Search results for: pressure calibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4319

Search results for: pressure calibration

4199 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 145
4198 Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator

Authors: Zara L. Sheady

Abstract:

Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification.

Keywords: ANSYS CFX, control, fluidic oscillators, mechanics, pressure, relationship, velocity

Procedia PDF Downloads 306
4197 Geometric Calibration of Computed Tomography Equipment

Authors: Chia-Hung Liao, Shih-Chieh Lin

Abstract:

X-ray computed tomography (CT) technology has been used in the electronics industry as one of the non-destructive inspection tools for years. The key advantage of X-ray computed tomography technology superior to traditional optical inspection is the penetrating characteristics of X-rays can be used to detect defects in the interior of objects. The objective of this study is to find a way to estimate the system geometric deviation of X-ray CT equipment. Projection trajectories of the characteristic points of standard parts were tracked, and ways to calculate the deviation of various geometric parameters of the system will be proposed and evaluated. A simulation study will be conducted to first find out the effects of system geometric deviation on projected trajectories. Then ways to estimate geometric deviation with collected trajectories will be proposed and tested through simulations.

Keywords: geometric calibration, X-ray computed tomography, trajectory tracing, reconstruction optimization

Procedia PDF Downloads 69
4196 Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector

Authors: Wooseok Song, Sunjung Park, Jongkwon Lee, Jaye Koo

Abstract:

The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed.

Keywords: liquid rocket engine, flame structure, combustion instability, dynamic pressure

Procedia PDF Downloads 196
4195 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.

Authors: Georgia Pozoukidou

Abstract:

TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.

Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations

Procedia PDF Downloads 261
4194 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube

Authors: K. Hiro, T. Wada

Abstract:

Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) – nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).

Keywords: Berthelot method, liquid crystal, negative pressure, phase transitions

Procedia PDF Downloads 369
4193 5iD Viewer: Observation of Fish School Behaviour in Labyrinths and Use of Semantic and Syntactic Entropy for School Structure Definition

Authors: Dalibor Štys, Kryštof M. Stys, Maryia Chkalova, Petr Kouba, Aliaxandr Pautsina, Dalibor Štys Jr., Jana Pečenková, Denis Durniev, Tomáš Náhlík, Petr Císař

Abstract:

In this article, a construction and some properties of the 5iD viewer, the system recording simultaneously five views of a given experimental object is reported. Properties of the system are demonstrated on the analysis of fish schooling behavior. It is demonstrated the method of instrument calibration which allows inclusion of image distortion and it is proposed and partly tested also the method of distance assessment in the case that only two opposite cameras are available. Finally, we demonstrate how the state trajectory of the behavior of the fish school may be constructed from the entropy of the system.

Keywords: 3D positioning, school behavior, distance calibration, space vision, space distortion

Procedia PDF Downloads 354
4192 Numerical Investigation of the Electromagnetic Common Rail Injector Characteristics

Authors: Rafal Sochaczewski, Ksenia Siadkowska, Tytus Tulwin

Abstract:

The paper describes the modeling of a fuel injector for common rail systems. A one-dimensional model of a solenoid-valve-controlled injector with Valve Closes Orifice (VCO) spray was modelled in the AVL Hydsim. This model shows the dynamic phenomena that occur in the injector. The accuracy of the calibration, based on a regulation of the parameters of the control valve and the nozzle needle lift, was verified by comparing the numerical results of injector flow rate. Our model is capable of a precise simulation of injector operating parameters in relation to injection time and fuel pressure in a fuel rail. As a result, there were made characteristics of the injector flow rate and backflow.

Keywords: common rail, diesel engine, fuel injector, modeling

Procedia PDF Downloads 384
4191 A Calibration Method for Temperature Distribution Measurement of Thermochromic Liquid Crystal Based on Mathematical Morphology of Hue Image

Authors: Risti Suryantari, Flaviana

Abstract:

The aim of this research is to design calibration method of Thermochromic Liquid Crystal for temperature distribution measurement based on mathematical morphology of hue image A glass of water is placed on the surface of sample TLC R25C5W at certain temperature. We use scanner for image acquisition. The true images in RGB format is converted to HSV (hue, saturation, value) by taking of hue without saturation and value. Then the hue images is processed based on mathematical morphology using Matlab2013a software to get better images. There are differences on the final images after processing at each temperature variation based on visualization observation and the statistic value. The value of maximum and mean increase with rising temperature. It could be parameter to identify the temperature of the human body surface like hand or foot surface.

