Fluorous 1,3-Dion Compounds

Authors: S. Ghammamy, M. Mirzaabdollahiha

Abstract:

Quantum mechanical calculations of energies, geometries, and vibrational wavenumbers of fluorous 1,3-dion compounds are carried out using density functional theory (DFT/B3LYP) method with LANL2DZ basis sets. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecules. The thermodynamic functions of fluorous 1,3-dion compounds have been performed at B3LYP/LANL2DZ basis sets. The theoretical spectrograms for F NMR spectra of fluorous 1,3-dion compounds have also been constructed. The F NMR nuclear shieldings of fluoride ligands in fluorous 1,3-dion compounds have been studied quantum chemical.

Keywords: density function theory, natural bond orbital, HOMO, LOMO, fluorous

Procedia PDF Downloads 359
5946 Ground State Phases in Two-Mode Quantum Rabi Models

Authors: Suren Chilingaryan

Abstract:

We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited.

Keywords: quantum optics, quantum phase transition, cavity QED, circuit QED

Procedia PDF Downloads 328
5945 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang

Abstract:

Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: parallel compressor model (pcm), revised calculation method, inlet distortion, outlet unequal pressure distribution

Procedia PDF Downloads 298
5944 Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon

Authors: Khachatur V. Nerkararyan, Sergey I. Bozhevolnyi

Abstract:

We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal.

Keywords: metal nanoparticle, localized surface plasmon, quantum dipole emitter, relaxation dynamics

Procedia PDF Downloads 412
5943 Comparison of Pbs/Zns Quantum Dots Synthesis Methods

Authors: Mahbobeh Bozhmehrani, Afshin Farah Bakhsh

Abstract:

Nanoparticles with PbS core of 12 nm and shell of approximately 3 nm were synthesized at PbS:ZnS ratios of 1.01:0.1 using Merca Ptopropionic Acid as stabilizing agent. PbS/ZnS nanoparticles present a dramatically increase of Photoluminescence intensity, confirming the confinement of the PbS core by increasing the Quantum Yield from 0.63 to 0.92 by the addition of the ZnS shell. In this case, the synthesis by microwave method allows obtaining nanoparticles with enhanced optical characteristics than those of nanoparticles synthesized by colloidal method.

Keywords: Pbs/Zns, quantum dots, colloidal method, microwave

Procedia PDF Downloads 248
5942 Ultrafast Transistor Laser Containing Graded Index Separate Confinement Heterostructure

Authors: Mohammad Hosseini

Abstract:

Ultrafast transistor laser investigated here has the graded index separate confinement heterostructure (GRIN-SCH) in its base region. Resonance-free optical frequency response with -3dB bandwidth of more than 26 GHz has been achieved for a single quantum well transistor laser by using graded index layers of AlξGa1-ξAs (ξ: 0.1→0) on the left side of the quantum well and AlξGa1-ξAs (ξ: 0.05→0) in the right side of quantum well. All required parameters, including quantum well and base transit time, optical confinement factor and spontaneous recombination lifetime, have been calculated using a self-consistent charge control model.

Keywords: transistor laser, ultrafast, GRIN-SCH, -3db optical bandwidth, AlξGa1-ξAs

Procedia PDF Downloads 111
5941 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

Authors: Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.

Keywords: hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation

Procedia PDF Downloads 453
5940 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution

Authors: H. Elmsellem, A. Aouniti, S. Radi, A. Chetouani, B. Hammouti

Abstract:

The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).

Keywords: mild steel, Schiff base, inhibition, corrosion, HCl, quantum chemical

Procedia PDF Downloads 292
5939 Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds

Authors: Hany M. Abd El-Lateef

Abstract:

Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies.

Keywords: carbon steel, Schiff bases, corrosion inhibition, SEM, electrochemical techniques

Procedia PDF Downloads 357
5938 Special Properties of the Zeros of the Analytic Representations of Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation on the special properties of the zeros of the analytic representations of finite quantum systems. These zeros and their paths completely define the finite quantum system. The present paper studies the construction of the analytic representation from its zeros. The analytic functions of finite quantum systems are introduced. The zeros of the analytic theta functions and their paths have been studied. The analytic function f(z) have exactly d zeros. The analytic function has been constructed from its zeros.

Keywords: construction, analytic, representation, zeros

Procedia PDF Downloads 177
5937 Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum

Authors: Li Li, Lei Wang, Chenglin Du, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu

Abstract:

Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies.

Keywords: breathing mode, plasmonics, quantum dot, strong coupling, ultraviolet

Procedia PDF Downloads 171
5936 Photoreflectance Anisotropy Spectroscopy of Coupled Quantum Wells

Authors: J. V. Gonzalez Fernandez, T. Mozume, S. Gozu, A. Lastras Martinez, L. F. Lastras Martinez, J. Ortega Gallegos, R. E. Balderas Navarro

Abstract:

We report on a theoretical-experimental study of photoreflectance anisotropy (PRA) spectroscopy of coupled double quantum wells. By probing the in-plane interfacial optical anisotropies, we demonstrate that PRA spectroscopy has the capacity to detect and distinguish layers with quantum dimensions. In order to account for the experimental PRA spectra, we have used a theoretical model at k=0 based on a linear electro-optic effect through a piezoelectric shear strain.

Keywords: coupled double quantum well (CDQW), linear electro-optic (LEO) effect, photoreflectance anisotropy (PRA), piezoelectric shear strain

Procedia PDF Downloads 656