Search results for: no load test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11010

Search results for: no load test

10770 Finite Element Simulation of Limiting Dome Height Test on the Formability of Aluminium Tailor Welded Blanks

Authors: Lakhya Jyoti Basumatary, M. J. Davidson

Abstract:

Tailor Welded Blanks (TWBs) have established themselves to be a revolutionary and foremost integral part of the automotive and aerospace industries. Metals sheets with varied thickness, strength and coatings are welded together to form TWBs through friction stir welding and laser welding prior to stamping operations. The formability of the TWBs completely varies from those of conventional blanks due to the diverse strength levels of individual sheets which are made to deform under the same forming load uniformly throughout causing unequal and unsatisfactory deformation in the blank. Limiting Dome Height(LDH) test helps predicting the formability of each blanks and assists in determining the appropriate TWB. Finite Element Simulation of LDH test for both base material and TWBs was performed and analysed for both before and after the solution heat treatment. The comparison and validation of simulation results are done with the experimental data and correlated accordingly. The formability of solution heat treated TWBs had enhanced than those of blanks made from non-heat treated TWBs.

Keywords: tailor welded blanks, friction stir welding, limiting dome height test, finite element simulation

Procedia PDF Downloads 194
10769 Design and Development of Tandem Dynamometer for Testing and Validation of Motor Performance Parameters

Authors: Vedansh More, Lalatendu Bal, Ronak Panchal, Atharva Kulkarni

Abstract:

The project aims at developing a cost-effective test bench capable of testing and validating the complete powertrain package of an electric vehicle. Emrax 228 high voltage synchronous motor was selected as the prime mover for study. A tandem type dynamometer comprising of two loading methods; inertial, using standard inertia rollers and absorptive, using a separately excited DC generator with resistive coils was developed. The absorptive loading of the prime mover was achieved by implementing a converter circuit through which duty of the input field voltage level was controlled. This control was efficacious in changing the magnetic flux and hence the generated voltage which was ultimately dropped across resistive coils assembled in a load bank with all parallel configuration. The prime mover and loading elements were connected via a chain drive with a 2:1 reduction ratio which allows flexibility in placement of components and a relaxed rating of the DC generator. The development will aid in determination of essential characteristics like torque-RPM, power-RPM, torque factor, RPM factor, heat loads of devices and battery pack state of charge efficiency but also provides a significant financial advantage over existing versions of dynamometers with its cost-effective solution.

Keywords: absorptive load, chain drive, chordal action, DC generator, dynamometer, electric vehicle, inertia rollers, load bank, powertrain, pulse width modulation, reduction ratio, road load, testbench

Procedia PDF Downloads 182
10768 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology

Authors: Vasu Velagapudi, G. Suresh

Abstract:

PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.

Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate

Procedia PDF Downloads 368
10767 The Side Effect of the Perforation Shape towards Behaviour Flexural in Castellated Beam

Authors: Harrys Purnama, Wardatul Jannah, Rizkia Nita Hawari

Abstract:

In the development of the times, there are many materials used to plan a building structure. Steel became one of the most widely used materials in building construction that works as the main structure. Steel Castellated Beam is a type of innovation in the use of steel in building construction. Steel Castellated Beam is a beam that used for long span construction (more than 10 meters). The Castellated Beam is two steel profiles that unified into one to get the appropriate profile height (more than 10 meters). The profile is perforated to minimize the profile's weight, increase the rate, save costs, and have architectural value. The perforations shape in the Castellated Beam can be circular, elliptical, hexagonal, and rectangular. The Castellated beam has a height (h) almost 50% higher than the initial profile thus increasing the axial bending value and the moment of inertia (Iₓ). In this analysis, there are 3 specimens were used with 12.1 meters span of Castellated Beam as the sample with varied perforation, such us round, hexagon, and octagon. Castellated Beam testing system is done with computer-based applications that named Staad Pro V8i. It is to provide a central load in the middle of the steel beam span. It aims to determine the effect of perforation on bending behavior on the steel Castellated Beam by applying some form of perforations on the steel Castellated Beam with test specimen WF 200.100.5.5.8. From the analysis, results found the behavior of steel Castellated Beam when receiving such central load. From the results of the analysis will be obtained the amount of load, shear, strain, and Δ (deflection). The result of analysis by using Staad Pro V8i shows that with the different form of perforations on the profile of Castellated steel, then we get the different tendency of inertia moment. From the analysis, results obtained the moment of the greatest inertia can increase the stiffness of Castellated steel. By increasing the stiffness of the steel Castellated Beam the deflection will be smaller, so it can withstand the moment and a large strength. The results of the analysis show that the most effective and efficient perforations are the steel beam with a hexagon perforation shape.

