Search results for: organo clay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 611

Search results for: organo clay

581 Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test

Authors: R. Sadeghzadegan, S. A. Naeini, A. Mirzaii

Abstract:

In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content.

Keywords: small shear modulus, bender element test, plastic fines, sand

Procedia PDF Downloads 439
580 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.

Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing

Procedia PDF Downloads 294
579 Study of Poly(Ethylene Terephthalate)-Clay Nanocomposites Prepareted by Extrusion Reactive Method

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

A method for the exfoliation of polyethylene terephtalate (PET) - clay nanocomposites has been reported in this study. Montmorillonite clay based polyethylene terephtalate nanocomposites were prepared by reactive melt-mixing. To achieve this, untreated clay was first functionalized with the crosslinking agent compound based mainly on peroxide/sulphur and TMTD as accelerator or activator for sulphur. Furthermore, the different blends composition of PET/clay were directly mixed in melt state in closed chamber of plastograph at given working conditions for short time and in one step process. To investigate the microstructure modification and thermal, mechanical and rheological properties the DSC, WAXS, microhardness, FTIR and tensile properties were performed. The resulting structure of the modified samples shows that total exfoliation appears at 4% w/w of clay to PET matrices. The crystallinity and tensile modulus were correlated by the H microhardness and the DSC shows no significant effect on the cristallinity degree. The mechanical properties were improved significantly. The viscosity decreases for 4% clay and the activation energy is the minimum. The WAXS measurement shows a partial exfoliation without any intercalation which is the most relevant point. The grafting of organic to inorganic nanolayers was observed by Si—O—C and Si—C bonds by FTIR.

Keywords: PET, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 225
578 An Overview of Sludge Utilization into Fired Clay Brick

Authors: Aeslina Binti Abdul Kadir, Ahmad Shayuti Bin Abdul Rahim

Abstract:

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes.

Keywords: fired clay brick, sludge waste, compressive strength, shrinkage, water absorption

Procedia PDF Downloads 409
577 Preparation of Geopolymer Cements from Tunisian Illito-Kaolinitic Clay Mineral

Authors: N. Hamdi, E. Srasra

Abstract:

In this work geopolymer cement are synthesized from Tunisian (illito-kaolinitic) clay. This product can be used as binding material in place of cement Portland. The clay fractions used were characterized with physico-chemical and thermal analyses. The clays materials react with alkaline solution (10, 14 and 18 mol(NaOH)/L) in order to produce geopolymer cements whose pastes were characterized by determining their water adsorption and compressive strength. The compressive strength of the hardened geopolymer cement paste samples aged 28 days attained its highest value (32.3MPa) around 950°C for NaOH concentration of 14M. The water adsorption value of the prepared samples decreased with increasing the calcination temperature of clay fractions. It can be concluded that the most suitable temperature for the calcination of illitio-kaolinitic clays in view of producing geopolymer cements is around 950°C.

Keywords: compressive strength, geopolymer cement, illitio-kaolinitic clay, mineral

Procedia PDF Downloads 218
576 Improvement of Soft Clay Using Floating Cement Dust-Lime Columns

Authors: Adel Belal, Sameh Aboelsoud, Mohy Elmashad, Mohammed Abdelmonem

Abstract:

The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement.

Keywords: bearing capacity, cement dust – lime columns, ground improvement, soft clay

Procedia PDF Downloads 169
575 Improvement of Bearing Capacity of Soft Clay Using Geo-Cells

Authors: Siddhartha Paul, Aman Harlalka, Ashim K. Dey

Abstract:

Soft clayey soil possesses poor bearing capacity and high compressibility because of which foundations cannot be directly placed over soft clay. Normally pile foundations are constructed to carry the load through the soft soil up to the hard stratum below. Pile construction is costly and time consuming. In order to increase the properties of soft clay, many ground improvement techniques like stone column, preloading with and without sand drains/band drains, etc. are in vogue. Time is a constraint for successful application of these improvement techniques. Another way to improve the bearing capacity of soft clay and to reduce the settlement possibility is to apply geocells below the foundation. The geocells impart rigidity to the foundation soil, reduce the net load intensity on soil and thus reduce the compressibility. A well designed geocell reinforced soil may replace the pile foundation. The present paper deals with the applicability of geocells on improvement of the bearing capacity. It is observed that a properly designed geocell may increase the bearing capacity of soft clay up to two and a half times.

