Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11523

Search results for: optimization of synthesis conditions

11523 Application of the Global Optimization Techniques to the Optical Thin Film Design

Authors: D. Li


Optical thin films are used in a wide variety of optical components and there are many software tools programmed for advancing multilayer thin film design. The available software packages for designing the thin film structure may not provide optimum designs. Normally, almost all current software programs obtain their final designs either from optimizing a starting guess or by technique, which may or may not involve a pseudorandom process, that give different answers every time, depending upon the initial conditions. With the increasing power of personal computers, functional methods in optimization and synthesis of optical multilayer systems have been developed such as DGL Optimization, Simulated Annealing, Genetic Algorithms, Needle Optimization, Inductive Optimization and Flip-Flop Optimization. Among these, DGL Optimization has proved its efficiency in optical thin film designs. The application of the DGL optimization technique to the design of optical coating is presented. A DGL optimization technique is provided, and its main features are discussed. Guidelines on the application of the DGL optimization technique to various types of design problems are given. The innovative global optimization strategies used in a software tool, OnlyFilm, to optimize multilayer thin film designs through different filter designs are outlined. OnlyFilm is a powerful, versatile, and user-friendly thin film software on the market, which combines optimization and synthesis design capabilities with powerful analytical tools for optical thin film designers. It is also the only thin film design software that offers a true global optimization function.

Keywords: optical coatings, optimization, design software, thin film design

Procedia PDF Downloads 225
11522 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

Authors: Yi-Jie Lin, Jyh-Cherng Chen


The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 145
11521 Synthesis of Carboxylate Gemini Surfactant

Authors: Rui Wang, Shanfa Tang, Yuanwu Dong, Siyao Wang


A carboxylate Gemini surfactant N, N`-bis (3-chloro-2 -hydroxypropane-N-dodecyl secondary amine) p-phenylenediamine diacetate sodium (GD12-P-12) was synthesized by substitution and ring-opening reaction from p-phenylenediamine, sodium chloroacetate, epichlorohydrin, and dodecylamine. The synthesis conditions were optimized by controlling variables. The structure of GD12-P-12 was characterized by FT-IR and 1H NMR, and its foam performance, interfacial tension, viscosity was evaluated. The results show that the molecular structure of the synthesized product is consistent with that of the target product, the GD12-P-12 can reduce the oil-water interfacial tension to 7.49×10⁻³mN/m (ultra-low interfacial tension level) in 20min. GD12-P-12 surfactant has excellent foam performance, ultra-low interfacial tension, good temperature-resistant viscosity-increasing properties, has good application prospect in foam flooding.

Keywords: gemini surfactant, optimization of synthesis conditions, foam performance, low interfacial tension

Procedia PDF Downloads 20
11520 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu


The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 76
11519 T3P® -DMSO Mediated One-Pot Tandem Approach for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones from Alcohols

Authors: Vinaya Kambappa


Propylphosphonic anhydride (T3P®)-DMSO is used as an efficient and mild reagent for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones from aromatic alcohols. Alcohols are oxidized in situ to aldehydes under mild conditions, which in turn undergo a three-component reaction with β-ketoester and urea/thiourea to afford 3,4-dihydropyrimidin-2(1H)-ones/thiones. The synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones directly from alcohols has been reported for the first time best to our knowledge, under mild reaction conditions in good yield. The easy work-up procedure, low cost and less toxicity of the reagent are the main advantages of this protocol.

Keywords: β-ketoester, propylphosphonic anhydride, three-component reaction, pyrimidine

Procedia PDF Downloads 86
11518 A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column

Authors: Nima Khosravi


This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant.

