Search results for: plasma jet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 995

Search results for: plasma jet

185 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 268
184 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 410
183 Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins

Authors: Kinga Mylkie, Pawel Nowak, Marta Z. Borowska

Abstract:

The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method.

Keywords: glycoproteins, immobilization, magnetic nanoparticles, polysaccharides

Procedia PDF Downloads 84
182 Development of Ketorolac Tromethamine Encapsulated Stealth Liposomes: Pharmacokinetics and Bio Distribution

Authors: Yasmin Begum Mohammed

Abstract:

Ketorolac tromethamine (KTM) is a non-steroidal anti-inflammatory drug with a potent analgesic and anti-inflammatory activity due to prostaglandin related inhibitory effect of drug. It is a non-selective cyclo-oxygenase inhibitor. The drug is currently used orally and intramuscularly in multiple divided doses, clinically for the management arthritis, cancer pain, post-surgical pain, and in the treatment of migraine pain. KTM has short biological half-life of 4 to 6 hours, which necessitates frequent dosing to retain the action. The frequent occurrence of gastrointestinal bleeding, perforation, peptic ulceration, and renal failure lead to the development of other drug delivery strategies for the appropriate delivery of KTM. The ideal solution would be to target the drug only to the cells or tissues affected by the disease. Drug targeting could be achieved effectively by liposomes that are biocompatible and biodegradable. The aim of the study was to develop a parenteral liposome formulation of KTM with improved efficacy while reducing side effects by targeting the inflammation due to arthritis. PEG-anchored (stealth) and non-PEG-anchored liposomes were prepared by thin film hydration technique followed by extrusion cycle and characterized for in vitro and in vivo. Stealth liposomes (SLs) exhibited increase in percent encapsulation efficiency (94%) and 52% percent of drug retention during release studies in 24 h with good stability for a period of 1 month at -20°C and 4°C. SLs showed about maximum 55% of edema inhibition with significant analgesic effect. SLs produced marked differences over those of non-SL formulations with an increase in area under plasma concentration time curve, t₁/₂, mean residence time, and reduced clearance. 0.3% of the drug was detected in arthritic induced paw with significantly reduced drug localization in liver, spleen, and kidney for SLs when compared to other conventional liposomes. Thus SLs help to increase the therapeutic efficacy of KTM by increasing the targeting potential at the inflammatory region.

Keywords: biodistribution, ketorolac tromethamine, stealth liposomes, thin film hydration technique

Procedia PDF Downloads 267
181 Adaptor Protein APPL2 Could Be a Therapeutic Target for Improving Hippocampal Neurogenesis and Attenuating Depressant Behaviors and Olfactory Dysfunctions in Chronic Corticosterone-induced Depression

Authors: Jiangang Shen

Abstract:

Olfactory dysfunction is a common symptom companied by anxiety- and depressive-like behaviors in depressive patients. Chronic stress triggers hormone responses and inhibits the proliferation and differentiation of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ)-olfactory bulb (OB), contributing to depressive behaviors and olfactory dysfunction. However, the cellular signaling molecules to regulate chronic stress mediated olfactory dysfunction are largely unclear. Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins. Herein, we tested the hypothesis that APPL2 could inhibit hippocampal neurogenesis by affecting glucocorticoid receptor (GR) signaling, subsequently contributing to depressive and anxiety behaviors as well as olfactory dysfunctions. The major discoveries are included: (1) APPL2 Tg mice had enhanced GR phosphorylation under basic conditions but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. (2) APPL2 Tg mice had impaired hippocampal neurogenesis and revealed depressive and anxiety behaviors. (3) GR antagonist RU486 reversed the impaired hippocampal neurogenesis in the APPL2 Tg mice. (4) APPL2 Tg mice displayed higher GR activity and less capacity for neurogenesis at the olfactory system with lesser olfactory sensitivity than WT mice. (5) APPL2 negatively regulates olfactory functions by switching fate commitments of NSCs in adult olfactory bulbs via interaction with Notch1 signaling. Furthermore, baicalin, a natural medicinal compound, was found to be a promising agent targeting APPL2/GR signaling and promoting adult neurogenesis in APPL2 Tg mice and chronic corticosterone-induced depression mouse models. Behavioral tests revealed that baicalin had antidepressant and olfactory-improving effects. Taken together, APPL2 is a critical therapeutic target for antidepressant treatment.

Keywords: APPL2, hippocampal neurogenesis, depressive behaviors and olfactory dysfunction, stress

Procedia PDF Downloads 41
180 A Serum- And Feeder-Free Culture System for the Robust Generation of Human Stem Cell-Derived CD19+ B Cells and Antibody-Secreting Cells

Authors: Kirsten Wilson, Patrick M. Brauer, Sandra Babic, Diana Golubeva, Jessica Van Eyk, Tinya Wang, Avanti Karkhanis, Tim A. Le Fevre, Andy I. Kokaji, Allen C. Eaves, Sharon A. Louis, , Nooshin Tabatabaei-Zavareh

Abstract:

