Search results for: outlier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 57

Search results for: outlier

27 Comparison Between a Droplet Digital PCR and Real Time PCR Method in Quantification of HBV DNA

Authors: Surangrat Srisurapanon, Chatchawal Wongjitrat, Navin Horthongkham, Ruengpung Sutthent

Abstract:

HBV infection causes a potential serious public health problem. The ability to detect the HBV DNA concentration is of the importance and improved continuously. By using quantitative Polymerase Chain Reaction (qPCR), several factors in standardized; source of material, calibration standard curve and PCR efficiency are inconsistent. Digital PCR (dPCR) is an alternative PCR-based technique for absolute quantification using Poisson's statistics without requiring a standard curve. Therefore, the aim of this study is to compare the data set of HBV DNA generated between dPCR and qPCR methods. All samples were quantified by Abbott’s real time PCR and 54 samples with 2 -6 log10 HBV DNA were selected for comparison with dPCR. Of these 54 samples, there were two outlier samples defined as negative by dPCR. Of these two, samples were defined as negative by dPCR, whereas 52 samples were positive by both the tests. The difference between the two assays was less than 0.25 log IU/mL in 24/52 samples (46%) of paired samples; less than 0.5 log IU/mL in 46/52 samples (88%) and less than 1 log in 50/52 samples (96%). The correlation coefficient was r=0.788 and P-value <0.0001. Comparison to qPCR, data generated by dPCR tend to be the overestimation in the sample with low HBV DNA concentration and underestimated in the sample with high viral load. The variation in DNA by dPCR measurement might be due to the pre-amplification bias, template. Moreover, a minor drawback of dPCR is the large quantity of DNA had to be used when compare to the qPCR. Since the technology is relatively new, the limitations of this assay will be improved.

Keywords: hepatitis B virus, real time PCR, digital PCR, DNA quantification

Procedia PDF Downloads 443
26 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF

Procedia PDF Downloads 120
25 Battery Grading Algorithm in 2nd-Life Repurposing LI-Ion Battery System

Authors: Ya L. V., Benjamin Ong Wei Lin, Wanli Niu, Benjamin Seah Chin Tat

Abstract:

This article introduces a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as an energy storage system (ESS). Most of the 2nd-life retired battery systems in the market have module/pack-level state-of-health (SOH) indicator, which is utilized for guiding appropriate depth-of-discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end-of-life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.

Keywords: battery grading algorithm, 2nd-life repurposing battery system, semi-analytic methodology, reliability and cyclability

Procedia PDF Downloads 164
24 Understanding Tourism Innovation through Fuzzy Measures

Authors: Marcella De Filippo, Delio Colangelo, Luca Farnia

Abstract:

In recent decades, the hyper-competition of tourism scenario has implicated the maturity of many businesses, attributing a central role to innovative processes and their dissemination in the economy of company management. At the same time, it has defined the need for monitoring the application of innovations, in order to govern and improve the performance of companies and destinations. The study aims to analyze and define the innovation in the tourism sector. The research actions have concerned, on the one hand, some in-depth interviews with experts, identifying innovation in terms of process and product, digitalization, sustainability policies and, on the other hand, to evaluate the interaction between these factors, in terms of substitutability and complementarity in management scenarios, in order to identify which one is essential to be competitive in the global scenario. Fuzzy measures and Choquet integral were used to elicit Experts’ preferences. This method allows not only to evaluate the relative importance of each pillar, but also and more interestingly, the level of interaction, ranging from complementarity to substitutability, between pairs of factors. The results of the survey are the following: in terms of Shapley values, Experts assert that Innovation is the most important factor (32.32), followed by digitalization (31.86), Network (20.57) and Sustainability (15.25). In terms of Interaction indices, given the low degree of consensus among experts, the interaction between couples of criteria on average could be ignored; however, it is worth to note that the factors innovations and digitalization are those in which experts express the highest degree of interaction. However for some of them, these factors have a moderate level of complementarity (with a pick of 57.14), and others consider them moderately substitutes (with a pick of -39.58). Another example, although outlier is the interaction between network and digitalization, in which an expert consider them markedly substitutes (-77.08).