Keywords: bearing capacity, geo-cell, ground improvement, soft clay

Procedia PDF Downloads 287
574 Use of Slab Method, Throwing and Press Mold in Making Ceramic Holders for Offices

Authors: E. P. Doku-Asare, A. Essuman

Abstract:

The materials used for the production of holders are mainly metals and plastic, and these materials are difficult and expensive to process; therefore, the need to explore other materials such as clay for the production of holders. Clay is a viable material for the production of holders due to its plastic nature. Using ceramic materials as a medium for the production of holders does not only serve its purpose but also economically cheaper since the material is mined in Ghana. The study also examines the aesthetic nature of the holders due to the properties found in the material used. Six holders were chosen and were made in a manner that would not take a lot of space. They are Pin holders, Paper holders, Penholders, Paperweight and Umbrella holders. The production technique employed in the execution of this project were the slab method, throwing, and press mold. Results indicated that ceramic holders are durable and long-lasting and can serve the purpose of metallic and plastic holders. The study also found that clay holders are durable due to the fact that clay is from a natural source which ensures permanence and resistance to stress. It is recommended that press molds be used in the production of holders. Clay holders last longer due to the useful properties of clay including very high hardness and strength.

Keywords: ceramics, interior design, Ghana, production technique

Procedia PDF Downloads 137
573 The Effect of Sand Content on Behavior of Kaolin Clay

Authors: Hamed Tohidi, James W. Mahar

Abstract:

One of the unknowns in the design of zoned earth dams is the percentage of sand which can be present in a clay core and still retain the necessary plasticity to prevent cracking in response to deformation. Cracks in the clay core of a dam caused by differential settlement can lead to failure of the dam. In this study, a series of Atterberg Limit tests and unconfined compression strength tests have been conducted in the ISU soil mechanics laboratory on prepared mixes of quartz sand and commercial clays (Kaolin and Smectite) to determine the relationship between sand content, plasticity and squeezing behavior. The prepared mixes have variable percentages of sand ranging between 10 and 90% by weight. Plastic limit test results in which specimens can be rolled into 1/8 in. threads without crumbling and plasticity index values which represent the range of water content over which the specimens can be remolded without cracking were used to evaluate the plasticity of the sand-clay mixtures. The test results show that the design mixes exhibit plastic behavior with sand contents up to 80% by weight. However, the plasticity of the mixes decreases with increasing sand content. For unconfined compression strength tests, the same mixtures of sand and clay (Kaolin) were made in plastic limit. The results which were concluded from the UCC tests represent the relationship between sand-clay content and chance of having squeezing behavior, also according to the results from UCC, strength of different samples and stress-strain curves can be obtained.

Keywords: clay's behaviour, plasticity, sand content, Kaolin clay

Procedia PDF Downloads 211
572 Preparation of Nanocomposites Based on Biodegradable Polycaprolactone by Melt Mixture

Authors: Mohamed Amine Zenasni, Bahia Meroufel, André Merlin, Said Benfarhi, Stéphane Molina, Béatrice George

Abstract:

The introduction of nano-fillers into polymers field lead to the creation of the nano composites. This creation is starting up a new revolution into the world of materials. Nano composites are similar to traditional composite of a polymer blend and filler with at least one nano-scopic dimension. In our project, we worked with nano composites of biodegradable polymer: polycaprolactone, combined with nano-clay (Maghnite) and with different nano-organo-clays. These nano composites have been prepared by melt mixture method. The advantage of this polymer is its degradability and bio compatibility. A study of the relationship between development, micro structure and physico chemical properties of nano composites, clays modified with 3-aminopropyltriethoxysilane (APTES) and Hexadecyltriméthy ammonium bromide (CTAB) and untreated clays were made. Melt mixture method is most suitable methods to get a better dispersion named exfoliation.