Long-lived plasma cells are rare, non-proliferative B cells generated from antibody-secreting cells (ASCs) following an immune response to protect the host against pathogen re-exposure. Despite their therapeutic potential, the lack of in vitro protocols in the field makes it challenging to use B cells as a cellular therapeutic tool. As a result, there is a need to establish robust and reproducible methods for the generation of B cells. To address this, we have developed a culture system for generating B cells from hematopoietic stem and/or progenitor cells (HSPCs) derived from human umbilical cord blood (CB) or pluripotent stem cells (PSCs). HSPCs isolated from CB were cultured using the StemSpan™ B Cell Generation Kit and produced CD19+ B cells at a frequency of 23.2 ± 1.5% and 59.6 ± 2.3%, with a yield of 91 ± 11 and 196 ± 37 CD19+ cells per input CD34+ cell on culture days 28 and 35, respectively (n = 50 - 59). CD19+IgM+ cells were detected at a frequency of 31.2 ± 2.6% and were produced at a yield of 113 ± 26 cells per input CD34+ cell on culture day 35 (n = 50 - 59). The B cell receptor loci of CB-derived B cells were sequenced to confirm V(D)J gene rearrangement. ELISpot analysis revealed that ASCs were generated at a frequency of 570 ± 57 per 10,000 day 35 cells, with an average IgM+ ASC yield of 16 ± 2 cells per input CD34+ cell (n = 33 - 42). PSC-derived HSPCs were generated using the STEMdiff™ Hematopoietic - EB reagents and differentiated to CD10+CD19+ B cells with a frequency of 4 ± 0.8% after 28 days of culture (n = 37, 1 embryonic and 3 induced pluripotent stem cell lines tested). Subsequent culture of PSC-derived HSPCs increased CD19+ frequency and generated ASCs from 1 - 2 iPSC lines. This method is the first report of a serum- and feeder-free system for the generation of B cells from CB and PSCs, enabling further B lineage-specific research for potential future clinical applications.

Keywords: stem cells, B cells, immunology, hematopoiesis, PSC, differentiation

Procedia PDF Downloads 11
179 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun

Abstract:

III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio

Procedia PDF Downloads 48
178 Bioavailability Enhancement of Ficus religiosa Extract by Solid Lipid Nanoparticles

Authors: Sanjay Singh, Karunanithi Priyanka, Ramoji Kosuru, Raju Prasad Sharma

Abstract:

Herbal drugs are well known for their mixed pharmacological activities with the benefit of no harmful side effects. The use of herbal drugs is limited because of their higher dose requirement, frequent drug administration, poor bioavailability of phytochemicals and delayed onset of action. Ficus religiosa, a potent anti-oxidant plant useful in the treatment of diabetes and cancer was selected for the study. Solid lipid nanoparticles (SLN) of Ficus religiosa extract was developed for the enhancement in oral bioavailability of stigmasterol and β-sitosterol-d-glucoside, principal components present in the extract. Hot homogenization followed by ultrasonication method was used to develop extract loaded SLN. Developed extract loaded SLN were characterized for particle size, PDI, zeta potential, entrapment efficiency, in vitro drug release and kinetics, fourier transform infra-red spectroscopy, differential scanning calorimetry, powder X-ray diffractrometry and stability studies. Entrapment efficiency of optimized extract loaded SLN was found to be 68.46 % (56.13 % of stigmasterol and 12.33 % of β-sitosteryl-d-glucoside, respectively). RP HPLC method development was done for simultaneous estimation of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract in rat plasma. Bioavailability studies were carried out for extract in suspension form and optimized extract loaded SLN. AUC of stigmasterol and β-sitosterol-d-glucoside were increased by 6.7-folds by 9.2-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Also, Cmax of stigmasterol and β-sitosterol-d-glucoside were increased by 4.3-folds by 3.9-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Mean residence times (MRT) for stigmasterol were found to be 12.3 ± 0.67 hours from extract and 7.4 ± 2.1 hours from SLN and for β-sitosterol-d-glucoside, 10.49 ± 2.9 hours from extract and 6.4 ± 0.3 hours from SLN. Hence, it was concluded that SLN enhanced the bioavailability and reduced the MRT of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract which in turn may lead to reduction in dose of Ficus religiosa extract, prolonged duration of action and also enhanced therapeutic efficacy.

Keywords: Ficus religiosa, phytosterolins, bioavailability, solid lipid nanoparticles, stigmasterol and β-sitosteryl-d-glucoside

Procedia PDF Downloads 438
177 Influence of Cobalt Incorporation on the Structure and Properties of SOL-Gel Derived Mesoporous Bioglass Nanoparticles

Authors: Ahmed El-Fiqi, Hae-Won Kim

Abstract:

Incorporation of therapeutic elements such as Sr, Cu and Co into bioglass structure and their release as ions is considered as one of the promising approaches to enhance cellular responses, e.g., osteogenesis and angiogenesis. Here, cobalt as angiogenesis promoter has been incorporated (at 0, 1 and 4 mol%) into sol-gel derived calcium silicate mesoporous bioglass nanoparticles. The composition and structure of cobalt-free (CFN) and cobalt-doped (CDN) mesoporous bioglass nanoparticles have been analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-Transform Infra-red spectroscopy (FT-IR). The physicochemical properties of CFN and CDN have been investigated using high-resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), and Energy-dispersive X-ray (EDX). Furthermore, the textural properties, including specific surface area, pore-volume, and pore size, have been analyzed from N²⁻sorption analyses. Surface charges of CFN and CDN were also determined from surface zeta potential measurements. The release of ions, including Co²⁺, Ca²⁺, and SiO₄⁴⁻ has been analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Loading and release of diclofenac as an anti-inflammatory drug model were explored in vitro using Ultraviolet-visible spectroscopy (UV-Vis). XRD results ensured the amorphous state of CFN and CDN whereas, XRF further confirmed that their chemical compositions are very close to the designed compositions. HR-TEM analyses unveiled nanoparticles with spherical morphologies, highly mesoporous textures, and sizes in the range of 90 - 100 nm. Moreover, N²⁻ sorption analyses revealed that the nanoparticles have pores with sizes of 3.2 - 2.6 nm, pore volumes of 0.41 - 0.35 cc/g and highly surface areas in the range of 716 - 830 m²/g. High-resolution XPS analysis of Co 2p core level provided structural information about Co atomic environment and it confirmed the electronic state of Co in the glass matrix. ICP-AES analysis showed the release of therapeutic doses of Co²⁺ ions from 4% CDN up to 100 ppm within 14 days. Finally, diclofenac loading and release have ensured the drug/ion co-delivery capability of 4% CDN.

Keywords: mesoporous bioactive glass, nanoparticles, cobalt ions, release

Procedia PDF Downloads 78
176 Oral Versus Iontophoresis Nonsteroidal Anti-Inflammatory Drugs in Tennis Elbow

Authors: Moustafa Ali Elwan, Ibrahim Salem Abdelrafa, Ashraf Moharm

Abstract:

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed oral and topical drugs worldwide. Moreover, NSAIDs are responsible for most of all adverse drug reactions. For several decades, there are numerous attempts to use the cutaneous layers as a gate into the body for the local delivery of the therapeutic agent. Transdermal drug delivery is a validated technology contributing significantly to global pharmaceutical care. Transdermal Drug Delivery systems can be improved by using therapeutic agents. Moreover, Transdermal Drug Delivery systems can be improved by using chemical enhancers like ultrasound or iontophoresis. Iontophoresis provides a mechanism to enhance the penetration of hydrophilic and charged molecules across the skin. Objective: to compare the drug administration by ‘iontophoresis’ versus the oral rule. Methods: This study was conducted at the Faculty of Physical Therapy, Modern University for technology and information, Cairo, Egypt, on 20 participants (8 female & 12 male) who complained of tennis elbow. Their mean age was (25.45 ± 3.98) years, and all participants were assessed in many aspects: Pain threshold was assessed by algometer. Range of motion was assessed by electro goniometer, and isometric strength was assessed by a portable hand-held dynamometer. Then Participants were randomly assigned into two groups: group A was treated with oral NSAID (diclofenac) while group B was treated via administration of NSAIDs (diclofenac) via an iontophoresis device. All the participants were subjected to blood samples analysis in both pre-administration of the drug and post-administration of the drug for 24 hours (sample/every 6 hours). Results: The results demonstrated that there was a significant improvement in group b, “iontophoresis NSAIDs group,” more than in group B,” oral NSAIDs group,” in all measurements ‘ pain threshold, strength, and range of motion. Also, the iontophoresis method shows higher maximum plasma concentrations (Cmax) and concentration-time curves than the oral method.

Keywords: diclofenac, iontophoresis, NSAIDs, oral, tennis elbow

Procedia PDF Downloads 77
175 Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis

Authors: Hala Raslan, Noha Eltaweel, Hanaa Rasmi, Solaf Kamel, May Magdy, Sherif Ismail, Khalda Amr

Abstract:

Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes.

Keywords: MiRNAs, expression, rheumatoid arthritis, osteoarthritis

Procedia PDF Downloads 34
174 The Dual Catastrophe of Behçet’s Disease Visual Loss Followed by Acute Spinal Shock After Lumbar Drain Removal

Authors: Naim Izet Kajtazi

Abstract:

Context: Increased intracranial pressure and associated symptoms such as headache, papilledema, motor or sensory deficits, seizures, and conscious disturbance are well-known in acute CVT. However, visual loss is not commonly associated with this disease, except in the case of secondary IIH associated with it. Process: We report a case of a 40-year-old male with Behçet’s disease and cerebral venous thrombosis, and other multiple comorbidities admitted with a four-day history of increasing headache and rapidly progressive visual loss bilaterally. The neurological examination was positive for bilateral papilledema of grade 3 with light perception on the left eye and counting fingers on the right eye. Brain imaging showed old findings of cerebral venous thrombosis without any intraparenchymal lesions to suggest a flare-up of Behçet’s disease. The lumbar puncture, followed by the lumbar drain insertion, gave no benefit in headache or vision. However, he completely lost sight. The right optic nerve sheath fenestration did not result in vision improvement. The acute spinal shock complicated the lumbar drain removal due to epidural hematoma. An urgent lumbar laminectomy with hematoma evacuation undertook. Intra-operatively, the neurosurgeon noted suspicious abnormal vessels at conus medullaris with the possibility of an arteriovenous malformation. Outcome: In a few days following the spinal surgery, the patient vision started to improve. Further improvement was achieved after plasma exchange sessions followed by cyclophosphamide. In the recent follow-up in the clinic, he reported better vision, drove, and completed his Ph.D. studies. Relevance: Visual loss in patients with Behçet’s disease should always be anticipated and taken reasonable care of, ensuring that they receive well-combined immunosuppression with anticoagulation and agents to reduce intracranial pressure. This patient’s story is significant for a high disease burden and complicated hospital course by acute spinal shock due to spinal lumbar drain removal with a possible underlying spinal arteriovenous malformation.