Keywords: innovation, business model, tourism, fuzzy

Procedia PDF Downloads 233
23 InSAR Times-Series Phase Unwrapping for Urban Areas

Authors: Hui Luo, Zhenhong Li, Zhen Dong

Abstract:

The analysis of multi-temporal InSAR (MTInSAR) such as persistent scatterer (PS) and small baseline subset (SBAS) techniques usually relies on temporal/spatial phase unwrapping (PU). Unfortunately, it always fails to unwrap the phase for two reasons: 1) spatial phase jump between adjacent pixels larger than π, such as layover and high discontinuous terrain; 2) temporal phase discontinuities such as time varied atmospheric delay. To overcome these limitations, a least-square based PU method is introduced in this paper, which incorporates baseline-combination interferograms and adjacent phase gradient network. Firstly, permanent scatterers (PS) are selected for study. Starting with the linear baseline-combination method, we obtain equivalent 'small baseline inteferograms' to limit the spatial phase difference. Then, phase different has been conducted between connected PSs (connected by a specific networking rule) to suppress the spatial correlated phase errors such as atmospheric artifact. After that, interval phase difference along arcs can be computed by least square method and followed by an outlier detector to remove the arcs with phase ambiguities. Then, the unwrapped phase can be obtained by spatial integration. The proposed method is tested on real data of TerraSAR-X, and the results are also compared with the ones obtained by StaMPS(a software package with 3D PU capabilities). By comparison, it shows that the proposed method can successfully unwrap the interferograms in urban areas even when high discontinuities exist, while StaMPS fails. At last, precise DEM errors can be got according to the unwrapped interferograms.

Keywords: phase unwrapping, time series, InSAR, urban areas

Procedia PDF Downloads 117
22 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions

Procedia PDF Downloads 263
21 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines

Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno

Abstract:

The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.

Keywords: household water uses, socio-economic classes, urban planning, urban water demand management

Procedia PDF Downloads 261
20 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel

Authors: F. M. Pisano, M. Ciminello

Abstract:

Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.

Keywords: interactive dashboards, optical fibers, structural health monitoring, visual analytics

Procedia PDF Downloads 95
19 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.

Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction

Procedia PDF Downloads 60
18 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 57
17 Outcome of Using Penpat Pinyowattanasilp Equation for Prediction of 24-Hour Uptake, First and Second Therapeutic Doses Calculation in Graves’ Disease Patient

Authors: Piyarat Parklug, Busaba Supawattanaobodee, Penpat Pinyowattanasilp

Abstract:

The radioactive iodine thyroid uptake (RAIU) has been widely used to differentiate the cause of thyrotoxicosis and treatment. Twenty-four hours RAIU is routinely used to calculate the dose of radioactive iodine (RAI) therapy; however, 2 days protocol is required. This study aims to evaluate the modification of Penpat Pinyowattanasilp equation application by the exclusion of outlier data, 3 hours RAIU less than 20% and more than 80%, to improve prediction of 24-hour uptake. The equation is predicted 24 hours RAIU (P24RAIU) = 32.5+0.702 (3 hours RAIU). Then calculating separation first and second therapeutic doses in Graves’ disease patients. Methods; This study was a retrospective study at Faculty of Medicine Vajira Hospital in Bangkok, Thailand. Inclusion were Graves’ disease patients who visited RAI clinic between January 2014-March 2019. We divided subjects into 2 groups according to first and second therapeutic doses. Results; Our study had a total of 151 patients. The study was done in 115 patients with first RAI dose and 36 patients with second RAI dose. The P24RAIU are highly correlated with actual 24-hour RAIU in first and second therapeutic doses (r = 0.913, 95% CI = 0.876 to 0.939 and r = 0.806, 95% CI = 0.649 to 0.897). Bland-Altman plot shows that mean differences between predictive and actual 24 hours RAI in the first dose and second dose were 2.14% (95%CI 0.83-3.46) and 1.37% (95%CI -1.41-4.14). The mean first actual and predictive therapeutic doses are 8.33 ± 4.93 and 7.38 ± 3.43 milliCuries (mCi) respectively. The mean second actual and predictive therapeutic doses are 6.51 ± 3.96 and 6.01 ± 3.11 mCi respectively. The predictive therapeutic doses are highly correlated with the actual dose in first and second therapeutic doses (r = 0.907, 95% CI = 0.868 to 0.935 and r = 0.953, 95% CI = 0.909 to 0.976). Bland-Altman plot shows that mean difference between predictive and actual P24RAIU in the first dose and second dose were less than 1 mCi (-0.94 and -0.5 mCi). This modification equation application is simply used in clinical practice especially patient with 3 hours RAIU in range of 20-80% in a Thai population. Before use, this equation for other population should be tested for the correlation.

