Search results for: non-invasive tomography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 459

Search results for: non-invasive tomography

219 An Unusual Occurrence: Typhoid Retinitis with Kyrieleis' Vasculitis

Authors: Aditya Sethi, Vaibhav Sethi, Shenouda Girgis

Abstract:

We present a case of a 31-year-old female who presented with a three week history of left eye blurry vision following a fever. She was diagnosed with Typhoid fever, confirmed by a positive Widal test report. On examination, her best corrected visual acuity in the right eye was 20/20 and in the left eye was 20/60. Fundus examination of the right eye showed a focal area of retinitis with retinal haemorrhages along the superior arcade within the macula. There was also focal area of retinitis with superficial retinal haemorrhages along the superior arcade vessels. There was also presence of multiple yellowish white exudates within the adjacent retinal artery arranged in a beaded pattern, suggestive of Kyrieleis' vasculitis. Optical Coherence Tomography (OCT) of the left eye demonstrated cystoid macula edema with serous foveal detachment.

Keywords: typhoid retinitis, Kyrieleis’ vasculitis, immune-mediated retinitis, post-fever retinitis, typhoid retinopathy, retinitis

Procedia PDF Downloads 126
218 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 107
217 Two-Step Inversion Method for Multi-mode Surface Waves

Authors: Ying Zhang

Abstract:

Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution.

Keywords: surface wave inversion, waveform separation, love waves, higher-mode interference

Procedia PDF Downloads 34
216 Quantitative Wide-Field Swept-Source Optical Coherence Tomography Angiography and Visual Outcomes in Retinal Artery Occlusion

Authors: Yifan Lu, Ying Cui, Ying Zhu, Edward S. Lu, Rebecca Zeng, Rohan Bajaj, Raviv Katz, Rongrong Le, Jay C. Wang, John B. Miller

Abstract:

Purpose: Retinal artery occlusion (RAO) is an ophthalmic emergency that can lead to poor visual outcome and is associated with an increased risk of cerebral stroke and cardiovascular events. Fluorescein angiography (FA) is the traditional diagnostic tool for RAO; however, wide-field swept-source optical coherence tomography angiography (WF SS-OCTA), as a nascent imaging technology, is able to provide quick and non-invasive angiographic information with a wide field of view. In this study, we looked for associations between OCT-A vascular metrics and visual acuity in patients with prior diagnosis of RAO. Methods: Patients with diagnoses of central retinal artery occlusion (CRAO) or branched retinal artery occlusion (BRAO) were included. A 6mm x 6mm Angio and a 15mm x 15mm AngioPlex Montage OCT-A image were obtained for both eyes in each patient using the Zeiss Plex Elite 9000 WF SS-OCTA device. Each 6mm x 6mm image was divided into nine Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. The average measurement of the central foveal subfield, inner ring, and outer ring was calculated for each parameter. Non-perfusion area (NPA) was manually measured using 15mm x 15mm Montage images. A linear regression model was utilized to identify a correlation between the imaging metrics and visual acuity. A P-value less than 0.05 was considered to be statistically significant. Results: Twenty-five subjects were included in the study. For RAO eyes, there was a statistically significant negative correlation between vision and retinal thickness as well as superficial capillary plexus vessel density (SCP VD). A negative correlation was found between vision and deep capillary plexus vessel density (DCP VD) without statistical significance. There was a positive correlation between vision and choroidal thickness as well as choroidal volume without statistical significance. No statistically significant correlation was found between vision and the above metrics in contralateral eyes. For NPA measurements, no significant correlation was found between vision and NPA. Conclusions: This is the first study to our best knowledge to investigate the utility of WF SS-OCTA in RAO and to demonstrate correlations between various retinal vascular imaging metrics and visual outcomes. Further investigations should explore the associations between these imaging findings and cardiovascular risk as RAO patients are at elevated risk for symptomatic stroke. The results of this study provide a basis to understand the structural changes involved in visual outcomes in RAO. Furthermore, they may help guide management of RAO and prevention of cerebral stroke and cardiovascular accidents in patients with RAO.