Keywords: Behcet disease, optic neuritis, IIH, CVT

Procedia PDF Downloads 39
173 Evaluation of Different Anticoagulant Effects on Flow Properties of Human Blood Using Falling Needle Rheometer

Authors: Hiroki Tsuneda, Takamasa Suzuki, Hideki Yamamoto, Kimito Kawamura, Eiji Tamura, Katharina Wochner, Roberto Plasenzotti

Abstract:

Flow property of human blood is one of the important factors on the prevention of the circulatory condition such as a high blood pressure, a diabetes mellitus, and a cardiac infarction. However, the measurement of flow property of human blood, especially blood viscosity, is not so easy, because of their coagulation or aggregation behaviors after taking a sample from blood vessel. In the experiment, some kinds of anticoagulant were added into the human blood to avoid its solidification. Anticoagulant used in the blood test has been chosen for each purpose of blood test, for anticoagulant effect on blood is different mechanism for each. So that, there is a problem that the evaluation of measured blood property with different anticoagulant is so difficult. Therefore, it is so important to make clear the difference of anticoagulant effect on the blood property. In the previous work, a compact-size falling needle rheometer (FNR) has been developed in order to measure the flow property of human blood such as a flow curve, an apparent viscosity. It was found that FNR system can apply to a rheometer or a viscometry for various experimental conditions for not only human blood but also mammalians blood. In this study, the measurements of human blood viscosity with different anticoagulant (EDTA and Heparin) were carried out using newly developed FNR system. The effect of anticoagulant on blood viscosity was also tested by using the standard liquid for each. The accuracy on the viscometry was also tested by using the standard liquid for calibrating materials (JS-10, JS-20) and observed data have satisfactory agreement with reference data around 1.0% at 310K. The flow curve of six males and females with different anticoagulant were measured using FNR. In this experiment, EDTA and Heparin were chosen as anticoagulant for blood. Heparin can inhibit the coagulation of human blood by activating the body of anti-thrombin. To examine the effect of human blood viscosity on anticoagulant, flow curve was measured at high shear rate (>350s-1), and apparent viscosity of each person were determined with different anticoagulant. The apparent viscosity of human blood with heparin was 2%-9% higher than that with EDTA. However, the difference of blood viscosity for two anticoagulants for same blood was different for each. Further discussion, we need the consideration of effect on other physical property, such as cellular component and plasma component.

Keywords: falling-needle rheometer, human blood, viscosity, anticoagulant

Procedia PDF Downloads 405
172 A Descriptive Study of the Mineral Content of Conserved Forage Fed to Horses in the United Kingdom, Ireland, and France

Authors: Louise Jones, Rafael De Andrade Moral, John C. Stephens

Abstract:

Background: Minerals are an essential component of correct nutrition. Conserved hay/haylage is an important component of many horse's diets. Variations in the mineral content of conserved forage should be considered when assessing dietary intake. Objectives: This study describes the levels and differences in 15 commonly analysed minerals in conserved forage fed to horses in the United Kingdom (UK), Ireland (IRL), and France (FRA). Methods: Hay (FRA n=92, IRL n=168, UK n=152) and haylage samples (UK n=287, IRL n=49) were collected during 2017-2020. Mineral analysis was undertaken using inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis was performed using beta regression, Gaussian, or gamma models, depending on the nature of the response variable. Results: There are significant differences in the mineral content of the UK, IRL, and FRA conserved forage samples. FRA hay samples had a significantly higher (p < 0.05) levels of Sulphur (0.16 ± 0.0051 %), Calcium (0.56 ± 0.0342%), Magnesium (0.16 ± 0.0069 mg/ kg DM), Iron (194 ± 23.0 mg/kg DM), Cobalt (0.21 ± 0.0244 mg/kg DM) and Copper (4.94 ± 0.196 mg/kg DM) content compared to hay from the other two countries. UK hay samples had significantly less (p < 0.05) Selenium (0.07 ± 0.0084 mg/kg DM), whilst IRL hay samples were significantly (p < 0.05) higher in Chloride (0.9 ± 0.026mg/kg DM) compared to hay from the other two countries. IRL haylage samples were significantly (p < 0.05) higher in Phosphorus (0.26 ± 0.0102 %), Sulphur (0.17 ± 0.0052 %), Chloride (1.01 ± 0.0519 %), Calcium (0.54 ± 0.0257 %), Selenium (0.17 ± 0.0322 mg/kg DM) and Molybdenum (1.47 ± 0.137 mg/kg DM) compared to haylage from the UK. Main Limitations: Forage samples were obtained from professional yards and may not be reflective of forages fed by most horse owners. Information regarding soil type, species of grass, fertiliser treatment, harvest, or storage conditions were not included in this study. Conclusions: At a DM intake of 2% body weight, conserved forage as sampled in this study will be insufficient to meet Zinc, Iodine, and Copper NRC maintenance requirements, and Se intake will also be insufficient for horses fed the UK conserved forage. Many horses receive hay/haylage as the main component of their diet; this study highlights the need to consider forage analysis when making dietary recommendations.

