Search results for: particle velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3031

Search results for: particle velocity

451 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles

Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban

Abstract:

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272

Procedia PDF Downloads 299
450 Heavy Oil Recovery with Chemical Viscosity-Reduction: An Innovative Low-Carbon and Low-Cost Technology

Authors: Lin Meng, Xi Lu, Haibo Wang, Yong Song, Lili Cao, Wenfang Song, Yong Hu

Abstract:

China has abundant heavy oil resources, and thermal recovery is the main recovery method for heavy oil reservoirs. However, high energy consumption, high carbon emission and high production costs make heavy oil thermal recovery unsustainable. It is urgent to explore a replacement for developing technology. A low Carbon and cost technology of heavy oil recovery, chemical viscosity-reduction in layer (CVRL), is developed by the petroleum exploration and development research institute of Sinopec via investigated mechanisms, synthesized products, and improved oil production technologies, as follows: (1) Proposed a cascade viscous mechanism of heavy oil. Asphaltene and resin grow from free molecules to associative structures further to bulk aggregations by π - π stacking and hydrogen bonding, which causes the high viscosity of heavy oil. (2) Aimed at breaking the π - π stacking and hydrogen bond of heavy oil, the copolymer of N-(3,4-dihydroxyphenethyl) acryl amide and 2-Acrylamido-2-methylpropane sulfonic acid was synthesized as a viscosity reducer. It achieves a viscosity reduction rate of>80% without shearing for heavy oil (viscosity < 50000 mPa‧s), of which fluidity is evidently improved in the layer. (3) Synthesized hydroxymethyl acrylamide-maleic acid-decanol ternary copolymer self-assembly plugging agent. The particle size is 0.1 μm-2 mm adjustable, and the volume is 10-500 times controllable, which can achieve the efficient transportation of viscosity reducer to enriched oil areas. CVRL has applied 400 wells until now, increasing oil production by 470000 tons, saving 81000 tons of standard coal, reducing CO2 emissions by 174000 tons, and reducing production costs by 60%. It promotes the transformation of heavy oil towards low energy consumption, low carbon emissions, and low-cost development.

Keywords: heavy oil, chemical viscosity-reduction, low carbon, viscosity reducer, plugging agent

Procedia PDF Downloads 36
449 Morphology and Risk Factors for Blunt Aortic Trauma in Car Accidents: An Autopsy Study

Authors: Ticijana Prijon, Branko Ermenc

Abstract:

Background: Blunt aortic trauma (BAT) includes various morphological changes that occur during deceleration, acceleration and/or body compression in traffic accidents. The various forms of BAT, from limited laceration of the intima to complete transection of the aorta, depends on the force acting on the vessel wall and the tolerance of the aorta to injury. The force depends on the change in velocity, the dynamics of the accident and of the seating position in the car. Tolerance to aortic injury depends on the anatomy, histological structure and pathomorphological alterations due to aging or disease of the aortic wall.An overview of the literature and medical documentation reveals that different terms are used to describe certain forms of BAT, which can lead to misinterpretation of findings or diagnoses. We therefore, propose a classification that would enable uniform systematic screening of all forms of BAT. We have classified BAT into three morphologycal types: TYPE I (intramural), TYPE II (transmural) and TYPE III (multiple) aortic ruptures with appropriate subtypes. Methods: All car accident casualties examined at the Institute of Forensic Medicine from 2001 to 2009 were included in this retrospective study. Autopsy reports were used to determine the occurrence of each morphological type of BAT in deceased drivers, front seat passengers and other passengers in cars and to define the morphology of BAT in relation to the accident dynamics and the age of the fatalities. Results: A total of 391 fatalities in car accidents were included in the study. TYPE I, TYPE II and TYPE III BAT were observed in 10,9%, 55,6% and 33,5%, respectively. The incidence of BAT in drivers, front seat and other passengers was 36,7%, 43,1% and 28,6%, respectively. In frontal collisions, the incidence of BAT was 32,7%, in lateral collisions 54,2%, and in other traffic accidents 29,3%. The average age of fatalities with BAT was 42,8 years and of those without BAT 39,1 years. Conclusion: Identification and early recognition of the risk factors of BAT following a traffic accident is crucial for successful treatment of patients with BAT. Front seat passengers over 50 years of age who have been injured in a lateral collision are the most at risk of BAT.