Keywords: nanocomposite, biodegradable, polycaprolactone, maghnite, melt mixture, APTES, CTAB

Procedia PDF Downloads 397
571 Properties of Compressed Earth Blocks Enhanced with Clay Pozzolana

Authors: Humphrey Danso, Seth Adu

Abstract:

The high cost of cement and its greenhouse effect on the environment have led to the use of alternative building materials in the production of block and bricks. This study seeks to investigate the properties of compressed earth blocks (CEBs) enhanced with clay pozzolana. CEBs of size 290 × 140 × 100 mm were prepared with 10, 20 and 30 % weight of clay pozzolana. The CEBs were compressed at a constant pressure of 5 MPa and cured for 28 days. The blocks, after 7, 14, 21 and 28 days of curing were tested for density, water absorption, compressive strength and erosion. It was found that amount of pozzolana content did not have much influence on blocks’ density. There was a decline in water absorption of the stabilised blocks ranged between 32.8% and 252.2% over the unstabilised blocks. The highest compressive strength (3.75MPa) of the stabilized blocks was achieved at 28th day of curing with 30% clay pozzolana content, which showed an improvement of 116.8% strength over the unstabilised blocks. Furthermore, there was a statistically significant difference in the erosion resistance between the stabilized blocks and the unstabilised blocks. The study concludes that the inclusion of the clay pozzolana increased the properties of the CEBs, and therefore recommended for use in the building of houses.

Keywords: clay pozzolana, compressed earth blocks (CEBs), compressive strength, erosion test

Procedia PDF Downloads 256
570 Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber

Authors: Habib Shaban

Abstract:

Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.

Keywords: nanocomposites, isotactic polypropylene, date wood flour, intercalated, melt-blending

Procedia PDF Downloads 358
569 The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Kecić S. Vesna, Oros B. Ivana

Abstract:

The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results.

Keywords: clay materials, fix bed adsorption column, metal ions, printing developer

Procedia PDF Downloads 289
568 Effect of Clay Brick Filler on Properties of Self-Compacting Lightweight Concrete

Authors: Sandra Juradin, Lidia Karla Vranjes

Abstract:

The environmental impact of the components of concrete is considerable. The paper presents the influence of ground clay brick filler on the properties of self-compacting lightweight concrete (SCLC). In the manufacture and transport of clay bricks, product damage may occur. The filler was obtained by milling the damaged clay brick and sieved under the 0.04 mm size. The composition of each of SCLC mixture was determined according to the CBI method and compared with EFNARC (European Association) criteria. Self-compacting lightweight concrete has been tested in a fresh (slump flow method, visual assessment of stability, T50 time, V-funnel method, L-box method and J-ring) and hardened state (compressive strengths and dynamic modulus of elasticity). Mixtures with this filler had good results of compressive strength, but in fresh state the mixtures were sticky. All results were analyzed and compared with previous studies.

Keywords: CBI methods, ground clay brick, self-compacting lightweight concrete, silica fume

Procedia PDF Downloads 116
567 Effect of Clay Loading on Quiescent Crystallization of Syndiotactic Polypropylene/Clay Composites

Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal Al-Khazaal

Abstract:

Rheology can be used as a tool to examine the crystallization kinetics of polymers and polymer composites, and it provides more accurate results than the commonly used conventional techniques like differential scanning calorimetry (DSC) when the crystallization kinetics are slow. Crystallization occurs when crystalline polymers are cooled below their thermodynamic melting point temperature. At the start of this process, there is a gradual change in the mechanical response of the material from the liquid to the solid state, which is due to the change at the microstructure level of the polymer and polymer composites. This is one of the main characteristics of the rheological methodology that sets it apart from the conventional DSC method. In the present work, we used both rheological and differential scanning calorimetric techniques to perform both isothermal and non-isothermal crystallization experiments on a range of syndiotactic polypropylenes/clay composites with varying doses of clay contents in order to investigate the crystallization behavior of the materials. The objective of this work is to explore the effect of clay contents on the crystallization behavior of the syndiotactic polypropylene/clay composites and to couple the rheological methods with more conventional techniques such as Differential Scanning Calorimetry (DSC). Time sweep tests at a constant heating rate of 40°C/minutes were used to investigate the crystallization kinetics using the Atomic Rheumetric Expansion System (ARES). Crystallization behavior was found to be strongly dependent on the clay contents of syndiotactic polypropylene/clay composites. Both melting point (Tₘ) and crystallization temperatures (T𝒸) were found to increase with an increase in clay contents. Excellent agreement is found between the results obtained by both the rheological and differential scanning calorimetric (DSC) methods.