Keywords: conserved forage, hay, haylage, minerals

Procedia PDF Downloads 185
171 To Study Small for Gestational Age as a Risk Factor for Thyroid Dysfunction

Authors: Shilpa Varghese, Adarsh Eregowda

Abstract:

Introduction: The normal development and maturation of the central nervous system is significantly influenced by thyroid hormones. Small for gestational age (SGA) babies have a distinct hormonal profile than kids born at an acceptable birth weight for gestational age, according to several studies (AGA). In SGA babies, thyroid size is larger when expressed as a percentage of body weight, indicating that low thyroid hormone levels throughout foetal life may be partially compensated for. Numerous investigations have found that compared to full-term and preterm AGA neonates, SGA babies exhibit considerably decreased thyroid plasma levels. According to our hypothesis, term and preterm SGA newborns have greater thyroid-stimulating hormone (TSH) concentrations than those that are normal for gestational age (AGA) and a higher incidence of thyroid dysfunction. Need for the study: Clinically diagnosed Assessment of term SGA babies confirming thyroid dysfunction unclear Requirement and importance of ft4 along with tsh and comparative values of ft4 in SGA babies as compared to AGA babies unclear. Inclusion criteria : SGA infants including preterm (<37 weeks of gestation) term (37-40 weeks) – comparing with preterm and term AGA infants. 3.76 7.66 0 2 4 6 8 10 12 AGA Babies SGA Babies Mean Mean TSH Comparison 2.73 1.52 0 0.5 1 1.5 2 2.5 3 3.5 4 AGA Babies SGA Babies Mean Mean FT4 Comparison Discussion : According to this study, neonates with SGA had considerably higher TSH levels than newborns with AGA. Our findings have been supported by results from earlier research. The TSH level range was established to 7.5 mU/L in the study by Bosch-Giménez et al, found greater TSH concentrations in SGA newborns. Thyroid hormone levels from newborns that are tiny for gestational age were found to be higher than AGA in our investigation. According to Franco et al., blood T4 concentrations are lower in both preterm and term SGA infants, while TSH concentrations are only noticeably greater in term SGA infants compared to AGA ones. According to our study analysis, the SGA group had considerably greater FT4 concentrations. Therefore, our findings are consistent with those of the two studies that SGA babies have a higher incidence of transient hypothyroidism and need close follow-up. Conclusions: A greater frequency of thyroid dysfunction and considerably higher TSH values within the normal range were seen in preterm and term SGA babies. The SGA babies who exhibit these characteristics should have ongoing endocrinologic testing and periodic TFTs.

Keywords: thyroid hormone, thyroid function tests, small for gestationl age, appropriate for gestational age

Procedia PDF Downloads 30
170 Modulation of Isoprenaline-Induced Myocardial Damage by Atorvastatin

Authors: Dalia Atallah, Lamiaa Ahmed, Hala Zaki, Mahmoud Khattab

Abstract:

Background: Isoprenaline (ISO) administration induces myocardial damage via oxidative stress and endothelial dysfunction. Atorvastatin (ATV) treatment improves both oxidative stress and endothelial dysfunction yet recent studies have reported a pro-oxidant effect upon ATV administration on both clinical and experimental studies. The present study was directed to investigate the effect of ATV pre-treatment and treatment on ISO-induced myocardial damage. Methods: Male rats were divided into five groups (n = 10). Rats were given ISO (5mg/kg/day, i.p.) for one week with or without ATV (10mg/kg/day, p.o.). ATV was given either as pre-treatment for one week before its co-administration with ISO for another week or as a treatment for two weeks at the end of the ISO administration. At the end of the experiment, the electrocardiographic examination was done and blood was isolated for the estimation of plasma creatine kinase MB (CK-MB) activity. Rats were then sacrificed and the whole ventricles were isolated for histological examination and the estimation of lipid peroxides as malondialdehyde (MDA) level, reduced glutathione (GSH) level, catalase activity, total nitrate-nitrite (NOx), as well as the estimation of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) protein expression. Results: ISO-induced myocardial damage showed a significant elevation in ST segment, an increase in CK-MB activity, as well as increased oxidative stress biomarkers. Also, ISO-treated rats showed a significant decrease in myocardial NOx level and eNOS as well as degeneration in the myocardium. ATV pre-treatment didn’t show any protection to ISO-treated rats. On the other hand, ATV treatment showed a significant decrease in both the elevated ST wave and CK-MB activity. Moreover, ATV Treatment succeeded to improve oxidative stress biomarkers, tissue NOx, and eNOS protein expression, as well as amelioration of the histological alterations. Conclusion: Pre-treatment with ATV failed to protect against ISO-induced damage. This might suggest a synergistic pro-oxidant effect upon administration of the pro-oxidant ISO along with ATV as demonstrated by the increased oxidative stress and endothelial dysfunction. On the other side, ATV treatment succeeded to significantly improve oxidative stress biomarkers, endothelial dysfunction and myocardial degeneration.