Keywords: beam column, genetic algorithm, particle swarm optimization, sequential quadratic programming, simulated annealing

Procedia PDF Downloads 306
11517 Synthesis and Optimization of Bio Metal-Organic Framework with Permanent Porosity

Authors: Tia Kristian Tajnšek, Matjaž Mazaj, Nataša Zabukovec Logar


Metal-organic frameworks (MOFs) with their specific properties and the possibility of tuning the structure represent excellent candidates for use in the biomedical field. Their advantage lies in large pore surfaces and volumes, as well as the possibility of using bio-friendly or bioactive constituents. So-called bioMOFs are representatives of MOFs, which are constructed from at least one biomolecule (metal, a small bioactive molecule in metal clusters and/or linker) and are intended for bio-application (usually in the field of medicine; most commonly drug delivery). When designing a bioMOF for biomedical applications, we should adhere to some guidelines for an improved toxicological profile of the material. Such as (i) choosing an endogenous/nontoxic metal, (ii) GRAS (generally recognized as safe) linker, and (iii) nontoxic solvents. Design and synthesis of bioNICS-1 (bioMOF of National Institute of Chemistry Slovenia – 1) consider all these guidelines. Zinc (Zn) was chosen as an endogenous metal with an agreeable recommended daily intake (RDI) and LD50 value, and ascorbic acid (Vitamin C) was chosen as a GRAS and active linker. With these building blocks, we have synthesized a bioNICS-1 material. The synthesis was done in ethanol using a solvothermal method. The synthesis protocol was further optimized in three separate ways. Optimization of (i) synthesis parameters to improve the yield of the synthesis, (ii) input reactant ratio and addition of specific modulators for production of larger crystals, and (iii) differing of the heating source (conventional, microwave and ultrasound) to produce nano-crystals. With optimization strategies, the synthesis yield was increased. Larger crystals were prepared for structural analysis with the use of a proper species and amount of modulator. Synthesis protocol was adjusted to different heating sources, resulting in the production of nano-crystals of bioNICS-1 material. BioNICS-1 was further activated in ethanol and structurally characterized, resolving the crystal structure of new material.

Keywords: ascorbic acid, bioMOF, MOF, optimization, synthesis, zinc ascorbate

Procedia PDF Downloads 61
11516 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles

Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi


Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.

Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization

Procedia PDF Downloads 324
11515 Modeling and Optimization of Nanogenerator for Energy Harvesting

Authors: Fawzi Srairi, Abderrahmane Dib


Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.

Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator

Procedia PDF Downloads 225
11514 Eco-Benign and Highly Efficient Procedures for the Synthesis of Amides Catalyzed by Heteropolyanion-Based Ionic Liquids under Solvent-Free Conditions

Authors: Zhikai Chena, Renzhong Fu, Wen Chaib, Rongxin Yuanb


Two eco-benign and highly efficient routes for the synthesis of amides have been developed by treating amines with corresponding carboxylic acids or carboxamides in the presence of heteropolyanion-based ionic liquids (HPAILs) as catalysts. These practical reactions can tolerate a wide range of substrates. Thus, various amides were obtained in good to excellent yields under solvent-free conditions at heating. Moreover, recycling studies revealed that HPAILs are easily reusable for this two procedures. These methods provide green and much improved protocols over the existing methods.

Keywords: synthesis, amide, ıonic liquid, catalyst

Procedia PDF Downloads 196
11513 Versatile Variation of Fischer Indolization in Green Synthesis of Nitro Substituted Tetrahydrocarbazole

Authors: Zubi Sadiq, Ghazala Yaqub, Almas Hamid


We wish to report herein a very stimulating variation in Fischer indole reaction by adopting solvent and catalyst free conditions. A concise synthesis of dinitro tetrahydrocarbazole derivative 3 was introduced without the use of any accelerating agent at ambient temperature with fairly good yield. Product was fully corroborated by UV, FTIR, 1H NMR, 13C NMR, MS, and CHN analysis.