Keywords: thermochromic liquid crystal, TLC, mathematical morphology, hue image

Procedia PDF Downloads 445
4190 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis

Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan

Abstract:

This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.

Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis

Procedia PDF Downloads 193
4189 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic

Authors: C.W. Kan

Abstract:

This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.

Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface

Procedia PDF Downloads 316
4188 Deformation Analysis of Pneumatized Sphenoid Bone Caused Due to Elevated Intracranial Pressure Using Finite Element Analysis

Authors: Dilesh Mogre, Jitendra Toravi, Saurabh Joshi, Prutha Deshpande, Aishwarya Kura

Abstract:

In earlier days of technology, it was not possible to understand the nature of complex biomedical problems and were only left to clinical postulations. With advancement in science today, we have tools like Finite Element Modelling and simulation to solve complex biomedical problems. This paper presents how ANSYS WORKBENCH can be used to study deformation of pneumatized sphenoid bone caused by increased intracranial pressure. Intracranial pressure refers to the pressure inside the skull. The increase in the pressure above the normal range of 15mmhg can lead to serious conditions due to developed stresses and deformation. One of the areas where the deformation is suspected to occur is Sphenoid Bone. Moreover, the varying degree of pneumatization increases the complexity of the conditions. It is necessary to study deformation patterns on pneumatized sphenoid bone model at elevated intracranial pressure. Finite Element Analysis plays a major role in developing and analyzing model and give quantitative results.

Keywords: intracranial pressure, pneumatized sphenoid bone, deformation, finite element analysis

Procedia PDF Downloads 140
4187 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED

Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue

Abstract:

Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).

Keywords: MgO, UV LED, ZnMgO, ZnO

Procedia PDF Downloads 376
4186 A Method for Calculating Dew Point Temperature in the Humidity Test

Authors: Wu Sa, Zhang Qian, Li Qi, Wang Ye

Abstract:

Currently in humidity tests having not put the Dew point temperature as a control parameter, this paper selects wet and dry bulb thermometer to measure the vapor pressure, and introduces several the saturation vapor pressure formulas easily calculated on the controller. Then establish the Dew point temperature calculation model to obtain the relationship between the Dew point temperature and vapor pressure. Finally check through the 100 groups of sample in the range of 0-100 ℃ from "Psychrometric handbook", find that the average error is small. This formula can be applied to calculate the Dew point temperature in the humidity test.

Keywords: dew point temperature, psychrometric handbook, saturation vapor pressure, wet and dry bulb thermometer

Procedia PDF Downloads 449
4185 Assessing the Risk of Pressure Injury during Percutaneous Nephrolithotomy Using Pressure Mapping

Authors: Jake Tempo, Taylor Smithurst, Jen Leah, Skye Waddingham, Amanda Catlin, Richard Cetti

Abstract:

Introduction: Percutaneous nephrolithotomy (PCNL) is the gold-standard procedure for removing large or complex renal stones. Many operating positions can be used, and the debate over the ideal position continues. PCNL can be a long procedure during which patients can sustain pressure injuries. These injuries are often underreported in the literature. Interface pressure mapping records the pressure loading between a surface and the patient. High pressures with prolonged loading result in ischaemia, muscle deformation, and reperfusion which can cause skin breakdown and muscular injury. We compared the peak pressure indexes of common PCNL positions to identify positions which may be at high risk of pressure injuries. We hope the data can be used to adapt high-risk positions so that the PPI can be lessened by either adapting the positions or by using adjuncts to lower PPI. Materials and Methods: We placed a 23-year-old male subject in fourteen different PCNL positions while performing interface pressure mapping. The subject was 179 cm with a weight of 63.3 kg, BMI 19.8kg/m². Results: Supine positions had a higher mean PPI (119mmHg (41-137)) compared to prone positions (64mmHg (32-89)) (p=0.046 two tailed t-test). The supine flexed position with a bolster under the flank produced the highest PPI (194mmHg), and this was at the sacrum. Peak pressure indexes >100mmHg were recorded in eight PCNL positions. Conclusion: Supine PCNL positions produce higher PPI than prone PCNL positions. Our study shows where ‘at risk’ bony prominences are for each PCNL position. Surgeons must ensure these areas are protected during prolonged operations.