Keywords: OCTA, swept-source OCT, retinal artery occlusion, Zeiss Plex Elite

Procedia PDF Downloads 98
215 Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis

Authors: Nathainail Bashir, Neil Anderson

Abstract:

The objective of this study site was to investigate the current state of the practice with regards to karst detection methods and recommend the best method and pattern of arrays to acquire the desire results. Proper site investigation in karst prone regions is extremely valuable in determining the location of possible voids. Two geophysical techniques were employed: multichannel analysis of surface waves (MASW) and electric resistivity tomography (ERT).The MASW data was acquired at each test location using different array lengths and different array orientations (to increase the probability of getting interpretable data in karst terrain). The ERT data were acquired using a dipole-dipole array consisting of 168 electrodes. The MASW data was interpreted (re: estimated depth to physical top of rock) and used to constrain and verify the interpretation of the ERT data. The ERT data indicates poorer quality MASW data were acquired in areas where there was significant local variation in the depth to top of rock.

Keywords: dipole-dipole, ERT, Karst terrains, MASW

Procedia PDF Downloads 276
214 PET/CT Patient Dosage Assay

Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk

Abstract:

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

Keywords: PET/CT, TLD, MIRD, dose measurement, patient doses

Procedia PDF Downloads 480
213 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 36
212 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States

Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss

Abstract:

Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.

Keywords: Alzheimer’s disease, budget, dementia, diagnosis.

Procedia PDF Downloads 108
211 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network

Authors: Moumita Chanda, Md. Fazlul Karim Patwary

Abstract:

Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.

Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection

Procedia PDF Downloads 42
210 Helicobacter Pylori Detection by Invasive and Noninvasive Diagnostic Tests from Dyspepsia Patients

Authors: Muhammad Suhail Ibrahim, Ahmad Mujtaba

Abstract:

Background: The accuracy of the most frequently used tests for diagnosing Helicobacter pylori is always under consideration in clinical settings. A reliable diagnosis is crucial to confirm the success of therapy. Objective: The aim of this research was to study the isolation frequency of H. pylori from patients compatible with gastritis or gastric ulcer and to compare some feasible non-invasive and invasive methods for the diagnosis of infection. Materials and Methods: Ninety-six gastric biopsy and blood samples were obtained with various gastroduodenal symptoms after obtaining informed consent. The biopsies were analyzed and compared using the culture, microscopic examination, histopathology, Rapid urease RUT), serology, biochemical, antibiotic susceptibility test and molecular method. Results: A number of 40 (41.67%) were considered H. pylori positive in both histopathology and RUT. On the other hand, 46 patients were positive against anti IgA and IgG by ELISA. Eighteen biopsies were positive according to the culture test. This was further confirmed by endoscopic examination, urease, catalase and oxidase tests. A high percentage of resistance to polymyxin B, amoxicillin, and kanamycin was observed (100, 88.89, and 77.78%, respectively). A gene (Cag A) was also detected by using molecular technique which appeared positive in 16 patients. The sensitivity/specificity (%) of diagnostic method was 95/77 for histology, 100/83.5 for rapid urease, 85.7/90 for gram staining, 100/66.6 for IgG serology, 100/79.5 for IgA serology, 100/75.0 for PCR, 100/79.04 for combination of RUT and IgG serology and 100/92.4 for combination of RUT, gram staining and IgG serology. Conclusion: In view of the result obtained, PCR appeared to be the most reliable test. However, higher sensitivity and specificity were also recorded for other tests. So, for more accurate results, it is advisable not to rely solely on a single method for detection.

Keywords: helicobacter pylori, isolation, detection, culture, urease, polymerase chain reaction, antibiotic susceptibility test, dyspeptic patients

Procedia PDF Downloads 9
209 Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance

Authors: Saiyed M Ishtiaque, Priyal Dixit

Abstract:

Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties.

Keywords: filtration efficiency, layered nonwoven structure, packing density, pressure drop

Procedia PDF Downloads 23
208 Umbilical Epidermal Inclusion Cysts, a Rare Cause of Umbilical Mass: A Case Report and Review of Literature

Authors: Christine Li, Amanda Robertson

Abstract:

Epidermal inclusion cysts occur when epidermal cells are implanted in the dermis following trauma, or surgery. They are a rare cause of an umbilical mass, with very few cases previously reported following abdominal surgery. These lesions can present with a range of symptoms, including palpable mass, pain, redness, or discharge. This paper reports a case of an umbilical epidermal inclusion cyst in a 52-year-old female presenting with a six-week history of a painful, red umbilical lump on a background of two previous diagnostic laparoscopies. Abdominal computed tomography (CT) scans revealed non-specific soft tissue thickening in the umbilical region. This was successfully treated with complete excision of the lesion. Umbilical lumps are a common presentation but can represent a diagnostic challenge. The differential diagnosis should include an epidermal inclusion cyst, particularly in a patient who has had previous abdominal surgery, including laparoscopic surgery.