Keywords: fischer indole reaction, neutral medium, solvent free synthesis, tetrahydrocarbazole

Procedia PDF Downloads 266
11512 Synthesis and Structural Characterization of 6-Nitroindazole Derivatives

Authors: Mohamed El Moctar Abeidi


The indazole derivatives exhibit a wide spectrum of biological activities. They are known for their anti-tumor, antiplatelet, anti-viral, anti-microbial, anti-inflammatory, anti-leishmania and even anti-spermatogen. As part of our research on the synthesis of a number of heterocycles capable of exhibiting a biological and pharmacological property, due to our ongoing interest in the development of a simple and low-cost procedure for obtaining heterocyclic compounds that may have an interest for medicinal purposes. We present in this work the synthesis of 6-nitro-indazoles derivatives, using two different methods. the first method is the alkylation of Nitroindazole by two different alkylating agents under the conditions of solid/liquid phase transfer catalysis in N, N-dimethylformamide (DMF) in the presence of potassium carbonate (K₂CO₃) as a base, and tetra-n-butylammonium bromide (BTBA) as a catalyst. While the other method is the 1,3-dipolar cycloaddition, in this case, we have undertaken the preparation of bi-heterocyclic containing the 6-nitroindazole associate with group of isoxazoline, isoxazole or 1,2,3-Triazole under normal conditions and, under the catalytic conditions of the click chemistry we were also able to determine the structures without any ambiguity by the ¹H and ¹³C NMR.

Keywords: indazole, 6-nitroindazole, isoxazole, 1, 2, 3-Triazole

Procedia PDF Downloads 77
11511 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization

Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal


This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB.

Keywords: thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.

Procedia PDF Downloads 346
11510 Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions

Authors: Jyh-Cherng Chen, Yi-Jie Lin


This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 93
11509 Optimization of Fourth Order Discrete-Approximation Inclusions

Authors: Elimhan N. Mahmudov


The paper concerns the necessary and sufficient conditions of optimality for Cauchy problem of fourth order discrete (PD) and discrete-approximate (PDA) inclusions. The main problem is formulation of the fourth order adjoint discrete and discrete-approximate inclusions and transversality conditions, which are peculiar to problems including fourth order derivatives and approximate derivatives. Thus the necessary and sufficient conditions of optimality are obtained incorporating the Euler-Lagrange and Hamiltonian forms of inclusions. Derivation of optimality conditions are based on the apparatus of locally adjoint mapping (LAM). Moreover in the application of these results we consider the fourth order linear discrete and discrete-approximate inclusions.

Keywords: difference, optimization, fourth, approximation, transversality

Procedia PDF Downloads 287
11508 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm

Authors: Khaled Ben Oualid Medani, Samir Sayah


The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm

Procedia PDF Downloads 52
11507 Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method

Authors: Amara Prakasa Rao, N. V. S. N. Sarma


This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design.

Keywords: array factor, beamforming, null placement, optimization method, orthogonal array, Taguchi method, smart antenna system

Procedia PDF Downloads 315
11506 Optimization of the Enzymatic Synthesis of the Silver Core-Shell Nanoparticles

Authors: Lela Pintarić, Iva Rezić, Ana Vrsalović Presečki


Considering an enormous increase of the use of metal nanoparticles with the exactly defined characteristics, the main goal of this research was to found the optimal and environmental friendly method of their synthesis. The synthesis of the inorganic core-shell nanoparticles was optimized as a model. The core-shell nanoparticles are composed of the enzyme core belted with the metal ions, oxides or salts as a shell. In this research, enzyme urease was the core catalyst and the shell nanoparticle was made of silver. Silver nanoparticles are widespread utilized and some of their common uses are: as an addition to disinfectants to ensure an aseptic environment for the patients, as a surface coating for neurosurgical shunts and venous catheters, as an addition to implants, in production of socks for diabetics and athletic clothing where they improve antibacterial characteristics, etc. Characteristics of synthesized nanoparticles directly depend on of their size, so the special care during this optimization was given to the determination of the size of the synthesized nanoparticles. For the purpose of the above mentioned optimization, sixteen experiments were generated by the Design of Experiments (DoE) method and conducted under various temperatures, with different initial concentration of the silver nitrate and constant concentration of the urease of two separate manufacturers. Synthesized nanoparticles were analyzed by the Nanoparticle Tracking Analysis (NTA) method on Malvern NanoSight NS300. Results showed that the initial concentration of the silver ions does not affect the concentration of the synthesized silver nanoparticles neither their size distribution. On the other hand, temperature of the experiments has affected both of the mentioned values.