Keywords: equation, Graves’disease, prediction, 24-hour uptake

Procedia PDF Downloads 111
16 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators

Authors: Nur Aziza Luxfiati

Abstract:

Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.

Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development

Procedia PDF Downloads 124
15 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 151
14 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings

Authors: Chen Wang, Jared Evans, Yan Asmann

Abstract:

With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.

Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing

Procedia PDF Downloads 230
13 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials

Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik

Abstract:

Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.

Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes

Procedia PDF Downloads 20
12 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 53
11 Direct and Indirect Effects of Childhood Traumas, Emotion Regulation Difficulties and Age on Tendency to Violence

Authors: Selin Kara-Bahçekapılı, Bengisu Nehir Aydın

Abstract:

Objective: In this study, it is aimed to examine the relationship between childhood traumas (overprotection-control, emotional/physical/sexual abuse, emotional/physical neglect), age, emotional regulation difficulties, and the tendency of violence in adults. In the study, the direct and indirect effects of 6 sub-factors of childhood traumas, emotion regulation difficulties, and age on tendency to violence are evaluated on a model that theoretically reveals. Method: The population of this cross-sectional study consists of individuals between the ages of 18-65 living in Turkey. The data from 527 participants were obtained by online surveys and convenience sampling method within the scope of the study. As a result of exclusion criteria and then outlier data analysis, the data of 443 participants were included in the analysis. Data were collected by demographic information form, childhood trauma scale, emotion regulation difficulty scale, and violence tendency scale. Research data were analyzed by SPSS and AMOS using correlation, path analysis, direct and indirect effects. Results: According to the research findings, the variables in the model explained 28.2% of the variance of the mean scores of the individuals' tendency to violence. Emotion regulation difficulties have the most direct effect on the tendency to violence (d=.387; p<.01). The effects of excessive protection and control, emotional neglect, and physical neglect variables on the tendency to violence are not significant. When the significant and indirect effects of the variables on tendency to violence over emotion regulation difficulties are examined, age has a negative effect, emotional neglect has a positive effect, emotional abuse has a positive effect, and overprotection-control has a positive effect. The indirect effects of sexual abuse, physical neglect, and physical abuse on tendency to violence are not significant. Childhood traumas and age variables in the model explained 24.1% of the variance of the mean scores of the individuals’ emotion regulation difficulties. The variable that most affects emotion regulation difficulties is age (d=-.268; p<.001). The direct effects of sexual abuse, physical neglect, and physical abuse on emotion regulation difficulties are not significant. Conclusion: The results of the research emphasize the critical role of difficulty in emotion regulation on the tendency to violence. Difficulty in emotion regulation affects the tendency to violence both directly and by mediating different variables. In addition, it is seen that some sub-factors of childhood traumas have direct and/or indirect effects on the tendency to violence. Emotional abuse and age have both direct and indirect effects on the tendency to violence over emotion regulation difficulties.

Keywords: childhood trauma, emotion regulation difficulties, tendency to violence, path analysis

Procedia PDF Downloads 60
10 Communication of Expected Survival Time to Cancer Patients: How It Is Done and How It Should Be Done

Authors: Geir Kirkebøen

Abstract:

Most patients with serious diagnoses want to know their prognosis, in particular their expected survival time. As part of the informed consent process, physicians are legally obligated to communicate such information to patients. However, there is no established (evidence based) ‘best practice’ for how to do this. The two questions explored in this study are: How do physicians communicate expected survival time to patients, and how should it be done? We explored the first, descriptive question in a study with Norwegian oncologists as participants. The study had a scenario and a survey part. In the scenario part, the doctors should imagine that a patient, recently diagnosed with a serious cancer diagnosis, has asked them: ‘How long can I expect to live with such a diagnosis? I want an honest answer from you!’ The doctors should assume that the diagnosis is certain, and that from an extensive recent study they had optimal statistical knowledge, described in detail as a right-skewed survival curve, about how long such patients with this kind of diagnosis could be expected to live. The main finding was that very few of the oncologists would explain to the patient the variation in survival time as described by the survival curve. The majority would not give the patient an answer at all. Of those who gave an answer, the typical answer was that survival time varies a lot, that it is hard to say in a specific case, that we will come back to it later etc. The survey part of the study clearly indicates that the main reason why the oncologists would not deliver the mortality prognosis was discomfort with its uncertainty. The scenario part of the study confirmed this finding. The majority of the oncologists explicitly used the uncertainty, the variation in survival time, as a reason to not give the patient an answer. Many studies show that patients want realistic information about their mortality prognosis, and that they should be given hope. The question then is how to communicate the uncertainty of the prognosis in a realistic and optimistic – hopeful – way. Based on psychological research, our hypothesis is that the best way to do this is by explicitly describing the variation in survival time, the (usually) right skewed survival curve of the prognosis, and emphasize to the patient the (small) possibility of being a ‘lucky outlier’. We tested this hypothesis in two scenario studies with lay people as participants. The data clearly show that people prefer to receive expected survival time as a median value together with explicit information about the survival curve’s right skewedness (e.g., concrete examples of ‘positive outliers’), and that communicating expected survival time this way not only provides people with hope, but also gives them a more realistic understanding compared with the typical way expected survival time is communicated. Our data indicate that it is not the existence of the uncertainty regarding the mortality prognosis that is the problem for patients, but how this uncertainty is, or is not, communicated and explained.

Keywords: cancer patients, decision psychology, doctor-patient communication, mortality prognosis

Procedia PDF Downloads 296
9 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring

Authors: Younghoon Kim, Seoung Bum Kim

Abstract:

One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.

Keywords: control chart, mixed integer programming, one-class classification, support vector data description

Procedia PDF Downloads 146
8 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets

Authors: Ece Cigdem Mutlu, Burak Alakent

Abstract:

Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.

Keywords: average run length, M-estimators, quality control, robust estimators

Procedia PDF Downloads 162
7 From Clients to Colleagues: Supporting the Professional Development of Survivor Social Work Students

Authors: Stephanie Jo Marchese

Abstract:

This oral presentation is a reflective piece regarding current social work teaching methods that value and devalue the lived experiences of survivor students. This presentation grounds the term ‘survivor’ in feminist frameworks. A survivor-defined approach to feminist advocacy assumes an individual’s agency, considers each case and needs independent of generalizations, and provides resources and support to empower victims. Feminist ideologies are ripe arenas to update and influence the rapport-building schools of social work have with these students. Survivor-based frameworks are rooted in nuanced understandings of intersectional realities, staunchly combat both conscious and unconscious deficit lenses wielded against victims, elevate lived experiences to the realm of experiential expertise, and offer alternatives to traditional power structures and knowledge exchanges. Actively importing a survivor framework into the methodology of social work teaching breaks open barriers many survivor students have faced in institutional settings, this author included. The profession of social work is at an important crux of change, both in the United States and globally. The United States is currently undergoing a radical change in its citizenry and outlier communities have taken to the streets again in opposition to their othered-ness. New waves of students are entering this field, emboldened by their survival of personal and systemic oppressions- heavily influenced by third-wave feminism, critical race theory, queer theory, among other post-structuralist ideologies. Traditional models of sociological and psychological studies are actively being challenged. The profession of social work was not founded on the diagnosis of disorders but rather a grassroots-level activism that heralded and demanded resources for oppressed communities. Institutional and classroom acceptance and celebration of survivor narratives can catapult the resurgence of these values needed in the profession’s service-delivery models and put social workers back in the driver's seat of social change (a combined advocacy and policy perspective), moving away from outsider-based intervention models. Survivor students should be viewed as agents of change, not solely former victims and clients. The ideas of this presentation proposal are supported through various qualitative interviews, as well as reviews of ‘best practices’ in the field of education that incorporate feminist methods of inclusion and empowerment. Curriculum and policy recommendations are also offered.