Keywords: PCNL, pressure ulcer, interface pressure mapping, surgery

Procedia PDF Downloads 52
4184 A Fishery Regulation Model: Bargaining over Fishing Pressure

Authors: Duplan Yves Jamont Junior

Abstract:

The Diamond-Mortensen-Pissarides model widely used in labor economics is tailored to fishery. By this way, a fishing function is defined to depict the fishing technology, and Bellman equations are established to describe the behaviors of fishermen and conservationists. On this basis, a negotiation takes place as a Nash-bargaining over the upper limit of the fishing pressure between both political representative groups of fishermen and conservationists. The existence and uniqueness conditions of the Nash-bargained fishing pressure are established. Given the biomass evolution equation, the dynamics of the model variables (fishing pressure, biomass, fish need) is studied.

Keywords: conservation, fishery, fishing, Nash bargaining

Procedia PDF Downloads 233
4183 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings

Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier

Abstract:

Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.

Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests

Procedia PDF Downloads 175
4182 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 140
4181 Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing

Authors: Hadjadj Naima, K. Mahdi, D. Belhachat, F. S. Ait Chaouche, A. Ferradji

Abstract:

The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars.

Keywords: oil, Nigella sativa, extraction, optimization, temperature, pressure

Procedia PDF Downloads 443
4180 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform

Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu

Abstract:

Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.

Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS

Procedia PDF Downloads 508
4179 Pressure Sensitive v/s Pressure Resistance Institutional Investors towards Socially Responsible Investment Behavior: Evidence from Malaysia

Authors: Mohammad Talha, Abdullah Sallehhuddin Abdullah Salim, Abdul Aziz Abdul Jalil, Norzarina Md Yatim

Abstract:

The significant contribution of institutional investors across the globe in socially responsible investment (SRI) is well-documented in the literature. Nevertheless, how the SRI behavior of pressure-resistant, pressure-sensitive and pressure-indeterminate institutional investors remain unexplored extensively. This study examines the moderating effect of institutional investors towards socially responsible investment behavior in the context of emerging economies. This study involved 229 institutional investors in Malaysia. A total of 1,145 questionnaires were distributed. Out of these, 308 (130 pressure sensitive institutional investors and 178 pressure resistant institutional investors), representing a usable rate of 26.9 per cent, were found fit for data analysis. Utilizing multi-group analysis via AMOS, this study found evidence for the presence of moderating effect by a type of institutional investor topology in socially responsible investment behavior. At intentional level, it established that type of institutional investor was a significant moderator in the relationship between subjective norms, and caring ethical climate with intention among pressure-resistant institutional investors, as well as between perceived behavioral controls with intention among pressure-sensitive institutional investors. At the behavioral level, the results evidenced that there was only a significant moderating effect between intention and socially responsible investment behavior among pressure-resistant institutional investors. The outcomes are expected to benefit policy makers, regulators, and market participants in order to leap forward SRI growth in developing economies. Nevertheless, the outcomes are limited to a few factors, and it is believed that future studies shall address those limitations.

Keywords: socially responsible investment, behavior, pressure sensitive investors, pressure insensitive investors, Institutional Investment Malaysia

Procedia PDF Downloads 318
4178 Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection

Authors: Vinci Mojamdar, Govind S. Gupta

Abstract:

Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed.

Keywords: lateral gas injection, moving bed, pressure drop, pressure hysteresis, stationary bed

Procedia PDF Downloads 275
4177 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter

Authors: Shunsuke Fujiwara, Takashi Kaburagi, Kazuyuki Kobayashi, Kajiro Watanabe, Yosuke Kurihara

Abstract:

This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone. This novel pressure pulse wave meter device is used as a measuring instrument of health conditions.

Keywords: bidirectional microphone, pressure pulse wave meter, health condition, novel sensor device

Procedia PDF Downloads 514
4176 Analysis of Gas Transport and Sorption Processes in Coal under Confining Pressure Conditions

Authors: Anna Pajdak, Mateusz Kudasik, Norbert Skoczylas, Leticia Teixeira Palla Braga

Abstract:

A substantial majority of gas transport and sorption researches into coal are carried out on samples that are free of stress. In natural conditions, coal occurs at considerable depths, which often exceed 1000 meters. In such conditions, coal is subjected to geostatic pressure. Thus, in natural conditions, the sorption capacity of coal subjected to geostatic pressure can differ considerably from the sorption capacity of coal, determined in laboratory conditions, which is free of stress. The work presents the results of filtration and sorption tests of gases in coal under confining pressure conditions. The tests were carried out on the author's device, which ensures: confining pressure regulation in the range of 0-30 MPa, isobaric gas pressure conditions, and registration of changes in sample volume during its gas saturation. Based on the conducted research it was found, among others, that the sorption capacity of coal relative to CO₂ was reduced by about 15% as a result of the change in the confining pressure from 1.5 MPa to 30 MPa exerted on the sample. The same change in sample load caused a significant, more than tenfold reduction in carbon permeability to CO₂. The results confirmed that a load of coal corresponding to a hydrostatic pressure of 1000 meters underground reduces its permeability and sorption properties. These results are so important that the effect of load on the sorption properties of coal should be taken into account in laboratory studies on the applicability of CO₂ Enhanced Coal Bed Methane Recovery (CO₂-ECBM) technology.

Keywords: coal, confining pressure, gas transport, sorption

Procedia PDF Downloads 89
4175 Topical Negative Pressure for Autologous Fat Grafting in Breast Augmentation

Authors: Mohamed Eftal Bin Mohamed Ebrahim, Alexander Varey

Abstract:

Aim: Topical negative pressure has been shown to enhance angiogenesis during wound healing, both for open and closed wounds. Since angiogenesis is a key requirement for successful fat grafting, there may be a role for topical negative pressure as a means of enhancing the take rate during autologous fat grafting to breasts. Here we present a systematic review of the literature on this topic. Methods: Ovid and Embase were utilized, with searches ranging between 1960 – 2019. Terms (“Liposculpting” OR “Fat grafting” OR “Lipofilling” OR “Lipograft” OR “Fat transfer”) AND (“Negative Pressure” OR “Brava” OR “Kiwi”) AND (“Breast”) were merged as keywords. Inclusion criteria were females, autologous fat graft to breast with topical negative pressure prior to the procedure. Studies were excluded if there was no primary endpoint or non-original article. Results: Upon reviewing 219 articles, 2 met inclusion criteria. A total of 565 and 46 breasts in each article were treated respectively using the negative pressure device BRAVA®, with each cohort having different pre-and post-operative pressure settings. Khouri et al. cohort had higher graft survival (79%) compared to Del Vecchio et al. cohort (64%); however, the latter had fewer complications compared to Khouri’s cohort, e.g., fat necrosis, pneumothorax and infection. Conclusion: There is limited evidence regarding the use of topical negative pressure for fat grafting to the breasts. However, in the two studies published, the reported rates of success are high, suggesting there may be a benefit. Consequently, a randomized controlled trial on this area is required.

Keywords: fat grafting, lipograft, negative pressure, breast, breast augmentation, brava

Procedia PDF Downloads 160
4174 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 117
4173 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.

Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast

Procedia PDF Downloads 57
4172 Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough.

Keywords: gas-condensate reservoir, case-study, compositional modelling, enhanced condensate recovery, gas injection

Procedia PDF Downloads 157
4171 An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop

Authors: J. A. Louw Coetzee, Josua P. Meyer

Abstract:

The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2.

Keywords: aspect ratio, microchannel, two-phase, pressure gradient

Procedia PDF Downloads 328
4170 Three-Dimensional Spillage Effects on the Pressure Distribution of a Double Ramp

Authors: Pengcheng Quan, Shan Zhong

Abstract:

Double ramp geometry is widely used in supersonic and hypersonic environments as it presents unique flow patterns for shock wave-boundary layer interaction studies as well as for two-dimensional inlets and deflected control surfaces for re-entry vehicles. Hence, the surface pressure distribution is critical for optimum design. Though when the model is wide enough on spanwise direction the flow can be regarded as a two-dimensional flow, in actual applications a finite width would normally cause some three-dimensional spillage effects. No research has been found addressed this problem, hence the primary interest of this study is to set up a liable surface pressure distribution on a double ramp with three-dimensional effects. Both numerical and experimental (pressure sensitive paints) are applied to obtain the pressure distribution; the results agree well except that the numerical computation doesn’t capture the Gortler vortices. The pressure variations on the spanwise planes are used to analyse the development of the Gortler vortices and the effects of three-dimensional spillage on the vortices. Results indicate that the three-dimensionl spillage effects not only enhance the developing of the Gortler vortice, but also increase the periodic distance between vortice pairs.

Keywords: spillage effects, pressure sensitive paints, hypersonic, double ramp

Procedia PDF Downloads 289