Keywords: quiescent crystallization, polymer composites, rheology, differential scanning calorimetry, syndiotactic polypropylene/clay composites

Procedia PDF Downloads 26
566 Settlement Performance of Soft Clay Reinforced with Granular Columns

Authors: Muneerah Jeludin, V. Sivakumar

Abstract:

Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.

Keywords: ground improvement, model test, reinforced soil, settlement

Procedia PDF Downloads 434
565 The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites

Authors: R. Kamarudzaman, A. Kalam, N. A. Mohd Fadzil

Abstract:

Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler.

Keywords: oil palm empty fruit bunch, fiber, polyethylene, polymer nanocomposite, impact strength

Procedia PDF Downloads 530
564 Lower Cretaceous Clay in Anti-Lebanon Mountains, Syria and their Importance in Ceramic Manufacturing

Authors: Abdul Salam Turkmani

Abstract:

The Lower Cretaceous rocks are exposed only in the mountains regions of Syria, such as the Anti- Lebanon mountain on the western side of Damascus. The lower cretaceous sequences are made up of different rocks. The upper and middle parts of the section are composed mainly of carbonate sediments and, less frequently, gypsum and anhydrite. The lower beds are mainly composed of sandstone, conglomerate and clay. Clay samples were collected from the study area, which is located about 45 km west of the city of Damascus, near the border village of Kfer Yabous and to the left of the Damascus -Beirut International Road, within the lower Cretaceous upper Aptian deposits. The properties of clay were carried out by X-ray diffraction (XRD) and, X-ray fluorescence (XRF) and Thermal Analysis (DTA-TG-DSC) techniques. The studied samples of clay were mainly composed of kaolinite, quartz, illite. Chemical analysis shows the content of SiO₂ varied between 46.06 to 73 % Al₂O₃ 14.55-26.56%, about the staining oxides (Fe₂O₃ + TiO₂), the total content is about 4.3 to 12.5%. The physical properties were determined by studying the behavior of the body before and after firing, showed low bending strength values (22.5 kg/cm²) after drying, and (about 247 kg/cm²) after firing at 1180°C, water absorption value was about 10%. The cubic thermal expansion coefficient at 1140°C is 213.77 x 10-7 /°C. All of the presented results confirm the suitability of this clay for the ceramic industry.

Keywords: anti-Lebanon, Damascus, ceramic, clay, thermal analysis, thermal expansion coefficient

Procedia PDF Downloads 150
563 Stabilization of Clay Soil Using A-3 Soil

Authors: Mohammed Mustapha Alhaji, Sadiku Salawu

Abstract:

A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test.

Keywords: A-3 soil, clay minerals, pozzolanic action, stabilization

Procedia PDF Downloads 395
562 Predicting Consolidation Coefficient of Busan Clay by Time-Displacement-Velocity Methods

Authors: Thang Minh Le, Hadi Khabbaz

Abstract:

The coefficient of consolidation is a parameter governing the rate at which saturated soil particularly clay undergoes consolidation when subjected to an increase in pressure. The rate and amount of compression in soil varies with the rate that pore water is lost; and hence depends on soil permeability. Over many years, various methods have been proposed to determine the coefficient of consolidation, cv, which is an indication of the rate of foundation settlement on soft ground. However, defining this parameter is often problematic and heavily relies on graphical techniques, which are subject to some uncertainties. This paper initially presents an overview of many well-established methods to determine the vertical coefficient of consolidation from the incremental loading consolidation tests. An array of consolidation tests was conducted on the undisturbed clay samples, collected at various depths from a site in Nakdong river delta, Busan, South Korea. The consolidation test results on these soft sensitive clay samples were employed to evaluate the targeted methods to predict the settlement rate of Busan clay. In relationship of time-displacement-velocity, a total of 3 method groups from 10 common procedures were classified and compared together. Discussions on study results will be also provided.

Keywords: Busan clay, coefficient of consolidation, constant rate of strain, incremental loading

Procedia PDF Downloads 148
561 The Statistical Significant of Adsorbents for Effective Zn(II) Ions Removal

Authors: Kiurski S. Jelena, Oros B. Ivana, Kecić S. Vesna, Kovačević M. Ilija, Aksentijević M. Snežana

Abstract:

The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d≈15 mm). The obtained values of adsorption efficiency was subjected to the independent samples t-test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets size (d≈15 mm) and activated carbon (|t|= 6.909), natural zeolite (|t|= 10.380), mixture of activated carbon and natural zeolite (|t|= 9.865), bentonite (|t|= 6.159), fired clay (|t|= 6.641), fired clay pellets size (d≈5 mm) (|t|= 6.678), fired clay pellets size (d≈8 mm) (|t|= 3.422), respectively.