Keywords: deficit lens bias, empowerment theory, feminist praxis, inclusive teaching models, strengths-based approaches, social work teaching methods

Procedia PDF Downloads 264
6 A Geographical Information System Supported Method for Determining Urban Transformation Areas in the Scope of Disaster Risks in Kocaeli

Authors: Tayfun Salihoğlu

Abstract:

Following the Law No: 6306 on Transformation of Disaster Risk Areas, urban transformation in Turkey found its legal basis. In the best practices all over the World, the urban transformation was shaped as part of comprehensive social programs through the discourses of renewing the economic, social and physical degraded parts of the city, producing spaces resistant to earthquakes and other possible disasters and creating a livable environment. In Turkish practice, a contradictory process is observed. In this study, it is aimed to develop a method for better understanding of the urban space in terms of disaster risks in order to constitute a basis for decisions in Kocaeli Urban Transformation Master Plan, which is being prepared by Kocaeli Metropolitan Municipality. The spatial unit used in the study is the 50x50 meter grids. In order to reflect the multidimensionality of urban transformation, three basic components that have spatial data in Kocaeli were identified. These components were named as 'Problems in Built-up Areas', 'Disaster Risks arising from Geological Conditions of the Ground and Problems of Buildings', and 'Inadequacy of Urban Services'. Each component was weighted and scored for each grid. In order to delimitate urban transformation zones Optimized Outlier Analysis (Local Moran I) in the ArcGIS 10.6.1 was conducted to test the type of distribution (clustered or scattered) and its significance on the grids by assuming the weighted total score of the grid as Input Features. As a result of this analysis, it was found that the weighted total scores were not significantly clustering at all grids in urban space. The grids which the input feature is clustered significantly were exported as the new database to use in further mappings. Total Score Map reflects the significant clusters in terms of weighted total scores of 'Problems in Built-up Areas', 'Disaster Risks arising from Geological Conditions of the Ground and Problems of Buildings' and 'Inadequacy of Urban Services'. Resulting grids with the highest scores are the most likely candidates for urban transformation in this citywide study. To categorize urban space in terms of urban transformation, Grouping Analysis in ArcGIS 10.6.1 was conducted to data that includes each component scores in significantly clustered grids. Due to Pseudo Statistics and Box Plots, 6 groups with the highest F stats were extracted. As a result of the mapping of the groups, it can be said that 6 groups can be interpreted in a more meaningful manner in relation to the urban space. The method presented in this study can be magnified due to the availability of more spatial data. By integrating with other data to be obtained during the planning process, this method can contribute to the continuation of research and decision-making processes of urban transformation master plans on a more consistent basis.

Keywords: urban transformation, GIS, disaster risk assessment, Kocaeli

Procedia PDF Downloads 89
5 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 61
4 Spatial Analysis and Determinants of Number of Antenatal Health Care Visit Among Pregnant Women in Ethiopia: Application of Spatial Multilevel Count Regression Models

Authors: Muluwerk Ayele Derebe

Abstract:

Background: Antenatal care (ANC) is an essential element in the continuum of reproductive health care for preventing preventable pregnancy-related morbidity and mortality. Objective: The aim of this study is to assess the spatial pattern and predictors of ANC visits in Ethiopia. Method: This study was done using Ethiopian Demographic and Health Survey data of 2016 among 7,174 pregnant women aged 15-49 years which was a nationwide community-based cross-sectional survey. Spatial analysis was done using Getis-Ord Gi* statistics to identify hot and cold spot areas of ANC visits. Multilevel glmmTMB packages adjusted for spatial effects were used in R software. Spatial multilevel count regression was conducted to identify predictors of antenatal care visits for pregnant women, and proportional change in variance was done to uncover the effect of individual and community-level factors of ANC visits. Results: The distribution of ANC visits was spatially clustered Moran’s I = 0.271, p<.0.001, ICC = 0.497, p<0.001). The highest spatial outlier areas of ANC visit was found in Amhara (South Wollo, Weast Gojjam, North Shewa), Oromo (west Arsi and East Harariga), Tigray (Central Tigray) and Benishangul-Gumuz (Asosa and Metekel) regions. The data was found with excess zeros (34.6%) and over-dispersed. The expected ANC visit of pregnant women with pregnancy complications was higher at 0.7868 [ARR= 2.1964, 95% CI: 1.8605, 2.5928, p-value <0.0001] compared to pregnant women who had no pregnancy complications. The expected ANC visit of a pregnant woman who lived in a rural area was 1.2254 times higher [ARR=3.4057, 95% CI: 2.1462, 5.4041, p-value <0.0001] as compared to a pregnant woman who lived in an urban. The study found dissimilar clusters with a low number of zero counts for a mean number of ANC visits surrounded by clusters with a higher number of counts of an average number of ANC visits when other variables held constant. Conclusion: This study found that the number of ANC visits in Ethiopia had a spatial pattern associated with socioeconomic, demographic, and geographic risk factors. Spatial clustering of ANC visits exists in all regions of Ethiopia. The predictor age of the mother, religion, mother’s education, husband’s education, mother's occupation, husband's occupation, signs of pregnancy complication, wealth index and marital status had a strong association with the number of ANC visits by each individual. At the community level, place of residence, region, age of the mother, sex of the household head, signs of pregnancy complications and distance to health facility factors had a strong association with the number of ANC visits.