Keywords: core-shell nanoparticles, optimization, silver, urease

Procedia PDF Downloads 227
11505 Periodic Topology and Size Optimization Design of Tower Crane Boom

Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng


In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.

Keywords: tower crane boom, topology optimization, size optimization, periodic, SKO, optimization criterion

Procedia PDF Downloads 461
11504 Graphene Materials for Efficient Hybrid Solar Cells: A Spectroscopic Investigation

Authors: Mohammed Khenfouch, Fokotsa V. Molefe, Bakang M. Mothudi


Nowadays, graphene and its composites are universally known as promising materials. They show their potential in a large field of applications including photovoltaics. This study reports on the role of nanohybrids and nanosystems known as strong light harvesters in the efficiency of graphene hybrid solar cells. Our system included Graphene/ZnO/Porphyrin/P3HT layers. Moreover, the physical properties including surface/interface, optical and vibrational properties were also studied. Our investigations confirmed the interaction between the different components as well as the sensitivity of their photonics to the synthesis conditions. Remarkable energy and charge transfer were detected and deeply investigated. Hence, the optimization of the conditions will lead to the fabrication of higher conversion efficiency in graphene solar cells.

Keywords: graphene, optoelectronics, nanohybrids, solar cells

Procedia PDF Downloads 99
11503 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method

Authors: Omer Oral, Y. Emre Yilmaz


Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.

Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization

Procedia PDF Downloads 56
11502 Gas Lift Optimization to Improve Well Performance

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie


Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure

Procedia PDF Downloads 321
11501 Optimization of Hybrid off Grid Energy Station

Authors: Yehya Abdellatif, Iyad M. Muslih, Azzah Alkhalailah, Abdallah Muslih


Hybrid Optimization Model for Electric Renewable (HOMER) software was utilized to find the optimum design of a hybrid off-Grid system, by choosing the optimal solution depending on the cost analysis of energy based on different capacity shortage percentages. A complete study for the site conditions and load profile was done to optimize the design and implementation of a hybrid off-grid power station. In addition, the solution takes into consecration the ambient temperature effect on the efficiency of the power generation and the economical aspects of selection depending on real market price. From the analysis of the HOMER model results, the optimum hybrid power station was suggested, based on wind speed, and solar conditions. The optimization function objective is to minimize the Net Price Cost (NPC) and the Cost of Energy (COE) with zero and 10 percentage of capacity shortage.

Keywords: energy modeling, HOMER, off-grid system, optimization

Procedia PDF Downloads 414
11500 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli


In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 151
11499 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei


Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Keywords: citrate method, gold nanoparticles, Parsival, population balance equations, Turkevich organizer theory

Procedia PDF Downloads 123
11498 Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose

Authors: Rungsinee Sothornvit, Pattrathip Rodsamran


Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications.

Keywords: rice stubble, cellulose, carboxymethyl cellulose, degree of substitution, purity

Procedia PDF Downloads 323
11497 Green Synthesis of Red-Fluorescent Gold Nanoclusters: Characterization and Application for Breast Cancer Detection

Authors: Agnė Mikalauskaitė, Renata Karpicz, Vitalijus Karabanovas, Arūnas Jagminas


The use of biocompatible precursors for the synthesis and stabilization of fluorescent gold nanoclusters (NCs) with strong red photoluminescence creates an important link between natural sciences and nanotechnology. Herein, we report the cost-effective synthesis of Au nanoclusters by templating and reduction of chloroauric acid with the cheap amino acid food supplements. This synthesis under the optimized conditions leads to the formation of biocompatible Au NCs having good stability and intense red photoluminescence, peaked at 680 to 705 nm, with a quantum yield (QY) of ≈7% and the average lifetime of up to several µs. The composition and luminescent properties of the obtained NCs were compared with ones formed via well-known bovine serum albumin reduction approach. Our findings implied that synthesized Au NCs tend to accumulate in more tumorigenic breast cancer cells (line MDA-MB-213) and after dialysis can be prospective for bio imagining.