Keywords: atorvastatin, endothelial dysfunction, isoprenaline, oxidative stress

Procedia PDF Downloads 413
169 Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats

Authors: Kamsiah Jaarin, Yusof Kamisah, Faizah Othman Nurul Akmal Muhammad, Zakiah Jubri, Qodriyah Mohd Saad, Srijit Das

Abstract:

Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium.

Keywords: Nigella sativa, ICAM, VCAM, blood pressure, vascular reactivity

Procedia PDF Downloads 388
168 Longitudinal Profile of Antibody Response to SARS-CoV-2 in Patients with Covid-19 in a Setting from Sub–Saharan Africa: A Prospective Longitudinal Study

Authors: Teklay Gebrecherkos

Abstract:

Background: Serological testing for SARS-CoV-2 plays an important role in epidemiological studies, in aiding the diagnosis of COVID-19 and assess vaccine responses. Little is known about the dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. Methods: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune assays (LFIAs) and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. Results: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in the positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increase in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly from 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested within a median time of 11 (IQR: 9–15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6–11) vs. 15 (IQR: 13–21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibodies at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. Conclusions: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of serum assays before implementation. Factors associated with failure to seroconvert need further research.

Keywords: COVID-19, antibody, rapid diagnostic tests, ethiopia

Procedia PDF Downloads 40
167 Immune Modulation and Cytomegalovirus Reactivation in Sepsis-Induced Immunosuppression

Authors: G. Lambe, D. Mansukhani, A. Shetty, S. Khodaiji, C. Rodrigues, F. Kapadia

Abstract:

Introduction: Sepsis is known to cause impairment of both innate and adaptive immunity and involves an early uncontrolled inflammatory response, followed by a protracting immunosuppression phase, which includes decreased expression of cell receptors, T cell anergy and exhaustion, impaired cytokine production, which may cause high risk for secondary infections due to reduced response to antigens. Although human cytomegalovirus (CMV) is widely recognized as a serious viral pathogen in sepsis and immunocompromised patients, the incidence of CMV reactivation in patients with sepsis lacking strong evidence of immunosuppression is not well defined. Therefore, it is important to determine an association between CMV reactivation and sepsis-induced immunosuppression. Aim: To determine the association between incidence of CMV reactivation and immune modulation in sepsis-induced immunosuppression with time. Material and Methods: Ten CMV-seropositive adult patients with severe sepsis were included in this study. Blood samples were collected on Day 0, and further weekly up to 21 days. CMV load was quantified by real-time PCR using plasma. The expression of immunosuppression markers, namely, HLA-DR, PD-1, and regulatory T cells, were determined by flow cytometry using whole blood. Results: At Day 0, no CMV reactivation was observed in 6/10 patients. In these patients, the median length for reactivation was 14 days (range, 7-14 days). The remaining four patients, at Day 0, had a mean viral load of 1802+2599 copies/ml, which increased with time. At Day 21, the mean viral load for all 10 patients was 60949+179700 copies/ml, indicating that viremia increased with the length of stay in the hospital. HLA-DR expression on monocytes significantly increased from Day 0 to Day 7 (p = 0.001), following which no significant change was observed until Day 21, for all patients except 3. In these three patients, HLA-DR expression on monocytes showed a decrease at elevated viral load (>5000 copies/ml), indicating immune suppression. However, the other markers, PD-1 and regulatory T cells, did not show any significant changes. Conclusion: These preliminary findings suggest that CMV reactivation can occur in patients with severe sepsis. In fact, the viral load continued to increase with the length of stay in the hospital. Immune suppression, indicated by decreased expression of HLA-DR alone, was observed in three patients with elevated viral load.

Keywords: CMV reactivation, immune suppression, sepsis immune modulation, CMV viral load

Procedia PDF Downloads 117
166 The Understanding of Biochemical and Molecular Analysis of Diabetic Rats Treated with Andrographis paniculata and Erythrina indica Methanol Extract

Authors: Chakrapani Pullagummi, Arun Jyothi Bheemagani, B. Chandra Sekhar Singh, Prem Kumar, A. Roja Rani

Abstract:

Diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion and its action. The objective of present study was alloxan induced diabetes in S.D (Sprague Dawley) rats, treated with leaf extract of Andrographis paniculata and bark extract of Erythrina indica. Plant extract treated rats were analyzed biochemically and molecularly. on normal and diabetic rats. The changes in MDA (lipid peroxidation) and glucose (by GOD method) levels in blood of both normal and diabetic rat were analyzed. Diabetes induced rats were treated with methanolic extracts of Andrographis paniculata leaf and Erythrina indica bark which are of medicinal importance. Later after inducing diabetes the rats were treated with medicinal plant extracts, Andrographis paniculata leaf and Erythrina indica bark which are well known for their anti diabetic and antioxidative property in order to control the glucose and MDA levels. The blood plasma of diabetic and normal rats was analyzed for the levels of MDA (lipid peroxidation) and glucose levels. Results of this study suggested that the Andrographis paniculata leaf and Erythrina indica can be used as a potential natural antidiabetic agent for treating and postponing the appearance of complications that arise due to Diabetes. Molecular study deals with the analysis of binding mechanism of 2 selected natural compounds from Andrographis and Erythrina extracts against the novel target for type T2D namely PPAR-γ compared with Rosiglitazone (standard compound). The results revealed that most of the selected herbal lead compounds were effective targets against the receptors. These compounds showed favorable interactions with the amino acid residues thereby substantiating their proven efficacy as anti-diabetic compounds.