Keywords: aorta, blunt trauma, car accidents, morphology, risk factors

Procedia PDF Downloads 478
448 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 267
447 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 56
446 Development of Carrot Puree with Algae for the Elderly with Dysphagia

Authors: Obafemi Akinwotu, Aylin Tas, Tony Taylor, Bukola Onarinde

Abstract:

The study was conducted to explore the methods and tools to improve texture and preserve the total phenolic and antioxidant compounds of dysphagia foods produced from carrot-based puree with decolourised Chlorella algae. Textural properties (Texture profile analysis [TPA]; the International Dysphagia Diet Standardization Initiative, particle size test [PST]) and rheological properties (viscosity and viscoelastic properties) of carrot puree defrosted by different treatments (microwave, steamer, oven), were characterised using hydrocolloids (guar gum, k. carrageenan, and xanthan gum), and the results were compared to a level 4 commercial sample. DPPH (2,2-diphenyl-1-picrylhydrazyl) antiradical scavenging radicals and total phenolic contents were employed to evaluate the total phenolics, and radical scavenging properties of defrosted carrot puree sonicated carrot puree (20 Hz, 30 min, 60 oC), and vacuum-dried carrot powder with the addition of algae. Results show that the viscosity, viscoelasticity test, TPA, and PST of the commercial sample were comparable to those of guar gum and xanthan gum containing puree, suggesting that they could be used as dysphagia diets. There was no noticeable decolourisation of the Chlorella pigment. Additionally, the use of the microwave, stemmer, and oven for defrosting treatment had an impact on the textural characteristics of the moulded samples upon cooling and also contributed to the reduction in the total phenolic and antioxidant properties of the samples. Sonication treatments of algae exposure reduced the cloudiness of the green pigment and lightened the colour of the samples containing algae, and they also reduced the drying time from 2.5 to 1.5 hours during the preliminary work. The low-temperature vacuum- and freeze-dried samples increased the concentration of the powder and resulted in an increase in the total phenolic content of the dry samples. The dried products may therefore have the potential to become more nutrient-dense to benefit the health of individuals with dysphagia.

Keywords: dysphagia, elderly, hydrocolloids, carrot puree

Procedia PDF Downloads 31
445 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 124
444 System Identification of Building Structures with Continuous Modeling

Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab

Abstract:

This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.

Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction

Procedia PDF Downloads 203
443 Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy

Authors: Pardeep, Yugandhar Bitla, A. K. Patra, G. A. Basheed

Abstract:

The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy.

Keywords: skyrmions, magnetic susceptibility, metastable phases, topological phases

Procedia PDF Downloads 72
442 Rate of Force Development, Net Impulse and Modified Reactive Strength as Predictors of Volleyball Spike Jump Height among Young Elite Players

Authors: Javad Sarvestan, Zdenek Svoboda

Abstract:

Force-time (F-T) curvature characteristics are globally referenced as the main indicators of athletic jump performance. Nevertheless, to the best of authors’ knowledge, no investigation tried to deeply study the relationship between F-T curve variables and real-game jump performance among elite volleyball players. To this end, this study was designated to investigate the association between F-T curve variables, including movement timings, force, velocity, power, rate of force development (RFD), modified reactive strength index (RSImod), and net impulse with spike jump height during real-game circumstances. Twelve young elite volleyball players performed 3 countermovement jump (CMJ) and 3 spike jump in real-game circumstances with 1-minute rest intervals to prevent fatigue. Shapiro-Wilk statistical test illustrated the normality of data distribution, and Pearson’s product correlation test portrayed a significant correlation between CMJ height and peak RFD (0.85), average RFD (r=0.81), RSImod (r=0.88) and concentric net impulse (r=0.98), and also significant correlation between spike jump height and peak RFD (0.73), average RFD (r=0.80), RSImod (r=0.62) and concentric net impulse (r=0.71). Multiple regression analysis also reported that these factors have a strong contribution in predicting of CMJ (98%) and spike jump (77%) heights. Outcomes of this study confirm that the RFD, concentric net impulse, and RSImod values could precisely monitor and track the volleyball attackers’ explosive strength, muscular stretch-shortening cycle function efficiency, and ultimate spike jump height. To this effect, volleyball coaches and trainers are advised to have an in-depth focus on their athletes’ progression or the impacts of strength trainings by observing and chasing the F-T curve variables such as RFD, net impulse, and RSImod.

