Search results for: on/off control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10398

Search results for: on/off control

10218 Control of Chaotic Behaviour in Parallel-Connected DC-DC Buck-Boost Converters

Authors: Ammar Nimer Natsheh

Abstract:

Chaos control is used to design a controller that is able to eliminate the chaotic behaviour of nonlinear dynamic systems that experience such phenomena. The paper describes the control of the bifurcation behaviour of a parallel-connected DC-DC buck-boost converter used to provide an interface between energy storage batteries and photovoltaic (PV) arrays as renewable energy sources. The paper presents a delayed feedback control scheme in a module converter comprises two identical buck-boost circuits and operates in the continuous-current conduction mode (CCM). MATLAB/SIMULINK simulation results show the effectiveness and robustness of the scheme.

Keywords: chaos, bifurcation, DC-DC Buck-Boost Converter, Delayed Feedback Control

Procedia PDF Downloads 392
10217 Designing a Robust Controller for a 6 Linkage Robot

Authors: G. Khamooshian

Abstract:

One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.

Keywords: 3-RRS, 6 linkage, parallel robot, control

Procedia PDF Downloads 118
10216 Real-Time Control of Grid-Connected Inverter Based on labVIEW

Authors: L. Benbaouche, H. E. , F. Krim

Abstract:

In this paper we propose real-time control of grid-connected single phase inverter, which is flexible and efficient. The first step is devoted to the study and design of the controller through simulation, conducted by the LabVIEW software on the computer 'host'. The second step is running the application from PXI 'target'. LabVIEW software, combined with NI-DAQmx, gives the tools to easily build applications using the digital to analog converter to generate the PWM control signals. Experimental results show that the effectiveness of LabVIEW software applied to power electronics.

Keywords: real-time control, labview, inverter, PWM

Procedia PDF Downloads 471
10215 Body Image Dissatifaction with and Personal Behavioral Control in Obese Patients Who are Attending to Treatment

Authors: Mariela Gonzalez, Zoraide Lugli, Eleonora Vivas, Rosana Guzmán

Abstract:

The objective was to determine the predictive capacity of self-efficacy perceived for weight control, locus of weight control and skills of weight self-management in the dissatisfaction of the body image in obese people who attend treatment. Sectional study conducted in the city of Maracay, Venezuela, with 243 obese who attend to treatment, 173 of the feminine gender and 70 of the male, with ages ranging between 18 and 57 years old. The sample body mass index ranged between 29.39 and 44.14. The following instruments were used: The Body Shape Questionnaire (BSQ), the inventory of body weight self-regulation, The Inventory of self-efficacy in the regulation of body weight and the Inventory of the Locus of weight control. Calculating the descriptive statistics and of central tendency, coefficients of correlation and multiple regression; it was found that a low ‘perceived Self-efficacy in the weight control’ and a high ‘Locus of external control’, predict the dissatisfaction with body image in obese who attend treatment. The findings are a first approximation to give an account of the importance of the personal control variables in the study of the psychological grief on the overweight individual.

Keywords: dissatisfaction with body image, obese people, personal control, psychological variables

Procedia PDF Downloads 399
10214 Slip Suppression Sliding Mode Control with Various Chattering Functions

Authors: Shun Horikoshi, Tohru Kawabe

Abstract:

This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.

Keywords: sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis

Procedia PDF Downloads 285
10213 Human Gesture Recognition for Real-Time Control of Humanoid Robot

Authors: S. Aswath, Chinmaya Krishna Tilak, Amal Suresh, Ganesh Udupa

Abstract:

There are technologies to control a humanoid robot in many ways. But the use of Electromyogram (EMG) electrodes has its own importance in setting up the control system. The EMG based control system helps to control robotic devices with more fidelity and precision. In this paper, development of an electromyogram based interface for human gesture recognition for the control of a humanoid robot is presented. To recognize control signs in the gestures, a single channel EMG sensor is positioned on the muscles of the human body. Instead of using a remote control unit, the humanoid robot is controlled by various gestures performed by the human. The EMG electrodes attached to the muscles generates an analog signal due to the effect of nerve impulses generated on moving muscles of the human being. The analog signals taken up from the muscles are supplied to a differential muscle sensor that processes the given signal to generate a signal suitable for the microcontroller to get the control over a humanoid robot. The signal from the differential muscle sensor is converted to a digital form using the ADC of the microcontroller and outputs its decision to the CM-530 humanoid robot controller through a Zigbee wireless interface. The output decision of the CM-530 processor is sent to a motor driver in order to control the servo motors in required direction for human like actions. This method for gaining control of a humanoid robot could be used for performing actions with more accuracy and ease. In addition, a study has been conducted to investigate the controllability and ease of use of the interface and the employed gestures.