Keywords: Ethiopia, ANC, spatial, multilevel, zero inflated Poisson

Procedia PDF Downloads 46
3 Consumers Attitude toward the Latest Trends in Decreasing Energy Consumption of Washing Machine

Authors: Farnaz Alborzi, Angelika Schmitz, Rainer Stamminger

Abstract:

Reducing water temperatures in the wash phase of a washing programme and increasing the overall cycle durations are the latest trends in decreasing energy consumption of washing programmes. Since the implementation of the new energy efficiency classes in 2010, manufacturers seem to apply the aforementioned washing strategy with lower temperatures combined with longer programme durations extensively to realise energy-savings needed to meet the requirements of the highest energy efficiency class possible. A semi-representative on-line survey in eleven European countries (Czech Republic, Finland, France, Germany, Hungary, Italy, Poland, Romania, Spain, Sweden and the United Kingdom) was conducted by Bonn University in 2015 to shed light on consumer opinion and behaviour regarding the effects of the lower washing temperature and longer cycle duration in laundry washing on consumers’ acceptance of the programme. The risk of the long wash cycle is that consumers might not use the energy efficient Standard programmes and will think of this option as inconvenient and therefore switch to shorter, but more energy consuming programmes. Furthermore, washing in a lower temperature may lead to the problem of cross-contamination. Washing behaviour of over 5,000 households was studied in this survey to provide support and guidance for manufacturers and policy designers. Qualified households were chosen following a predefined quota: -Involvement in laundry washing: substantial, -Distribution of gender: more than 50 % female , -Selected age groups: -20–39 years, -40–59 years, -60–74 years, -Household size: 1, 2, 3, 4 and more than 4 people. Furthermore, Eurostat data for each country were used to calculate the population distribution in the respective age class and household size as quotas for the consumer survey distribution in each country. Before starting the analyses, the validity of each dataset was controlled with the aid of control questions. After excluding the outlier data, the number of the panel diminished from 5,100 to 4,843. The primary outcome of the study is European consumers are willing to save water and energy in a laundry washing but reluctant to use long programme cycles since they don’t believe that the long cycles could be energy-saving. However, the results of our survey don’t confirm that there is a relation between frequency of using Standard cotton (Eco) or Energy-saving programmes and the duration of the programmes. It might be explained by the fact that the majority of washing programmes used by consumers do not take so long, perhaps consumers just choose some additional time reduction option when selecting those programmes and this finding might be changed if the Energy-saving programmes take longer. Therefore, it may be assumed that introducing the programme duration as a new measure on a revised energy label would strongly influence the consumer at the point of sale. Furthermore, results of the survey confirm that consumers are more willing to use lower temperature programmes in order to save energy than accepting longer programme cycles and majority of them accept deviation from the nominal temperature of the programme as long as the results are good.

Keywords: duration, energy-saving, standard programmes, washing temperature

Procedia PDF Downloads 193
2 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development

Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng

Abstract:

Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.

Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics

Procedia PDF Downloads 126
1 Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben

Authors: Rohini Das, Subhasish Das, Smruti Rekha Sahoo, Shagupta Yesmin

Abstract:

The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension.

Keywords: Kolhan basin, petrology, sandstone, tectonics

Procedia PDF Downloads 472