Keywords: net impulse, reactive strength index, rate of force development, stretch-shortening cycle

Procedia PDF Downloads 108
441 Investigating the Dynamic Plantar Pressure Distribution in Individuals with Multiple Sclerosis

Authors: Hilal Keklicek, Baris Cetin, Yeliz Salci, Ayla Fil, Umut Altinkaynak, Kadriye Armutlu

Abstract:

Objectives and Goals: Spasticity is a common symptom characterized with a velocity dependent increase in tonic stretch reflexes (muscle tone) in patient with multiple sclerosis (MS). Hypertonic muscles affect the normal plantigrade contact by disturbing accommodation of foot to the ground while walking. It is important to know the differences between healthy and neurologic foot features for management of spasticity related deformities and/or determination of rehabilitation purposes and contents. This study was planned with the aim of investigating the dynamic plantar pressure distribution in individuals with MS and determining the differences between healthy individuals (HI). Methods: Fifty-five individuals with MS (108 foot with spasticity according to Modified Ashworth Scale) and 20 HI (40 foot) were the participants of the study. The dynamic pedobarograph was utilized for evaluation of dynamic loading parameters. Participants were informed to walk at their self-selected speed for seven times to eliminate learning effect. The parameters were divided into 2 categories including; maximum loading pressure (N/cm2) and time of maximum pressure (ms) were collected from heal medial, heal lateral, mid foot, heads of first, second, third, fourth and fifth metatarsal bones. Results: There were differences between the groups in maximum loading pressure of heal medial (p < .001), heal lateral (p < .001), midfoot (p=.041) and 5th metatarsal areas (p=.036). Also, there were differences between the groups the time of maximum pressure of all metatarsal areas, midfoot, heal medial and heal lateral (p < .001) in favor of HI. Conclusions: The study provided basic data about foot pressure distribution in individuals with MS. Results of the study primarily showed that spasticity of lower extremity muscle disrupted the posteromedial foot loading. Secondarily, according to the study result, spasticity lead to inappropriate timing during load transfer from hind foot to forefoot.

Keywords: multiple sclerosis, plantar pressure distribution, gait, norm values

Procedia PDF Downloads 291
440 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 370
439 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control

Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin

Abstract:

The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.

Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics

Procedia PDF Downloads 40
438 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area

Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma

Abstract:

The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.

Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty

Procedia PDF Downloads 54
437 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing

Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa

Abstract:

CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.

Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology

Procedia PDF Downloads 68
436 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 335
435 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool

Authors: Yongrong Li, Ralf Domroes

Abstract:

Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.

Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining

Procedia PDF Downloads 167
434 Green Extraction Processes for the Recovery of Polyphenols from Solid Wastes of Olive Oil Industry

Authors: Theodora-Venetia Missirli, Konstantina Kyriakopoulou, Magdalini Krokida

Abstract:

Olive mill solid waste is an olive oil mill industry by-product with high phenolic, lipid and organic acid concentrations that can be used as a low cost source of natural antioxidants. In this study, extracts of Olea europaea (olive tree) solid olive mill waste (SOMW) were evaluated in terms of their antiradical activity and total phenolic compounds concentrations, such as oleuropein, hydroxytyrosol etc. SOMW samples were subjected to drying prior to extraction as a pretreatment step. Two drying processes, accelerated solar drying (ASD) and air-drying (AD) (at 35, 50, 70°C constant air velocity of 1 m/s), were applied. Subsequently, three different extraction methods were employed to recover extracts from untreated and dried SOMW samples. The methods include the green Microwave Assisted (MAE) and Ultrasound Assisted Extraction (UAE) and the conventional Soxhlet extraction (SE), using water and methanol as solvents. The efficiency and selectivity of the processes were evaluated in terms of extraction yield. The antioxidant activity (AAR) and the total phenolic content (TPC) of the extracts were evaluated using the DPPH assay and the Folin-Ciocalteu method, respectively. The results showed that bioactive content was significantly affected by the extraction technique and the solvent. Specifically, untreated SOMW samples showed higher performance in the yield for all solvents and higher antioxidant potential and phenolic content in the case of water. UAE extraction method showed greater extraction yields than the MAE method for both untreated and dried leaves regardless of the solvent used. The use of ultrasound and microwave assisted extraction in combination with industrially applied drying methods, such as air and solar drying, was feasible and effective for the recovery of bioactive compounds.

Keywords: antioxidant potential, drying treatment, olive mill pomace, microwave assisted extraction, ultrasound assisted extraction

Procedia PDF Downloads 268
433 Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast

Authors: Scott Nielsen, Luca Longanesi, Chris Chuck

Abstract:

Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future.