Keywords: electromyogram, gesture, muscle sensor, humanoid robot, microcontroller, Zigbee

Procedia PDF Downloads 376
10212 Synthetic Optimizing Control of Wind-Wave Hybrid Energy Conversion System

Authors: Lei Xue, Liye Zhao, Jundong Wang, Yu Xue

Abstract:

A hybrid energy conversion system composed of a floating offshore wind turbine (FOWT) and wave energy converters (WECs) may possibly reduce the levelized cost of energy, improving the platform dynamics and increasing the capacity to harvest energy. This paper investigates the aerodynamic performance and dynamic responses of the combined semi-submersible FOWT and point-absorber WECs in frequency and time domains using synthetic optimizing control under turbulent wind and irregular wave conditions. Individual pitch control is applied to the FOWT part, while spring–damping control is used on the WECs part, as well as the synergistic control effect of both are studied. The effect of the above control optimization is analyzed under several typical working conditions, such as below-rated wind speed, rated wind speed, and above-rated wind speed by OpenFAST and WEC-Sim software. Particularly, the wind-wave misalignment is also comparatively investigated, which has demonstrated the importance of applying proper integrated optimal control in this hybrid energy system. More specifically, the combination of individual pitch control and spring–damping control is able to mitigate the platform pitch motion and improve output power. However, the increase in blade root load needs to be considered which needs further investigations in the future.

Keywords: floating offshore wind turbine, wave energy converters, control optimization, individual pitch control, dynamic response

Procedia PDF Downloads 17
10211 Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization

Authors: Omid Heydarnia, Akbar Allahverdizadeh, Behnam Dadashzadeh, M. R. Sayyed Noorani

Abstract:

Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits.

Keywords: underactuated system, biped robot, fuzzy control, partial feedback linearization

Procedia PDF Downloads 313
10210 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 523
10209 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 466
10208 Systematic and Simple Guidance for Feed Forward Design in Model Predictive Control

Authors: Shukri Dughman, Anthony Rossiter

Abstract:

This paper builds on earlier work which demonstrated that Model Predictive Control (MPC) may give a poor choice of default feed forward compensator. By first demonstrating the impact of future information of target changes on the performance, this paper proposes a pragmatic method for identifying the amount of future information on the target that can be utilised effectively in both finite and infinite horizon algorithms. Numerical illustrations in MATLAB give evidence of the efficacy of the proposal.

Keywords: model predictive control, tracking control, advance knowledge, feed forward

Procedia PDF Downloads 496
10207 Effect of Internal Control Weaknesses and Audit Opinion to the Findings of State Losses

Authors: Wiji Wijaya

Abstract:

The aim of this research is to examine the effect of internal control weaknesses and audit opinion on the state’s loss findings of audit compliance to the regulation in public sector. The samples of this research consisted of 175 local government financial statements in the area of Central Java Province at 2009 until 2013. Area sampling design was used to select the financial statements. This study using quantitative descriptive statistical analysis and regression was run for data analysis and hypothesis examination. Result of this study indicated that internal control weaknesses and audit opinion contributes a positive influence which is significant to the state’s loss findings of audit compliance to the regulation. The internal control weaknesses that affect the state's loss finding are weakness control system of accounting and reporting with the value of the critical ratio 0.010 p 2.613 ; weakness budget execution control system with critical ratio value of 3.421 p 0.001 and weaknesses internal control structure with critical ratio value of 2.246 p 0.026 . While the audit opinion with a critical ratio value of 4.401 p 0.000. The implications of this research so that policy makers at the local government should give more attention to the implementation and improvement of internal control system.

Keywords: audit compliance findings, state’s loss, audit opinion, internal control, local government

Procedia PDF Downloads 346
10206 Advantages of Fuzzy Control Application in Fast and Sensitive Technological Processes

Authors: Radim Farana, Bogdan Walek, Michal Janosek, Jaroslav Zacek

Abstract:

This paper presents the advantages of fuzzy control use in technological processes control. The paper presents a real application of the Linguistic Fuzzy-Logic Control, developed at the University of Ostrava for the control of physical models in the Intelligent Systems Laboratory. The paper presents an example of a sensitive non-linear model, such as a magnetic levitation model and obtained results which show how modern information technologies can help to solve actual technical problems. A special method based on the LFLC controller with partial components is presented in this paper followed by the method of automatic context change, which is very helpful to achieve more accurate control results. The main advantage of the used system is its robustness in changing conditions demonstrated by comparing with conventional PID controller. This technology and real models are also used as a background for problem-oriented teaching, realized at the department for master students and their collaborative as well as individual final projects.