Keywords: gold nanoclusters, proteins, materials chemistry, red-photoluminescence, bioimaging

Procedia PDF Downloads 155
11496 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini


Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 295
11495 Green, Smooth and Easy Electrochemical Synthesis of N-Protected Indole Derivatives

Authors: Sarah Fahad Alajmi, Tamer Ezzat Youssef


Here, we report a simple method for the direct conversion of 6-Nitro-1H-indole into N-substituted indoles via electrochemical dehydrogenative reaction with halogenated reagents under strongly basic conditions through N–R bond formation. The N-protected indoles have been prepared under moderate and scalable electrolytic conditions. The conduct of the reactions was performed in a simple divided cell under constant current without oxidizing reagents or transition-metal catalysts. The synthesized products have been characterized via UV/Vis spectrophotometry, 1H-NMR, and FTIR spectroscopy. A possible reaction mechanism is discussed based on the N-protective products. This methodology could be applied to the synthesis of various biologically active N-substituted indole derivatives.

Keywords: green chemistry, 1H-indole, heteroaromatic, organic electrosynthesis

Procedia PDF Downloads 67
11494 Synthesis of Na-LSX Zeolite and Hydrosodalite from Polish Fly Ashes

Authors: Barbara Bialecka, Zdzislaw Adamczyk, Magdalena Cempa


In the work, the results of investigations into the hydrothermal zeolitization of fly ash from hard coal combustion in one of Polish Power Station have been presented. The chemical composition of the ash was determined by the method of X-ray fluorescence (XRF), whereas the phases of both fly ash and the products after synthesis were identified using microscopic observations, X-ray diffraction analysis (XRD) as well as electron scanning microscopy with measurements of the chemical compositions in micro areas (SEM/EDS). The synthesis was carried out with various concentrations of NaOH solution (3M, 4M and 6M) in the following conditions: synthesis temperature – 80ᵒC, synthesis time – 16 hours, volume of NaOH solution – 350ml, fly ash mass – 14g. The main chemical components of fly ash were SiO₂ and Al₂O₃, the contents of which reached 51.62 and 28.14%mas., respectively. The input ash contained mainly such phases as mullite, quarz, magnetite, and glass. The research results indicate that the phase composition of products after zeolitization was differentiated. The material after synthesis in 3M NaOH solution was found to contain mullite, quarz, magnetite, and Na-LSX zeolite. The products of synthesis in 4M NaOH solution were very similar to those in 3M solution (mullite, quarz, magnetite, Na-LSX zeolite), but they additionally contained hydrosodalite. The material after synthesis in 6M NaOH solution contains mullite, quarz, magnetite (similarly to synthesis in 3M and 4M NaOH solition) and additionally hydrosodalite. Therefore, the products of synthesis contain relic components from the fly ash input sample in the form of mullite, quarz, and magnetite, as well as new phases, which are Na-LSX zeolite and hydrosodalite. It should be noted that the products of synthesis in the case of 4M NaOH solution contained both new phases (Na-LSX zeolite and hydrosodalite), while the products from the extreme concentration of NaOH solutions (3M and 6M) contained only one of them. Observations in the scanning electron microscope revealed the new phases’ morphology. It was found that Na-LSX zeolite formed cubic crystals, whereas hydrosodalite formed characteristic aggregations. The results of investigations into the chemical composition in the micro area of phase grains in the products after synthesis reveal some dependencies, among others a characteristic increase in the content of sodium, related to the increased concentration of NaOH solution.

Keywords: Na-LSX, fly ash, hydrosodalite, zeolite

Procedia PDF Downloads 81