Keywords: palm oil substitute, metschnikowia pulcherrima, cell disruption, cell lysis

Procedia PDF Downloads 158
432 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes

Authors: Sertac Arslan, Sezer Kefeli

Abstract:

In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (U

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows

Procedia PDF Downloads 141
431 Estimating Precipitable Water Vapour Using the Global Positioning System and Radio Occultation over Ethiopian Regions

Authors: Asmamaw Yehun, Tsegaye Gogie, Martin Vermeer, Addisu Hunegnaw

Abstract:

The Global Positioning System (GPS) is a space-based radio positioning system, which is capable of providing continuous position, velocity, and time information to users anywhere on or near the surface of the Earth. The main objective of this work was to estimate the integrated precipitable water vapour (IPWV) using ground GPS and Low Earth Orbit (LEO) Radio Occultation (RO) to study spatial-temporal variability. For LEO-GPS RO, we used Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) datasets. We estimated the daily and monthly mean of IPWV using six selected ground-based GPS stations over a period of range from 2012 to 2016 (i.e. five-years period). The main perspective for selecting the range period from 2012 to 2016 is that, continuous data were available during these periods at all Ethiopian GPS stations. We studied temporal, seasonal, diurnal, and vertical variations of precipitable water vapour using GPS observables extracted from the precise geodetic GAMIT-GLOBK software package. Finally, we determined the cross-correlation of our GPS-derived IPWV values with those of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Interim reanalysis and of the second generation National Oceanic and Atmospheric Administration (NOAA) model ensemble Forecast System Reforecast (GEFS/R) for validation and static comparison. There are higher values of the IPWV range from 30 to 37.5 millimetres (mm) in Gambela and Southern Regions of Ethiopia. Some parts of Tigray, Amhara, and Oromia regions had low IPWV ranges from 8.62 to 15.27 mm. The correlation coefficient between GPS-derived IPWV with ECMWF and GEFS/R exceeds 90%. We conclude that there are highly temporal, seasonal, diurnal, and vertical variations of precipitable water vapour in the study area.

Keywords: GNSS, radio occultation, atmosphere, precipitable water vapour

Procedia PDF Downloads 50
430 Desulfurization of Crude Oil Using Bacteria

Authors: Namratha Pai, K. Vasantharaj, K. Haribabu

Abstract:

Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton.

Keywords: alicyclobacillus acidoterrestrius, potato dextrose agar, fluidized bed reactor principle, reaction time for bacteria, compatibility with crude oil

Procedia PDF Downloads 287
429 Simulation of Turbulent Flow in Channel Using Generalized Hydrodynamic Equations

Authors: Alex Fedoseyev

Abstract:

This study explores Generalized Hydrodynamic Equations (GHE) for the simulation of turbulent flows. The GHE was derived from the Generalized Boltzmann Equation (GBE) by Alexeev (1994). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considered particles of finite dimensions, Alexeev (1994). The GHE has new terms, temporal and spatial fluctuations compared to the Navier-Stokes equations (NSE). These new terms have a timescale multiplier τ, and the GHE becomes the NSE when τ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The turbulence phenomenon is not well understood and is not described by NSE. An additional one or two equations are required for the turbulence model, which may have to be tuned for specific problems. We show that, in the case of the GHE, no additional turbulence model is needed, and the turbulent velocity profile is obtained from the GHE. The 2D turbulent channel and circular pipe flows were investigated using a numerical solution of the GHE for several cases. The solutions are compared with the experimental data in the circular pipes and 2D channels by Nicuradse (1932, Prandtl Lab), Hussain and Reynolds (1975), Wei and Willmarth (1989), Van Doorne (2007), theory by Wosnik, Castillo and George (2000), and the relevant experiments on Superpipe setup at Princeton, data by Zagarola (1996) and Zagarola and Smits (1998), the Reynolds number is from Re=7200 to Re=960000. The numerical solution data compared well with the experimental data, as well as with the approximate analytical solution for turbulent flow in channel Fedoseyev (2023). The obtained results confirm that the Alexeev generalized hydrodynamic theory (GHE) is in good agreement with the experiments for turbulent flows. The proposed approach is limited to 2D and 3D axisymmetric channel geometries. Further work will extend this approach by including channels with square and rectangular cross-sections.

Keywords: comparison with experimental data. generalized hydrodynamic equations, numerical solution, turbulent boundary layer, turbulent flow in channel

Procedia PDF Downloads 26
428 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 241
427 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 55
426 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals

Authors: Ibrahim Khan, Waqas Khalid

Abstract:

The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.

Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning

Procedia PDF Downloads 21
425 Prediction of the Dark Matter Distribution and Fraction in Individual Galaxies Based Solely on Their Rotation Curves

Authors: Ramzi Suleiman

Abstract:

Recently, the author proposed an observationally-based relativity theory termed information relativity theory (IRT). The theory is simple and is based only on basic principles, with no prior axioms and no free parameters. For the case of a body of mass in uniform rectilinear motion relative to an observer, the theory transformations uncovered a matter-dark matter duality, which prescribes that the sum of the densities of the body's baryonic matter and dark matter, as measured by the observer, is equal to the body's matter density at rest. It was shown that the theory transformations were successful in predicting several important phenomena in small particle physics, quantum physics, and cosmology. This paper extends the theory transformations to the cases of rotating disks and spheres. The resulting transformations for a rotating disk are utilized to derive predictions of the radial distributions of matter and dark matter densities in rotationally supported galaxies based solely on their observed rotation curves. It is also shown that for galaxies with flattening curves, good approximations of the radial distributions of matter and dark matter and of the dark matter fraction could be obtained from one measurable scale radius. Test of the model on five galaxies, chosen randomly from the SPARC database, yielded impressive predictions. The rotation curves of all the investigated galaxies emerged as accurate traces of the predicted radial density distributions of their dark matter. This striking result raises an intriguing physical explanation of gravity in galaxies, according to which it is the proximal drag of the stars and gas in the galaxy by its rotating dark matter web. We conclude by alluding briefly to the application of the proposed model to stellar systems and black holes. This study also hints at the potential of the discovered matter-dark matter duality in fixing the standard model of elementary particles in a natural manner without the need for hypothesizing about supersymmetric particles.

Keywords: dark matter, galaxies rotation curves, SPARC, rotating disk

Procedia PDF Downloads 38
424 Osteoprotegerin and Osteoprotegerin/TRAIL Ratio are Associated with Cardiovascular Dysfunction and Mortality among Patients with Renal Failure

Authors: Marek Kuźniewski, Magdalena B. Kaziuk , Danuta Fedak, Paulina Dumnicka, Ewa Stępień, Beata Kuśnierz-Cabala, Władysław Sułowicz

Abstract:

Background: The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. Methods: OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CaSc) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentration. Cardiovascular and overall mortality data were collected during a 7-years follow-up. Results: OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Conclusions: Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality.

Keywords: osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, receptor activator of nuclear factor kappa-B ligand, hemodialysis, chronic kidney disease, cardiovascular disease

Procedia PDF Downloads 314
423 Numerical Simulation of Production of Microspheres from Polymer Emulsion in Microfluidic Device toward Using in Drug Delivery Systems

Authors: Nizar Jawad Hadi, Sajad Abd Alabbas

Abstract:

Because of their ability to encapsulate and release drugs in a controlled manner, microspheres fabricated from polymer emulsions using microfluidic devices have shown promise for drug delivery applications. In this study, the effects of velocity, density, viscosity, and surface tension, as well as channel diameter, on microsphere generation were investigated using Fluent Ansys software. The software was programmed with the physical properties of the polymer emulsion such as density, viscosity and surface tension. Simulation will then be performed to predict fluid flow and microsphere production and improve the design of drug delivery applications based on changes in these parameters. The effects of capillary and Weber numbers are also studied. The results of the study showed that the size of the microspheres can be controlled by adjusting the speed and diameter of the channel. Narrower microspheres resulted from narrower channel widths and higher flow rates, which could improve drug delivery efficiency, while smaller microspheres resulted from lower interfacial surface tension. The viscosity and density of the polymer emulsion significantly affected the size of the microspheres, ith higher viscosities and densities producing smaller microspheres. The loading and drug release properties of the microspheres created with the microfluidic technique were also predicted. The results showed that the microspheres can efficiently encapsulate drugs and release them in a controlled manner over a period of time. This is due to the high surface area to volume ratio of the microspheres, which allows for efficient drug diffusion. The ability to tune the manufacturing process using factors such as speed, density, viscosity, channel diameter, and surface tension offers a potential opportunity to design drug delivery systems with greater efficiency and fewer side effects.

Keywords: polymer emulsion, microspheres, numerical simulation, microfluidic device

Procedia PDF Downloads 35
422 Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System

Authors: Elena Vinogradova, Aleksei Pleshakov, Aleksei Yakovlev

Abstract:

During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle.

Keywords: optimal angle, optimization, supersonic air intake, total pressure recovery coefficient

Procedia PDF Downloads 202