Keywords: Adsorption efficiency, adsorbent, statistical analysis, zinc ion.

Procedia PDF Downloads 352
560 Study of Nano Clay Based on Pet

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachoura

Abstract:

A (PET)/clay nano composites has been successfully performed in one step by reactive melt extrusion. The PEN was first mixed in the melt state with different amounts of functionalized clay. It was observed that the composition PET/4 wt% clay showed total exfoliation. These completely exfoliated composition called nPET, was used to prepare new nPET nano composites in the same mixing batch. The nPEN was compared to neat PET. The nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. From the different WAXS patterns, it is seen that all samples are amorphous phase. In addition, nPET blends present lower Tc values and higher Tm values than the corresponding neat PET. The present study allowed establishing good correlations between the different measured properties.

Keywords: PET, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 365
559 Adsorption of Toluene from Aqueous Solutions by Porous Clay Hetero-Structures

Authors: F. Asadi, M. M. Zerafat, S. Sabbaghi

Abstract:

Among water pollutants, volatile organic compounds can cause severe long lasting effects not only on biotic organism but also on human health. As a result, this material group has attracted more attention in recent years. Adsorption is one of the common processes for remediation of aromatic compounds. In this study, porous clay hetrostructers (PCHs) are synthesized through gallery template approach and cetyltrimethylammonium bromide and dodecylamine used as template and co-template, respectively. Porous clay is characterized by XRD and FTIR. Batch adsorption experiments were carried out to investigate the effect of various adsorption parameters like adsorbent dosage, pH, initial concentration and contact time. It was found that by increasing adsorbent dosage from 0.5gr/lit to 4gr/lit, toluene removal is increased from 34% to 88.1%. Increasing contact time and decreasing the pH of aqueous solution increases toluene removal efficiency.

Keywords: adsorption, clay, nano-porous, toluene

Procedia PDF Downloads 304
558 Provenance and Paleoweathering Conditions of Doganhisar Clay Beds

Authors: Mehmet Yavuz Huseyinca

Abstract:

The clay beds are located at the south-southeast of Doğanhisar and northwest of Konya in the Central Anatolia. In the scope of preliminary study, three types of samples were investigated including basement phyllite (Bp) overlain by the clay beds, weathered phyllite (Wp) and Doğanhisar clay (Dc). The Chemical Index of Alteration (CIA) values of Dc range from 81 to 88 with an average of 85. This value is higher than that of Post Archean Australian Shale (PAAS) and defines very intense chemical weathering in the source-area. On the other hand, the A-CN-K diagram indicates that Bp underwent high degree post-depositional K-metasomatism. The average reconstructed CIA value of the Bp prior to the K-metasomatism is mainly 81 which overlaps the CIA values of the Wp (83) and Dc (85). Similar CIA values indicate parallel weathering trends. Also, extrapolation of the samples back to the plagioclase-alkali feldspar line in the A-CN-K diagram suggests an identical provenance close to granite in composition. Hereby the weathering background of Dc includes two steps. First one is intense weathering process of a granitic source to Bp with post-depositional K-metasomatism and the latter is progressively weathering of Bp to premetasomatised conditions (formation of Wp) ending with Dc deposition.

Keywords: clay beds, Doganhisar, provenance, weathering

Procedia PDF Downloads 274
557 Correlation between the Undrained Shear Strength of Clay of the Champlain Sea as Determined by the Vane Test and the Swedish Cone

Authors: Tahar Ayadat

Abstract:

The undrained shear strength is an essential parameter for determining the consistency and the ultimate bearing capacity of a clay layer. The undrained shear strength can be determined by field tests such as the in situ vane test or in laboratory, including hand vane test, triaxial, simple compression test, and the consistency penetrometer (i.e. Swedish cone). However, the field vane test and the Swedish cone are the most commonly used tests by geotechnical experts. In this technical note, a comparison between the shear strength results obtained by the in situ vane test and the cone penetration test (Swedish cone) was conducted. A correlation between the results of these two tests, concerning the undrained shear strength of the Champlain sea clay, has been developed. Moreover, some applications of the proposed correlation on some geotechnical problems have been included, such as the determination of the consistency and the bearing capacity of a clay layer.