Keywords: epidermal inclusion cyst, laparoscopy, umbilical mass, umbilicus

Procedia PDF Downloads 46
207 Evaluation of the Laser and Partial Vibration Stimulation on Osteoporosis

Authors: Ji Hyung Park, Dong-Hyun Seo, Young-Jin Jung, Han Sung Kim

Abstract:

The aim of this study is to evaluate the effects of the laser and partial vibration stimulation on the mice tibia with morphological characteristics. Twenty female C57BL/6 mice (12 weeks old) were used for the experiment. The study was carried out on four groups of animals each consisting of five mice. Four groups of mice were ovariectomized. Animals were scanned at 0 and 2 weeks after ovariectomy by using micro-computed tomography to estimate morphological characteristics of tibial trabecular bone. Morphological analysis showed that structural parameters of multi-stimuli group appear significantly better phase in BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp, and Tb.pf than single stimulation groups. However, single stimulation groups didn’t show significant effect on tibia with Sham group. This study suggests that multi-stimuli may restrain the change as the degenerate phase on osteoporosis in the mice tibia.

Keywords: laser, partial vibration, osteoporosis, in-vivo micro-CT, mice

Procedia PDF Downloads 480
206 Geotechnical Distress Evaluation of a Damaged Structure

Authors: Zulfiqar Ali, Umar Saleem, Muhammad Junaid, Rizwan Tahir

Abstract:

Gulzar Mahal is a heritage site located in the city of Bahawalpur, Pakistan. The site is under a process of degradation, as cracks are appearing on the walls, roofs, and floor around the building due to differential settlement. To preserve the integrity of the structure, a geotechnical distress evaluation was carried out to evaluate the causal factors and recommend remediation measures. The research involved the characterization of the problematic soil and analysis of the observed distress with respect to the geotechnical properties. Both conventional lab and field tests were used in conjunction with the unconventional techniques like; Electrical Resistivity Tomography (ERT) and FEA. The temporal, geophysical and geotechnical evaluations have concluded that the foundation soil over the past was subjected to variations in the land use, poor drainage patterns, overloading and fluctuations in groundwater table all contributing to the differential settlements manifesting in the form of the visible shear crack across the length and breadth of the building.

Keywords: differential settlement, distress evaluation, finite element analysis, Gulzar Mahal

Procedia PDF Downloads 82
205 A Case Study of Meningoencephalitis following Le Fort I Osteotomy

Authors: Ryan Goh, Nicholas Beech

Abstract:

Introduction: Le Fort I Osteotomies, although are common procedures in Oral and Maxillofacial Surgery, carry a degree of risk of unfavourable propagation of the down-fracture of the maxilla. This may be the first reported case in the literature for meningoencephalitis to occur following a Le Fort I Osteotomy. Case: A 32-year-old female was brought into the Emergency Department four days after a Le Fort I Osteotomy, with a Glasgow Coma Scale (GCS) of 8 (E3V1M4). A Computed Tomography (CT) Head showed a skull base fracture at the right sphenoid sinus. Lumbar puncture was completed, and Klebsiella oxytoca was found in the Cerebrospinal Fluid (CSF). She was treated with Meropenem, and rapidly improved thereafter. CSF rhinorrhoea was identified when she was extubated, which was successfully managed via a continuous lumbar drain. She was discharged on day 14 without any neurological deficits. Conclusion: The most likely aspect of the Le Fort I Osteotomy to obtain a skull base fracture is during the pterygomaxillary disjunction. Care should always be taken to avoid significant risks of skull base fractures, CSF rhinorrhoea, meningitis and encephalitis.

Keywords: meningitis, orthognathic surgery, post-operative complication, skull base, rhinorrhea

Procedia PDF Downloads 84
204 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network

Authors: Donya Ashtiani Haghighi, Amirali Baniasadi

Abstract:

Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.