Keywords: andrographis paniculata, erythrina indica, alloxan, lipid peroxidation, blood glucose level, PPAR-γ

Procedia PDF Downloads 447
165 Atomic Layer Deposition Of Metal Oxide Inverse Opals: A Promising Strategy For Photocatalytic Applications

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Tamás Igricz, Zoltán Erdélyi, , Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a promising class of photocatalysts with a unique hierarchical structure. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. In this study, we report the synthesis of TiO₂, ZnO, and Al₂O₃ inverse opal and their composites photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al₂O₃ can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production.

Keywords: ALD, metal oxide inverse opals, photocatalysis, composites

Procedia PDF Downloads 36
164 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures

Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto

Abstract:

HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.

Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition

Procedia PDF Downloads 431
163 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru

Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve

Abstract:

The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.

Keywords: mining companies, campesino community, water, socio-environmental conflict

Procedia PDF Downloads 166
162 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 99
161 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 100
160 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions

Authors: Violina Angelova, Galina Pevicharova

Abstract:

A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).

Keywords: heavy metals, polluted soils, sweet potatoes, uptake

Procedia PDF Downloads 155
159 Geochemical Study of Claystone from Nunukan Island, North Kalimantan of Indonesia

Authors: Mutiara Effendi

Abstract:

Nunukan Island is located on North Kalimantan of Indonesia. The region is one of Indonesia’s cross-border with Malaysia. In conjunction with its strategic geographic location, its potential as the new oil and gas resources has brought many researchers to do their studies here. The research area consists of claystone which criss-crossed with quarts sandstone. There are also rocks claystone-grained which are the weathering product of basaltic volcanic rocks. In some places, there are argillic clays which are the hydrothermal-altered product of Sei Apok ancient volcano. Geochemical study was established to learn the origin of the claystones, whether it came from weathering, hydrothermal alteration, or both. The samples used in this research are fresh rock, weathering rocks, hydrothermally-altered rock, and claystones. Chemical compositions of each sample were determined and their relations was studied. The studies encompass major and minor elements analysis using X-Ray Fluoresence (XRF) method and trace elements analysis, specifically rare earth elements, using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) method. The results were plotted on certain graphics to learn about the trend and the relations of each sample and element. Any changes in chemical compositions, like increase and decrease of elements or species, was analysed to learn about geological phenomenon that happens during the formation of claystones. The result of this study shows that claystones of Nunukan Island have relation with volcanic rocks of its surrounding area. Its chemical composition profile corresponds to weathering product of volcanic rocks rather than hydrothermally-altered product. The general profile also resembles claystone minerals of illite or montmorillonite, especially in the existence of aluminum, iron, potassium, and magnesium. Both minerals are formed in basic condition and commonly happen to shales. It is consistent with the fact that claystone was found mixing with shales and silt to clay grained mudstones in field exploration. Even though the general profile is much alike, the amount of each elements is not precisely the same as theoretically claystone mineral compositions because the mineral have not formed completely yet.

Keywords: claystone, geochemistry, ICP-MS, XRF

Procedia PDF Downloads 202
158 Effects of Intracerebroventricular Injection of Ghrelin and Aerobic Exercise on Passive Avoidance Memory and Anxiety in Adult Male Wistar Rats

Authors: Mohaya Farzin, Parvin Babaei, Mohammad Rostampour

Abstract:

Ghrelin plays a considerable role in important neurological effects related to food intake and energy homeostasis. As was found, regular physical activity may make available significant improvements to cognitive functions in various behavioral situations. Anxiety is one of the main concerns of the modern world, affecting millions of individuals’ health. There are contradictory results regarding ghrelin's effects on anxiety-like behavior, and the plasma level of this peptide is increased during physical activity. Here we aimed to evaluate the coincident effects of exogenous ghrelin and aerobic exercise on anxiety-like behavior and passive avoidance memory in Wistar rats. Forty-five male Wistar rats (250 ± 20 g) were divided into 9 groups (n=5) and received intra-hippocampal injections of 3.0 nmol ghrelin and performed aerobic exercise training for 8 weeks. Control groups received the same volume of saline and diazepam as negative and positive control groups, respectively. Learning and memory were estimated using a shuttle box apparatus, and anxiety-like behavior was recorded by an elevated plus-maze test (EPM). Data were analyzed by ANOVA test, and p<0.05 was considered significant. Our findings showed that the combined effect of ghrelin and aerobic exercise improves the acquisition, consolidation, and retrieval of passive avoidance memory in Wistar rats. Furthermore, it is supposed that the ghrelin receiving group spent less time in open arms and fewer open arms entries compared with the control group (p<0.05). However, exercising Wistar rats spent more time in the open arm zone in comparison with the control group (p<0.05). The exercise + Ghrelin administration established reduced anxiety (p<0.05). The results of this study demonstrate that aerobic exercise contributes to an increase in the endogenous production of ghrelin, and physical activity alleviates anxiety-related behaviors induced by intra-hippocampal injection of ghrelin. In general, exercise and ghrelin can reduce anxiety and improve memory.