Keywords: control, fuzzy logic, sensitive system, technological proves

Procedia PDF Downloads 432
10205 Robust Control Design and Analysis Using SCILAB for a Mass-Spring-Damper System

Authors: Yoonsoo Kim

Abstract:

This paper introduces an open-source software package SCILAB, an alternative of MATLAB, which can be used for robust control design and analysis of a typical mass-spring-damper (MSD) system. Using the previously published ideas in this popular mechanical system is considered to provide another example of usefulness of SCILAB for advanced control design.

Keywords: robust control, SCILAB, mass-spring-damper (MSD), popular mechanical systems

Procedia PDF Downloads 426
10204 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 495
10203 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 275
10202 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 306
10201 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: mobile robot, trajectory tracking, Lyapunov, stability

Procedia PDF Downloads 344
10200 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 288
10199 Research on Measuring Operational Risk in Commercial Banks Based on Internal Control

Authors: Baobao Li

Abstract:

Operational risk covers all operations of commercial banks and has a close relationship with the bank’s internal control. But in the commercial banks' management practice, internal control is always separated from the operational risk measurement. With the increasing of operational risk events in recent years, operational risk is paid more and more attention by regulators and banks’ managements. The paper first discussed the relationship between internal control and operational risk management and used CVaR-POT model to measure operational risk, and then put forward a modified measurement method (to use operational risk assessment results to modify the measurement results of the CVaR-POT model). The paper also analyzed the necessity and rationality of this method. The method takes into consideration the influence of internal control, improves the accuracy and effectiveness of operational risk measurement and save the economic capital for commercial banks, avoiding the drawbacks of using some mainstream models one-sidedly.

Keywords: commercial banks, internal control, operational risk, risk measurement

Procedia PDF Downloads 361
10198 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: optimal control, nonlinear systems, state estimation, Kalman filter

Procedia PDF Downloads 164
10197 Sliding Mode Control of the Power of Doubly Fed Induction Generator for Variable Speed Wind Energy Conversion System

Authors: Ahmed Abbou, Ali Mousmi, Rachid El Akhrif

Abstract:

This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.

Keywords: correction of the equivalent command, DFIG, induction machine, sliding mode controller

Procedia PDF Downloads 379
10196 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability

Procedia PDF Downloads 481
10195 Comparison between Classical and New Direct Torque Control Strategies of Induction Machine

Authors: Mouna Essaadi, Mohamed Khafallah, Abdallah Saad, Hamid Chaikhy

Abstract:

This paper presents a comparative analysis between conventional direct torque control (C_DTC), Modified direct torque control (M_DTC) and twelve sectors direct torque control (12_DTC).Those different strategies are compared by simulation in term of torque, flux and stator current performances. Finally, a summary of the comparative analysis is presented.

Keywords: C_DTC, M_DTC, 12_DTC, torque dynamic, stator current, flux, performances

Procedia PDF Downloads 575
10194 Voice and Head Controlled Intelligent Wheelchair

Authors: Dechrit Maneetham

Abstract:

The aim of this paper was to design a void and head controlled electric power wheelchair (EPW). A novel activate the control system for quadriplegics with voice, head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely x and y. At the same time, patients can control the motorized wheelchair using voice signals (forward, backward, turn left, turn right, and stop) given by it self. The model of a dc motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller as controller, a DC motor driven EPW and feedback elements. This paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the dc motor so that the motor runs very closed to the reference speed and angle. Intelligent wheelchair can be used to ensure the person’s voice and head are attending the direction of travel asserted by a conventional, direction and speed control.

Keywords: wheelchair, quadriplegia, rehabilitation , medical devices, speed control

Procedia PDF Downloads 501
10193 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method

Authors: Abolfazl Mohammadijoo

Abstract:

In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory.

Keywords: mobile manipulator, sliding mode control, dynamic interaction, mobile robotics

Procedia PDF Downloads 148
10192 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Authors: Hanan Rizk

Abstract:

A heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed a PID controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software, and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control

Procedia PDF Downloads 185
10191 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control

Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon

Abstract:

Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.

Keywords: battery energy storage system, electrical network frequency stability, frequency control unit, PowerFactor

Procedia PDF Downloads 97
10190 Autonomous Rendezvous for Underactuated Spacecraft

Authors: Espen Oland

Abstract:

This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.

Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body

Procedia PDF Downloads 265
10189 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer

Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah

Abstract:

In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.

Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control

Procedia PDF Downloads 324