Search results for: non-linear load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3734

Search results for: non-linear load

464 Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

The Stability in harsh environments thanks to excellent electrical, mechanical and thermal properties is what ceramics are all about selected materials for many applications despite advent of new materials such as plastics and composites. However, ceramic materials have disadvantages, including brittleness. Fragility is often attributed to pottery strong covalent and ionic bonds in the ceramic body. There is still much to learn about brittle cracks in a attention to detail, hence the fragility of the ceramic and its catastrophic failure of a frequently studied topic, particularly in charging applications. One of the most commonly used ceramics for load-bearing applications such as veneers is porcelain. Porcelain is a type of traditional pottery. Traditional pottery consists mainly of three basic ingredients: clay, which gives plasticity; silica which maintains the shape and stability of the ceramic body over temperature high temperature; and feldspar affecting glazing. In traditional pottery, the inversion of quartz during cooling the process can create microcracks that act as a stress concentration centers. Consequently, subcritical crack growth is caused due to quartz inversion origins unpredictable catastrophic failure of the work of ceramic bodies when reloading. In the case of porcelain, however, this is what the mullite hypothesis says the strength of porcelain can be significantly increased with felt Interlocking of mullite needles in the ceramic body.in this way realistic assessment of the role of quartz and mullite Porcelain with a strength of is needed to grow stronger and smaller fragile porcelain. Currently,the lack of reports on Young's moduli in the literature leads to erroneous conclusions in this regard mechanical behavior of porcelain. Therefore, the current project uses the Young's modulus approach for the investigation the role of quartz and mullite on the mechanical strength of various porcelains, in addition to reducing particle size, flexural strength fractographic forces and techniques.

Keywords: materials, technical, ceramics, properties, thermal, stability, advantages

Procedia PDF Downloads 49
463 Dynamic Stability of a Wings for Drone Aircraft Subjected to Parametric Excitation

Authors: Iyd Eqqab Maree, Habil Jurgen Bast

Abstract:

Vibration control of machines and structures incorporating viscoelastic materials in suitable arrangement is an important aspect of investigation. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. Multilayered cantilever sandwich beam like structures can be used in aircrafts and other applications such as robot arms for effective vibration control. These members may experience parametric instability when subjected to time dependant forces. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. The purpose of the present work is to investigate the dynamic stability of a three layered symmetric sandwich beam (Drone Aircraft wings ) subjected to an end periodic axial force . Equations of motion are derived using finite element method (MATLAB software). It is observed that with increase in core thickness parameter fundamental buckling load increases. The fundamental resonant frequency and second mode frequency parameter also increase with increase in core thickness parameter. Fundamental loss factor and second mode loss factor also increase with increase in core thickness parameter. Increase in core thickness parameter enhances the stability of the beam. With increase in core loss factor also the stability of the beam enhances. There is a very good agreement of the experimental results with the theoretical findings.

Keywords: steel cantilever beam, viscoelastic material core, loss factor, transition region, MATLAB R2011a

Procedia PDF Downloads 436
462 Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading

Authors: Wei Zhao, Yuxuan Yao, Hao Chen

Abstract:

In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load.

Keywords: battery module, finite element simulation, power battery, packing angle

Procedia PDF Downloads 17
461 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 143
460 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 71
459 Hematological Profiles of Visceral Leishmaniasis Patients before and after Treatment of Anti-Leishmanial Drugs at University of Gondar Leishmania Research and Treatment Center Northwest, Ethiopia

Authors: Fitsumbrhan Tajebe, Fadil Murad, Mitikie Tigabie, Mareye Abebaw, Tadele Alemu, Sefanit Abate, Rezika Mohammedw, Arega Yeshanew, Elias Shiferaw

Abstract:

Background: Visceral leshimaniasis is a parasitic disease characterized by a systemic infection of phagocytic cells. Hematological parameters of these patients may be affected by the progress of the disease or treatment. Thus, the current study aimed to assess the hematological profiles of visceral leishmaniasis patients before and after treatment. Method: An institutional based retrospective cohort study was conducted among visceral leishmaniasis patients at University of Gondar Comprehensive Specialized Referral Hospital Leishmaniasis Research and Treatment Center from 2013 to 2018. Hematological profiles before initiation and after completion of treatment were extracted from registration book. Descriptive statics was presented using frequency and percentage. Paired t-test and Wilcoxon Signed rank test were used for comparing mean difference for normally and non- normally distributed data, respectively. Spearman and Pearson correlation analysis was used to describe the correlation of hematological parameters with different variables. P value < 0.05 was considered as statistically significant. Result: Except absolute nerutrophil count, post treatment hematological parameters show a significant increment compared to pretreatment one. The prevalence of anemia, leucopenia and thrombocytopenia was 85.5%, 83.4% and 75.8% prior to treatment and it was 58.3%, 38.2% and 19.2% after treatment, respectively. Moreover, parasite load of the disease showed statistically significant negative correlation with hematological profiles mainly with white blood cell and red blood cell. Conclusion: Majority of hematological profiles of patients with active VL have been restored after treatment, which might be associated with treatment effect on parasite proliferation and concentration of parasite in visceral organ, which directly affect hematological profiles.

Keywords: visceral leshimaniasis, hematological profile, anti-leshimanial drug, Gondar

Procedia PDF Downloads 95
458 Occurence And Management Of Coliform Bacteria On Tomatoes

Authors: Cho Achidi

Abstract:

Tomato is a crucial food crop significantly contributes to global food and nutrition security. However, postharvest losses severely limit its role. Therefore, it is necessary to develop sustainable strategies to minimize these losses and improve the shelf-life of tomato fruits. One of the major concerns is bacterial infections, particularly by faecal coliform bacteria, which can cause food poisoning and illnesses like diarrhoea and dysentery. This study seeks to identify the presence of coliform bacteria on tomato fruits in fields and markets in Muea, Buea Municipality. The study also evaluated different management strategies to reduce the bacterial incidence and load on tomato fruits. A total of 200 fruits were sampled for both the coliform survey and shelf-life analysis. Ten farmers and traders provided samples, including asymptomatic and symptomatic tomato fruits. The samples designated for shelf-life analysis were treated with Aquatab, warm water, lemon, and onion. The results indicated that out of the 80 symptomatic samples collected, 12.5% contained faecal and total coliform species. Among the ten farms sampled, 14% were infected with coliform bacteria, with the highest infestation rate of 60% recorded in field 4. Furthermore, 15% of the asymptomatic tomato fruits were found to be infected by coliform bacteria. Regarding the management strategies, Aquatabs exhibited the highest efficacy in reducing the incidence of coliform bacteria on tomato fruits, followed by onion and lemon extracts. Although hot water treatment effectively removed bacteria from the fruits, damaging the cell wall negatively affected their shelf-life. Overall, this study emphasizes the severity of coliform bacterial pathogens in the Muea area, particularly their occurrence on asymptomatic tomatoes, which poses a significant concern for plant quarantine services. It also demonstrates potential options for mitigating this bacterial challenge.

Keywords: tomato, shelf-life analysis, food and nutrition security, coliform bbacteria

Procedia PDF Downloads 32
457 Role of Spatial Variability in the Service Life Prediction of Reinforced Concrete Bridges Affected by Corrosion

Authors: Omran M. Kenshel, Alan J. O'Connor

Abstract:

Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions for the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either form the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure were predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure.

Keywords: Chloride-induced corrosion, Monte-Carlo simulation, reinforced concrete, spatial variability

Procedia PDF Downloads 439
456 Installing Beehives in Solar Parks to Enhance Local Biodiversity

Authors: Nuria Rubio, María Campo, Joana Ruiz, Paola Vecino

Abstract:

Renewable energies have been proposed for some years as a solution to the ecological crisis caused by traditional fuels. The installation of solar parks for electricity production is therefore necessary for a transition to cleaner energy. Additionally, spaces occupied by solar parks can be ideal places for biodiversity promotion consisting in controlled areas allowing free transit of numerous animal species in absence of phytosanitary products or other substances commonly used in rural areas. The main objective of this project is increasing local biodiversity. Secondary objectives include the installation of beehives with Apis mellifera iberiensis swarms (native honeybee species), the monitoring and periodic evaluation of the state of health and demographic progression of these swarms and study of biodiversity increase in these areas, mainly due to the presence of Apis mellifera iberiensis. Prior to bee-hives installation, a preliminary study of the area is carried out to quantify floral load, biocenosis and geo-climatological characteristics of the area of study for determining the optimal number of hives for the benefit of the local ecosystem. Once beehives set up, the bee-swarms health status is monitored and evaluated quarterly using monitoring systems. Parameters studies are weight, humidity inside the hive, external and internal temperature, and sound inside the hive. Furthermore, a biodiversity study of the area was conducted by direct observation and quantification of species (S) in the area of bee-foraging (1 km around the beehives). A great diversity of species has been detected in the area of study. Therefore, the population of Apis mellifera iberiensis is not displacing other pollinators in the area, on the contrary, results show that it is contributing to the pollination of the different plant species enhancing wild bees’ biodiversity.

Keywords: biodiversity, honeybee, pollination, solar park

Procedia PDF Downloads 15
455 Environmental Assessment of Roll-to-Roll Printed Smart Label

Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois

Abstract:

Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.

Keywords: Eco-design, label, life cycle assessment, printed electronics

Procedia PDF Downloads 126
454 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects

Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad

Abstract:

Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.

Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell

Procedia PDF Downloads 383
453 Analytical and Numerical Studies on the Behavior of a Freezing Soil Layer

Authors: X. Li, Y. Liu, H. Wong, B. Pardoen, A. Fabbri, F. McGregor, E. Liu

Abstract:

The target of this paper is to investigate how saturated poroelastic soils subject to freezing temperatures behave and how different boundary conditions can intervene and affect the thermo-hydro-mechanical (THM) responses, based on a particular but classical configuration of a finite homogeneous soil layer studied by Terzaghi. The essential relations on the constitutive behavior of a freezing soil are firstly recalled: ice crystal - liquid water thermodynamic equilibrium, hydromechanical constitutive equations, momentum balance, water mass balance, and the thermal diffusion equation, in general, non-linear case where material parameters are state-dependent. The system of equations is firstly linearized, assuming all material parameters to be constants, particularly the permeability of liquid water, which should depend on the ice content. Two analytical solutions solved by the classic Laplace transform are then developed, accounting for two different sets of boundary conditions. Afterward, the general non-linear equations with state-dependent parameters are solved using a commercial code COMSOL based on finite elements method to obtain numerical results. The validity of this numerical modeling is partially verified using the analytical solution in the limiting case of state-independent parameters. Comparison between the results given by the linearized analytical solutions and the non-linear numerical model reveals that the above-mentioned linear computation will always underestimate the liquid pore pressure and displacement, whatever the hydraulic boundary conditions are. In the nonlinear model, the faster growth of ice crystals, accompanying the subsequent reduction of permeability of freezing soil layer, makes a longer duration for the depressurization of water liquid and slower settlement in the case where the ground surface is swiftly covered by a thin layer of ice, as well as a bigger global liquid pressure and swelling in the case of the impermeable ground surface. Nonetheless, the analytical solutions based on linearized equations give a correct order-of-magnitude estimate, especially at moderate temperature variations, and remain a useful tool for preliminary design checks.

Keywords: chemical potential, cryosuction, Laplace transform, multiphysics coupling, phase transformation, thermodynamic equilibrium

Procedia PDF Downloads 47
452 A Monolithic Arbitrary Lagrangian-Eulerian Finite Element Strategy for Partly Submerged Solid in Incompressible Fluid with Mortar Method for Modeling the Contact Surface

Authors: Suman Dutta, Manish Agrawal, C. S. Jog

Abstract:

Accurate computation of hydrodynamic forces on floating structures and their deformation finds application in the ocean and naval engineering and wave energy harvesting. This manuscript presents a monolithic, finite element strategy for fluid-structure interaction involving hyper-elastic solids partly submerged in an incompressible fluid. A velocity-based Arbitrary Lagrangian-Eulerian (ALE) formulation has been used for the fluid and a displacement-based Lagrangian approach has been used for the solid. The flexibility of the ALE technique permits us to treat the free surface of the fluid as a Lagrangian entity. At the interface, the continuity of displacement, velocity and traction are enforced using the mortar method. In the mortar method, the constraints are enforced in a weak sense using the Lagrange multiplier method. In the literature, the mortar method has been shown to be robust in solving various contact mechanics problems. The time-stepping strategy used in this work reduces to the generalized trapezoidal rule in the Eulerian setting. In the Lagrangian limit, in the absence of external load, the algorithm conserves the linear and angular momentum and the total energy of the system. The use of monolithic coupling with an energy-conserving time-stepping strategy gives an unconditionally stable algorithm and allows the user to take large time steps. All the governing equations and boundary conditions have been mapped to the reference configuration. The use of the exact tangent stiffness matrix ensures that the algorithm converges quadratically within each time step. The robustness and good performance of the proposed method are demonstrated by solving benchmark problems from the literature.

Keywords: ALE, floating body, fluid-structure interaction, monolithic, mortar method

Procedia PDF Downloads 242
451 Comparison of Small Ruminants (Sheep) Production Efficiency of Nomadic and Transhumance Flocks in Malakand, Pakistan

Authors: Akbar Nawaz Khan, Abdul Ghaffar, Abdur Rehman, Muhammad Naeem Riaz, Sayed Muhammad Hassan Andrabi

Abstract:

The present study was conducted to compare sheep rearing in nomadic with transhumance system in term of production parameters. The following parameters which studied for comparison were household size, landholding area, flock size, body condition score, fecal egg count and live weight change in sheep under nomadic and transhumance systems of management in Malakand since October 2010 to March 2011. Further the effects of Body Condition Score (BCS) and Fecal Egg Count (FEC) on production were also examined. Two systems were checked for the purpose to check the efficiency of production. A total of eight flocks, four each from nomadic and transhumance system were selected for the study; each flock was divided into treatment and controlled groups to check the effect of treatment or de-wormers. A total of 160 animals were selected randomly (80 treated, 80 controlled). The adult ram average weight transhumance system was 55.58 kg while in nomadic that was 54.16 kg, weight change was positive, and the highest change was recorded in transhumance treated which was 13%. Fecal egg count was record low (75 EPG) in transhumance treated group while high (330 EPG) in nomadic controlled. Body condition score was recorded 3.6 for transhumance treated and 3.32 for nomadic treated. It is concluded from the present study that transhumance system performed significantly (p < 0.05) better in respect of live weight, BCS, FEC, family size, Landholding area, number of animals in a flock, offspring record, culling, and mortality. Mean values are 7.367 ± 0221, 0.900 ± 0.071, 63.167 ± 1.559, 55.600 ± 1.480, 8.300 ± 0.321 and 2.500 ± 0.158 respectively. De-wormer effect on FEC showed a significant reduction in egg load in mature sheep on both systems.

Keywords: small ruminant, sheep, nomadic, transhumance, Malakand, production efficiency

Procedia PDF Downloads 187
450 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 258
449 Crystalline Particles Dispersed Cu-Based Metallic Glassy Composites Fabricated by Spark Plasma Sintering

Authors: Sandrine Cardinal, Jean-Marc Pelletier, Guang Xie, Florian Mercier, Florent Delmas

Abstract:

Bulk metallic glasses exhibit several superior properties, compared to their corresponding crystalline counterpart, such as high strength, high elastic limit or good corrosion resistance. Therefore they can be considered as good candidates for structural applications in many sectors. However, they are generally brittle and do not exhibit plastic deformation at room temperature. These materials are mainly obtained by rapid cooling from a liquid state to prevent crystallization, which limits their size. To overcome these two drawbacks: fragility and limited dimensions, composite metallic glass matrix reinforced by a second phase whose role is to slow crack growth are developed. Concerning the limited size of the pieces, the proposed solution is to get the material from amorphous powders by densifying under load. In this study, Cu50Zr45Al5 bulk metallic glassy matrix composites (MGMCs) containing different volume fraction (Vf) of Zr crystalline particles were manufactured by spark plasma sintering (SPS). Microstructure, thermal stability and mechanical properties of the MGMCs were investigated. Matrix of the composites remains a fully amorphous phase after consolidation at 420°C under 600 MPa. A good dispersion of the particles in the glassy matrix is obtained. Results show that the compressive strength decreases with Vf : 1670 MPa (Vf=0%) to 1300MPa (Vf=30%), the elastic modulus decreases but only slighty respectively 97.3GPa and 94.5 GPa and plasticity is improved from 0 to 4%. Fractographic investigation indicates a good bonding between amorphous and crystalline particles. In conclusion, present study has demonstrated that SPS method is useful for the synthesis of the bulk glassy composites. Large controlled microstructure specimens with interesting ductility can be obtained compared with others methods.

Keywords: composite, mechanical properties, metallic glasses, spark plasma sintering

Procedia PDF Downloads 250
448 Verbal Working Memory in Sequential and Simultaneous Bilinguals: An Exploratory Study

Authors: Archana Rao R., Deepak P., Chayashree P. D., Darshan H. S.

Abstract:

Cognitive abilities in bilinguals have been widely studied over the last few decades. Bilingualism has been found to extensively facilitate the ability to store and manipulate information in Working Memory (WM). The mechanism of WM includes primary memory, attentional control, and secondary memory, each of which makes a contribution to WM. Many researches have been done in an attempt to measure WM capabilities through both verbal (phonological) and nonverbal tasks (visuospatial). Since there is a lot of speculations regarding the relationship between WM and bilingualism, further investigation is required to understand the nature of WM in bilinguals, i.e., with respect to sequential and simultaneous bilinguals. Hence the present study aimed to highlight the verbal working memory abilities in sequential and simultaneous bilinguals with respect to the processing and recall abilities of nouns and verbs. Two groups of bilinguals aged between 18-30 years were considered for the study. Group 1 consisted of 20 (10 males and 10 females) sequential bilinguals who had acquired L1 (Kannada) before the age of 3 and had exposure to L2 (English) for a period of 8-10 years. Group 2 consisted of 20 (10 males and 10 females) simultaneous bilinguals who have acquired both L1 and L2 before the age of 3. Working memory abilities were assessed using two tasks, and a set of stimuli which was presented in gradation of complexity and the stimuli was inclusive of frequent and infrequent nouns and verbs. The tasks involved the participants to judge the correctness of the sentence and simultaneously remember the last word of each sentence and the participants are instructed to recall the words at the end of each set. The results indicated no significant difference between sequential and simultaneous bilinguals in processing the nouns and verbs, and this could be attributed to the proficiency level of the participants in L1 and the alike cognitive abilities between the groups. And recall of nouns was better compared to verbs, maybe because of the complex argument structure involved in verbs. Similarly, authors found a frequency of occurrence of nouns and verbs also had an effect on WM abilities. The difference was also found across gradation due to the load imposed on the central executive function and phonological loop.

Keywords: bilinguals, nouns, verbs, working memory

Procedia PDF Downloads 90
447 Microencapsulation for Enhancing the Survival of S. thermophilus and L. bulgaricus during Spray Drying of Sweetened Yoghurt

Authors: Dibyakanta Seth, Hari Niwas Mishra, Sankar Chandra Deka

Abstract:

Microencapsulation is an established method of protecting bacteria from the adverse conditions. An improved extrusion spraying technique was used to encapsulate mixed bacteria culture of S. thermophilus and L. bulgaricus using sodium alginate as the coating material. The effect of nozzle air pressure (200, 300, 400 and 500 kPa), sodium alginate concentration (1%, 1.5%, 2%, 2.5% and 3% w/v), different concentration of calcium chloride (0.1, 0.2, 1 M) and initial cell loads (10⁷, 10⁸, 10⁹ cfu/ml) on the viability of encapsulated bacteria were investigated. With the increase in air pressure the size of microcapsules decreased, however the effect was non-significant. There was no significant difference (p > 0.05) in the viability of encapsulated cells when the concentration of calcium chloride was increased. Increased level of sodium alginate significantly increased the survival ratio of encapsulated bacteria (P < 0.01). Encapsulation with 3% alginate was treated as optimum since a higher concentration of alginate increased the gel strength of the solution and thus was difficult to spray. Under optimal conditions 3% alginate, 10⁹ cfu/ml cell load, 20 min hardening time in 0.1 M CaCl2 and 400 kPa nozzle air pressure, the viability of bacteria cells was maximum compared to the free cells. The microcapsules made at the optimal condition when mixed with yoghurt and subjected to spray drying at 148°C, the survival ratio was 2.48×10⁻¹ for S. thermophilus and 7.26×10⁻¹ for L. bulgaricus. In contrast, the survival ratio of free cells of S. thermophilus and L. bulgaricus were 2.36×10⁻³ and 8.27×10⁻³, respectively. This study showed a decline in viable cells count of about 0.5 log over a period of 7 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. Microencapsulation provided better protection at higher acidity compared to free cells. This study demonstrated that microencapsulation of yoghurt culture in sodium alginate is an effective technique of protection against extreme drying conditions.

Keywords: extrusion, microencapsulation, spray drying, sweetened yoghurt

Procedia PDF Downloads 222
446 Waste Heat Recovery System

Authors: A. Ramkumar, Anvesh Sagar, Preetham P. Karkera

Abstract:

Globalization in the modern era is dependent on the International logistics, the economic and reliable means is provided by the ocean going merchant vessel. The propulsion system which drives this massive vessels has gone through leaps and bounds of evolution. Most reliable system of propulsion adopted by the majority of vessels is by marine diesel engine. Since the first oil crisis of 1973, there is demand in increment of efficiency of main engine. Due to increase in the oil prices ship-operators explores for reduction in the operational cost of ship. And newly adopted IMO’s EEDI & SEEMP rules calls for the effective measures taken in this regard. The main engine of a ship suffers a lot of thermal losses, they mainly occur due to exhaust gas waste heat, radiation and cooling. So to increase the overall efficiency of system, we have to look into the solution to harnessing this waste energy of main engine to increase the fuel economy. During the course of research, engine manufacturers have developed many waste heat recovery systems. In our paper we see about additional options to harness this waste heat. The exhaust gas of engine coming out from the turbocharger still holds enough heat to go to the exhaust gas economiser to produce steam. This heat of exhaust gas can be used to heat a liquid of less boiling point after coming out from the turbocharger. The vapour of this secondary liquid can be superheated by a bypass exhaust or exhaust of turbocharger. This vapour can be utilized to rotate the turbine which is coupled to a generator. And the electric power for ship service can be produced with proper configuration of system. This can be included in PMS of ship. In this paper we seek to concentrate on power generation with use of exhaust gas. Thereby taking out the load on the main generator and increasing the efficiency of the system. This will help us to comply with the new rules of IMO. Our method helps to develop clean energy.

Keywords: EEDI–energy efficiency design index, IMO–international maritime organization PMS-power management system, SEEMP–ship energy efficiency management plan

Procedia PDF Downloads 326
445 Design and Development of Engine Valve Train Wear Test Rig for the Assessment of Valve Train Tribochemistry

Authors: V. Manjunath, C. V. Chandrashekara

Abstract:

Ecosystem authority calls for the use of lubricants with less effect on the nature in terms of exhaust emission, while engine user demands more mileage per liter of fuel without any compromise on engine durability. From this viewpoint, engine manufacturers require the optimum combination of materials and lubricant additive package to minimize friction and wear in the engine components like piston, crankshaft and valve train etc. The demands are placed for requirements to operate at higher speeds, loads, temperature and for extended replacement intervals of engine oil. Besides, it is necessary to accurately predict the lubricant life or the replacement interval to prevent lubrication and valve-train components failure. Experimental tribology evaluation of new engine oils requires large amount of time and energy. Hence low cost bench test is necessary for industries and original equipment manufacturing companies (OEM) to study the performance of lubricants. The present work outlines the procedure for the design and development of a valve train wear rig (MCR) to simulate the ASTMD-6891 and to develop new engine test for Indian automobile sector to evaluate lubricants for Indian automobile market. In order to improve the lubrication between cam and follower of internal combustion engine, the influence of materials or oils viscosity and additives on the friction and wear characteristics are examined with test rig by increasing the contact load at two different revolution speed. From the experimentation following results are made obvious. Temperature, Torque, speed and wear plots are used to validate the data obtained from the newly developed multi-cam cam rig (MCR) with follower against a cast iron camshaft. Camshaft lobe wear is measured at seven different locations on cam profile. Tribofilm formed using 5W-30 oil is evaluated and correlated with the standard test results.

Keywords: ASTMD-6891, multi-cam rig (MCR), 5W-30, cam-profile

Procedia PDF Downloads 138
444 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience

Authors: Al-Amin, Huanjun Jiang, Anayat Ali

Abstract:

Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.

Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network

Procedia PDF Downloads 52
443 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents

Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić

Abstract:

Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.

Keywords: biotechnology, process model, xanthan, waste effluents

Procedia PDF Downloads 311
442 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 274
441 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 208
440 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 122
439 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 82
438 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole

Authors: Basavaraj R. Endigeri, S. G. Sarganachari

Abstract:

Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 415
437 Rheological Study of Chitosan/Montmorillonite Nanocomposites: The Effect of Chemical Crosslinking

Authors: K. Khouzami, J. Brassinne, C. Branca, E. Van Ruymbeke, B. Nysten, G. D’Angelo

Abstract:

The development of hybrid organic-inorganic nanocomposites has recently attracted great interest. Typically, polymer silicates represent an emerging class of polymeric nanocomposites that offer superior material properties compared to each compound alone. Among these materials, complexes based on silicate clay and polysaccharides are one of the most promising nanocomposites. The strong electrostatic interaction between chitosan and montmorillonite can induce what is called physical hydrogel, where the coordination bonds or physical crosslinks may associate and dissociate reversibly and in a short time. These mechanisms could be the main origin of the uniqueness of their rheological behavior. However, owing to their structure intrinsically heterogeneous and/or the lack of dissipated energy, they are usually brittle, possess a poor toughness and may not have sufficient mechanical strength. Consequently, the properties of these nanocomposites cannot respond to some requirements of many applications in several fields. To address the issue of weak mechanical properties, covalent chemical crosslink bonds can be introduced to the physical hydrogel. In this way, quite homogeneous dually crosslinked microstructures with high dissipated energy and enhanced mechanical strength can be engineered. In this work, we have prepared a series of chitosan-montmorillonite nanocomposites chemically crosslinked by addition of poly (ethylene glycol) diglycidyl ether. This study aims to provide a better understanding of the mechanical behavior of dually crosslinked chitosan-based nanocomposites by relating it to their microstructures. In these systems, the variety of microstructures is obtained by modifying the number of cross-links. Subsequently, a superior uniqueness of the rheological properties of chemically crosslinked chitosan-montmorillonite nanocomposites is achieved, especially at the highest percentage of clay. Their rheological behaviors depend on the clay/chitosan ratio and the crosslinking. All specimens exhibit a viscous rheological behavior over the frequency range investigated. The flow curves of the nanocomposites show a Newtonian plateau at very low shear rates accompanied by a quite complicated nonlinear decrease with increasing the shear rate. Crosslinking induces a shear thinning behavior revealing the formation of network-like structures. Fitting shear viscosity curves via Ostward-De Waele equation disclosed that crosslinking and clay addition strongly affect the pseudoplasticity of the nanocomposites for shear rates γ ̇>20.

Keywords: chitosan, crossliking, nanocomposites, rheological properties

Procedia PDF Downloads 108
436 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing

Procedia PDF Downloads 177
435 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis

Procedia PDF Downloads 407