Keywords: anxiety, ghrelin, aerobic exercise, learning, passive avoidance memory

Procedia PDF Downloads 91
157 Lung Function, Urinary Heavy Metals And ITS Other Influencing Factors Among Community In Klang Valley

Authors: Ammar Amsyar Abdul Haddi, Mohd Hasni Jaafar

Abstract:

Heavy metals are elements naturally presented in the environment that can cause adverse effect to health. But not much literature was found on effects toward lung function, where impairment of lung function may lead to various lung diseases. The objective of the study is to explore the lung function impairment, urinary heavy metal level, and its associated factors among the community in Klang valley, Malaysia. Sampling was done in Kuala Lumpur suburb public and housing areas during community events throughout March 2019 till October 2019. respondents who gave the consent were given a questionnaire to answer and was proceeded with a lung function test. Urine samples were obtained at the end of the session and sent for Inductively coupled plasma mass spectrometry (ICP-MS) analysis for heavy metal cadmium (Cd) and lead (Pb) concentration. A total of 200 samples were analysed, and of all, 52% of respondents were male, Age ranging from 18 years old to 74 years old with a mean age of 38.44. Urinary samples show that 12% of the respondent (n=22) has Cd level above than average, and 1.5 % of the respondent (n=3) has urinary Pb at an above normal level. Bivariate analysis show that there was a positive correlation between urinary Cd and urinary Pb (r= 0.309; p<0.001). Furthermore, there was a negative correlation between urinary Cd level and full vital capacity (FVC) (r=-0.202, p=0.004), Force expiratory volume at 1 second (FEV1) (r = -0.225, p=0.001), and also with Force expiratory flow between 25-75% FVC (FEF25%-75%) (r= -0.187, p=0.008). however, urinary Pb did not show any association with FVC, FEV1, FEV1/FVC, or FEF25%-75%. Multiple linear regression analysis shows that urinary Cd remained significant and negatively affect FVC% (p=0.025) and FEV1% (p=0.004) achieved from the predicted value. On top of that, other factors such as education level (p=0.013) and duration of smoking(p=0.003) may influencing both urinary Cd and performance in lung function as well, suggesting Cd as a potential mediating factor between smoking and impairment of lung function. however, there was no interaction detected between heavy metal or other influencing factor in this study. In short, there is a negative linear relationship detected between urinary Cd and lung function, and urinary Cd is likely to affects lung function in a restrictive pattern. Since smoking is also an influencing factor for urinary Cd and lung function impairment, it is highly suggested that smokers should be screened for lung function and urinary Cd level in the future for early disease prevention.

Keywords: lung function, heavy metals, community

Procedia PDF Downloads 124
156 Phytochemicals Quatification, Trace Metal Accumulation Pattern and Contamination Risk Assessment of Different Variety of Tomatoes Cultivated on Municipal Waste Sludge Treated Soil

Authors: Mathodzi Nditsheni, Olawole Emmanuel Aina, Joshua Oluwole Olowoyo

Abstract:

The ever-increasing world population is putting extreme pressure on the already limited agricultural resources for food production. Different soil enhancers were introduced by famers to meet the need of the ever-increasing population demand for food. One of the soil enhancers is the municipal waste sludge. This research investigated the differences in the concentrations of trace metals and levels of phytochemicals in four different tomato varieties cultivated on soil treated with municipal waste sludge in Pretoria, South Africa. Fruits were harvested at maturity and analyzed for trace metals and phytochemicals contents using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and a High-Performance Liquid Chromatography (HPLC) respectively. A one-way analysis of variance (ANOVA) was used to determine the differences in the concentrations of trace metals and phytochemical from different tomato varieties were significant. From the study, Rodade tomato bioaccumulated the highest concentrations of Mn, Cr, Cu and Ni, Roma bioaccumulated the highest concentrations of, Cd, Fe and Pb while Heinz bioaccumulated the highest concentrations of As and Zn. Cherry tomato on the other hand, recorded the lowest concentrations for most metals, Cd, Cr, Cu, Mn, Ni, Pb and Zn. The results of the study further showed that phenolic and flavonoids content were higher in the Solanum lycopersicum fruit grown in soils treated with municipal waste sludge. The study also showed that there was an inverse relationship between the levels of trace metals and phytochemicals. The calculated contamination factor values of trace metals like Cr, Cu, Pb and Zn were above the safe value of 1 which indicated that the tomato fruits may be unsafe for human consumption. However, the contamination factor values for the remaining trace metals were well below the safe value of 1. From the results obtained either for the control group or the treatment, the tomato varieties used in the study, bioaccumulated the toxic trace metals in their fruits and some of the values obtained were higher than the acceptable limit, which may then imply that the varieties of tomato used in this study bio accumulated the toxic trace metals from the soil, hence care should be taken when these tomato varieties are either cultivated or harvested from polluted areas

Keywords: trace metals, flavonoids, phenolics, waste sludge, tomato, contamination factors

Procedia PDF Downloads 43