Keywords: Castellated Beam, the moment of inertia, stress, deflection, bending test

Procedia PDF Downloads 135
10766 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.

Keywords: lap splice, bond strength, fatigue loading, FRP

Procedia PDF Downloads 268
10765 Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit.

Keywords: gneiss, aggregate impact, aggregate crushing, physic-mechanical properties, rock hardness

Procedia PDF Downloads 273
10764 The Impact of Cognitive Load on Deceit Detection and Memory Recall in Children’s Interviews: A Meta-Analysis

Authors: Sevilay Çankaya

Abstract:

The detection of deception in children’s interviews is essential for statement veracity. The widely used method for deception detection is building cognitive load, which is the logic of the cognitive interview (CI), and its effectiveness for adults is approved. This meta-analysis delves into the effectiveness of inducing cognitive load as a means of enhancing veracity detection during interviews with children. Additionally, the effectiveness of cognitive load on children's total number of events recalled is assessed as a second part of the analysis. The current meta-analysis includes ten effect sizes from search using databases. For the effect size calculation, Hedge’s g was used with a random effect model by using CMA version 2. Heterogeneity analysis was conducted to detect potential moderators. The overall result indicated that cognitive load had no significant effect on veracity outcomes (g =0.052, 95% CI [-.006,1.25]). However, a high level of heterogeneity was found (I² = 92%). Age, participants’ characteristics, interview setting, and characteristics of the interviewer were coded as possible moderators to explain variance. Age was significant moderator (β = .021; p = .03, R2 = 75%) but the analysis did not reveal statistically significant effects for other potential moderators: participants’ characteristics (Q = 0.106, df = 1, p = .744), interview setting (Q = 2.04, df = 1, p = .154), and characteristics of interviewer (Q = 2.96, df = 1, p = .086). For the second outcome, the total number of events recalled, the overall effect was significant (g =4.121, 95% CI [2.256,5.985]). The cognitive load was effective in total recalled events when interviewing with children. All in all, while age plays a crucial role in determining the impact of cognitive load on veracity, the surrounding context, interviewer attributes, and inherent participant traits may not significantly alter the relationship. These findings throw light on the need for more focused, age-specific methods when using cognitive load measures. It may be possible to improve the precision and dependability of deceit detection in children's interviews with the help of more studies in this field.

Keywords: deceit detection, cognitive load, memory recall, children interviews, meta-analysis

Procedia PDF Downloads 30
10763 A Study on Design for Parallel Test Based on Embedded System

Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun

Abstract:

With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.

Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)

Procedia PDF Downloads 259
10762 Secondary Compression Behavior of Organic Soils in One-Dimensional Consolidation Tests

Authors: Rinku Varghese, S. Chandrakaran, K. Rangaswamy

Abstract:

The standard one-dimensional consolidation test is used to find the consolidation behaviour of artificially consolidated organic soils. Incremental loading tests were conducted on the clay without and with organic matter. The study was conducted with soil having different organic content keeping all other parameters constant. The tests were conducted on clay and artificially prepared organic soil sample at different vertical pressure. The load increment ratio considered for the test is equal to one. Artificial organic soils are used for the test by adding starch to the clay. The percentage of organic content in starch is determined by adding 5% by weight starch into the clay (inorganic soil) sample and corresponding change in organic content of soil was determined. This was expressed as percentage by weight of starch, and it was found that about 95% organic content in the soil sample. Accordingly percentage of organic content fixed and added to the sample for testing to understand the consolidation behaviour clayey soils with organic content. A detailed study of the results obtained from IL test was investigated. The main items investigated were (i) coefficient of consolidation (cv), (ii) coefficient of volume compression (mv), (iii) coefficient of permeability (k). The consolidation parameter obtained from IL test was used for determining the creep strain and creep parameter and also predicting their variation with vertical stress and organic content.