Keywords: capsule network, dropout, hyperparameter tuning, classification

Procedia PDF Downloads 37
203 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction

Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier

Abstract:

Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.

Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing

Procedia PDF Downloads 45
202 Brain Bleeding Venous Malformation in the Computed Tomography Emergency Department

Authors: Angelis P. Barlampas

Abstract:

The aim of this work is to denote that during an emergency state, an examination study may not be accomplished by state-of-the-art of imaging and, therefore, cannot obviously reveal all the existing findings. But, such a situation may have disastrous consequences for the patient. When interpreting radiological images, one must try to be as meticulous as possible, especially if the patient has alerting clinical symptoms. A case may be missed because its findings are not so obvious in rapid uncompleted radiological imaging. A thirty-seven years old female patient visited the emergency department because of a headache and hemiparesis of her left leg. Firstly, a CT examination without contrast was done, and mild serpentinous hyperintensities were depicted at the right parietal lobe. In addition to that, there was a linear, mildly hyperattenuating structure resembling a vessel in the nearby middle line. At first, an AVM was suspected, so an MRI examination with i.v. Gd was prescribed. The patient returned a few days later, not having done the MRI and complaining of persisting symptomatology. A new CT examination without and with i.v.c administration was done that showed no hyperintensities but a type-enhancing vessel in the posterior interhemispheric fissure. The latest findings are consistent with a venous malformation with previous bleeding.

Keywords: bleeding, brain, CNS, hemorrhage, CT, venous malformation

Procedia PDF Downloads 75
201 Lateral Heterogeneity of 1/Q in Eastern and Southeastern Anatolia

Authors: Ufuk Aydın

Abstract:

The Coda attenuation and frequency dependency of seismic wave are strongly dependent on the effective stresses structures within the upper crust. In this study, the data of three different stations were used to examine the lateral variation of stress. The tectonic structures of these three areas have been examined comparatively using lateral coda tomography. In the study using the single scatter method, the window length selected to be 20 second. Coda values 80 with 94 and frequency dependency values obtained between 0.69 and 1.21. The 1/QC values for the three regions ranged from 0.0012 to 0.017, highlighting the regional differences in the seismotectonic activity of the crust. The lowest absorption values obtained from Erzurum station when the highest absorption values obtained at the Kemaliye station. The low Qc and high frequency dependency values obtained Kemaliye, which indicates that it has highest tectonic activity than other two regions. The seismo-dynamics data obtained from the study found to be in agreement with the tectonic structure of the region.

Keywords: regional coda attenuation, tectonic stress, crustal deformation

Procedia PDF Downloads 143
200 The Dose to Organs in Lumbar-Abdominal Computed Tomography Imaging Using TLD

Authors: M. Zehtabian, Z. Molaiemanesh, Z. Shafahi, M. Papie, M. Zahraie Moghaddam, M. Mehralizadeh, M. R. Vahidi, S. Sina

Abstract:

The introduction of CT scans has been a great improvement in diagnosis of different diseases. However, this imaging modality can expose the patients to cumulative radiation doses which may increase the risks of some health problems like cancer. In this study, the dose delivered to different organs in lumbar-abdominal imaging was measured by putting the TLD-100, and TLD-100H chips inside the Alderson Rando phantom. The lumbar-abdominal image of the phantom was obtained, while TLD chips were inside the holes of the phantom. According to the results obtained in this study using TLD-100 chips, the average dose received by liver, bladder, rectum, kidneys, and uterus were found to be 12.9 mSv, 8.9 mSv, 10.1 mSv, 11.0 mSv, 11.2 mSv, and 10.5 mSv respectively, while the measurements performed by TLD-100H show that the average dose to liver, bladder, rectum, kidneys, and uterus were found to be 12.4 mSv, 9.2 mSv, 9.5 mSv, 10.5 mSv, 10.7 mSv, and 9.9 mSv respectively. The results of this study indicates that the dose measured by the TLD-100H chips are in close agreement with those obtained by TLD-100.