Keywords: correlation, shear strength, clay, vane test, Swedish cone

Procedia PDF Downloads 367
556 Synthesis of Antifungal by the Use of Green Catalyst

Authors: Elmeliani M’Hammed

Abstract:

The work is carried out for the synthesis of antifungal effective against the fungus Fusarium oxysporum, Albedinis (Foa), the causative agent of bayoud, dates palm disease, through the use of raw clay as a green catalyst. The Aza-Michael reaction of amine addition to α, β-unsaturated alkene was carried out using the crude clay as a green catalyst to synthesize the antifungal agent bayoud. The reaction was carried out under favorable conditions, ambient temperature, without solvent, and a green catalyst "loves the environment" that the product that was synthesized gave us a high yield and excellent chemo selectivity.

Keywords: raw clay, amines, alkenes, environment, antifungal, bayoud, date palms

Procedia PDF Downloads 48
555 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay

Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren

Abstract:

The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.

Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength

Procedia PDF Downloads 111
554 Amelioration of Stability and Rheological Properties of a Crude Oil-Based Drilling Mud

Authors: Hammadi Larbi, Bergane Cheikh

Abstract:

Drilling for oil is done through many mechanisms. The goal is first to dig deep and then, after arriving at the oil source, to simply suck it up. And for this, it is important to know the role of oil-based drilling muds, which had many benefits for the drilling tool and for drilling generally, and also and essentially to know the rheological behavior of the emulsion system in particular water-in-oil inverse emulsions (Water/crude oil). This work contributes to the improvement of the stability and rheological properties of crude oil-based drilling mud by organophilic clay. Experimental data from steady-state flow measurements of crude oil-based drilling mud are classically analyzed by the Herschel-Bulkley model. The effects of organophilic clay type VG69 are studied. Microscopic observation showed that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leads to the stability of inverse Water/Oil emulsions; on the other hand, for quantities greater than 3g, the emulsions are destabilized.

Keywords: drilling, organophilic clay, crude oil, stability

Procedia PDF Downloads 74
553 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst

Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis

Abstract:

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.

Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10

Procedia PDF Downloads 357
552 Evaluation of Oligocene-Miocene Clay from the Northern Part of Palmyra Region (Syria) for Industrial Ceramic Applications

Authors: Abdul Salam Turkmani

Abstract:

Clay of the northern Palmyra region is one of the most important raw materials used in the Syrian ceramics industry. This study is focused on the evaluation of various laboratory analyses such as chemical analysis (XRF), mineral X-ray diffraction analysis (XRD), differential thermal analysis (DTA), and semi-industrial tests carried out on samples collected on two representative locations of the upper Oligocene in AlMkamen valley (MK) and lower Miocene in AlZukara valley (ZR) of the northern part of Palmyra, Syria. Chemical results classify the (MK) and (ZR) clays as semi-plastic red clay slightly carbonate and (eliminate probable) illite-chlorite clays with a very fine particle size distribution. Content of SiO₂ between 46.28-57.66%, Al2O3 13.81-25.2%, Fe₂O₃ 3.47-11.58%, CaO 1.15-7.19%, Na₂O+K₂O varied between 3.34-3.71%. Based on clay chemical composition and iron and carbonate content, these deposits can be considered as red firing clays. Their mineralogical composition is mainly represented by illite, kaolinite and quartz, and accessories minerals such as calcite, feldspar, phillipsite, and goethite. The results of the DTA test confirm the presence of gypsum and quartz phases in (MK) clay. Ceramic testing shows good green and dry bending strength values, which varied between 9-14 kg/cm², at 1160°C to 1180°C. Water absorption moves from 14.6 % at 1120°C to 2.2% at 1180°C to 1.6% at 1200°C. Breaking load after firing changes from 400 to 590 kg/cm². At 1200°C (MK), clay reaches perfect vitrification. After firing, the color of the clay changes from orange-hazel to red-brown at 1180°C. Technological results confirmed the suitability of the studied clays to produce floor and wall ceramic tiles. Using one of the two types of clay into the ceramic body or both types together gave satisfactory industrial results.

Keywords: ceramic, clay, industry , Palmyra

Procedia PDF Downloads 161