Keywords: CT scan, dose, TLD-100, diagnosis

Procedia PDF Downloads 583
199 Application of the Seismic Reflection Survey to an Active Fault Imaging

Authors: Nomin-Erdene Erdenetsogt, Tseedulam Khuut, Batsaikhan Tserenpil, Bayarsaikhan Enkhee

Abstract:

As the framework of 60 years of development of Astronomical and Geophysical science in modern Mongolia, various geophysical methods (electrical tomography, ground-penetrating radar, and high-resolution reflection seismic profiles) were used to image an active fault in-depth range between few decimeters to few tens meters. An active fault was fractured by an earthquake magnitude 7.6 during 1967. After geophysical investigations, trench excavations were done at the sites to expose the fault surfaces. The complex geophysical survey in the Mogod fault, Bulgan region of central Mongolia shows an interpretable reflection arrivals range of < 5 m to 50 m with the potential for increased resolution. Reflection profiles were used to help interpret the significance of neotectonic surface deformation at earthquake active fault. The interpreted profiles show a range of shallow fault structures and provide subsurface evidence with support of paleoseismologic trenching photos, electrical surveys.

Keywords: Mogod fault, geophysics, seismic processing, seismic reflection survey

Procedia PDF Downloads 87
198 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 107
197 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids

Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario

Abstract:

Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.

Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods

Procedia PDF Downloads 427
196 Identification of High Stress Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Authors: Hossein Kheirollahi, Yunhua Luo

Abstract:

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.

Keywords: finite element analysis, hip fracture, strain, stress

Procedia PDF Downloads 465
195 Voluntary Water Intake of Flavored Water in Euhydrated Horses

Authors: Brianna M. Soule, Jesslyn A. Bryk-Lucy, Linda M. Ritchie

Abstract:

Colic, defined as abdominal pain in the horse, has several known predisposing factors. Decreased water intake has been shown to predispose equines to impaction colic. The objective of this study was to determine if offering flavored water (sweet feed or banana extract) would increase voluntary water intake in horses to serve as an assessable, noninvasive method for farm managers, veterinarians, or owners to decrease the risk of impaction colic. An a priori power analysis, which was conducted using G*Power version 3.1.9.7, indicated that the minimum sample size required to achieve 80% power for detecting a large effect at a significance level of α = .05 was 19 horses for a one-way repeated measures ANOVA with three treatment levels and assuming a non-sphericity correction of ε=0.5. After a three-day control period, 21 horses were randomly divided into two sequences and offered either banana or sweet feed flavored water. Horses always had a bucket of unflavored water available. A repeated measure study design was used to measure water consumption of each horse over a 62-hour period. A one-way repeated measures ANOVA was conducted to determine whether there were statistically significant differences among the means for the three-day average water intake (ml/kg). Although not statistically significant (F(2, 38) = 1.28, p = .290, partial η2 = .063), the three-day average water intake was largest for banana flavored water (M = 53.51, SD = 9.25 ml/kg), followed by sweet feed (M = 52.93, SD = 11.99 ml/kg), and, finally, unflavored water (M = 50.40, SD = 10.82 ml/kg). Paired-samples t-tests were used to determine whether there was a statistically significant difference between the three-day average water intake (ml/kg) for flavored versus unflavored water. The average unflavored water intake (M = 29.3 ml/kg, SD = 8.9) over the measurement period was greater than the banana flavored water (M = 27.7 ml/kg, SD = 9.8), but the average consumption of the sweet feed flavored water (M = 30.4 ml/kg, SD = 14.6) was greater than unflavored water (M = 24.3 ml/kg, SD = 11.4). None of these differences in average intake were statistically significant (p > .244). Future research is warranted to determine if other flavors significantly increase voluntary water intake in horses.

Keywords: colic, equine, equine science, water intake, flavored water, horses, equine management, equine health, horse health, horse health care management, colic prevention

Procedia PDF Downloads 97
194 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid

Procedia PDF Downloads 347
193 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells

Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok

Abstract:

Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.

Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy

Procedia PDF Downloads 112
192 Objective Evaluation on Medical Image Compression Using Wavelet Transformation

Authors: Amhimmid Mohammed Saffour, Mustafa Mohamed Abdullah

Abstract:

The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable.

Keywords: medical image, Matlab, image compression, wavelet's, objective evaluation

Procedia PDF Downloads 258
191 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models

Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows

Abstract:

Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.

Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis

Procedia PDF Downloads 128
190 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 351