Keywords: consolidation, secondary compression, creep, starch

Procedia PDF Downloads 250
10761 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 154
10760 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable

Authors: Seon Soon Choi

Abstract:

The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.

Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable

Procedia PDF Downloads 381
10759 A New Lateral Load Pattern for Pushover Analysis of RC Frame Structures

Authors: Mohammad Reza Ameri, Ali Massumi, Mohammad Haghbin

Abstract:

Non-linear static analysis, commonly referred to as pushover analysis, is a powerful tool for assessing the seismic response of structures. A suitable lateral load pattern for pushover analysis can bring the results of this simple, quick and low-cost analysis close to the realistic results of nonlinear dynamic analyses. In this research, four samples of 10- and 15 story (two- and four-bay) reinforced concrete frames were studied. The lateral load distribution patterns recommended in FEMA 273/356 guidelines were applied to the sample models in order to perform pushover analyses. The results were then compared to the results obtained from several nonlinear incremental dynamic analyses for a range of earthquakes. Finally, a lateral load distribution pattern was proposed for pushover analysis of medium-rise reinforced concrete buildings based on the results of nonlinear static and dynamic analyses.

Keywords: lateral load pattern, nonlinear static analysis, incremental dynamic analysis, medium-rise reinforced concrete frames, performance based design

Procedia PDF Downloads 441
10758 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar

Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh

Abstract:

Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.

Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring

Procedia PDF Downloads 142
10757 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid

Authors: Eyad Almaita

Abstract:

In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.

Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption

Procedia PDF Downloads 313
10756 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 68
10755 Factors Affecting Test Automation Stability and Their Solutions

Authors: Nagmani Lnu

Abstract:

Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of Flaky Tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for UI behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort.

Keywords: automation stability, test stability, Flaky Test, test quality, test automation quality

Procedia PDF Downloads 33
10754 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: digital twin, distributed energy resources, remote terminal units, supervisory control and data acquisition system, smart recursive load flow

Procedia PDF Downloads 66
10753 Solving Nonconvex Economic Load Dispatch Problem Using Particle Swarm Optimization with Time Varying Acceleration Coefficients

Authors: Alireza Alizadeh, Hossein Ghadimi, Oveis Abedinia, Noradin Ghadimi

Abstract:

A Particle Swarm Optimization with Time Varying Acceleration Coefficients (PSO-TVAC) is proposed to determine optimal economic load dispatch (ELD) problem in this paper. The proposed methodology easily takes care of solving non-convex economic load dispatch problems along with different constraints like transmission losses, dynamic operation constraints and prohibited operating zones. The proposed approach has been implemented on the 3-machines 6-bus, IEEE 5-machines 14-bus, IEEE 6-machines 30-bus systems and 13 thermal units power system. The proposed technique is compared to solve the ELD problem with hybrid approach by using the valve-point effect. The comparison results prove the capability of the proposed method giving significant improvements in the generation cost for the economic load dispatch problem.

Keywords: PSO-TVAC, economic load dispatch, non-convex cost function, prohibited operating zone, transmission losses

Procedia PDF Downloads 357
10752 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil

Keywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity

Procedia PDF Downloads 495
10751 Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

One of the important concerns within the field of geotechnical engineering is the presence of cavities in soils. This present work is an attempt to understand the behaviour of strip footing subjected to inclined load and constructed on cavitied soil. The failure mechanism of strip footing located above such soils was studied analytically. The capability of analytical model to correctly expect the system behaviour is assessed by carrying out verification analysis on available studies. The study was prepared by finite element software (PLAXIS) in which an elastic-perfectly plastic soil model was used. It was indicated, from the results of the study, that the load carrying capacity of foundation constructed on cavity can be analysed well using such analysis. The research covered many foundation cases, and in each foundation case, there occurs a critical depth under which the presence of cavities has shown minimum impact on the foundation performance. When cavities are found above this critical depth, the load carrying capacity of the foundation differs with many influences, such as the location and size of the cavity and footing depth. Figures involving the load carrying capacity with the affecting factors studied are presented. These figures offer information beneficial for the design of strip footings rested on underground cavities. Moreover, the results might be used to design a shallow foundation constructed on cavitied soil, whereas the obtained failure mechanisms may be employed to improve numerical solutions for this kind of problems.

Keywords: axial load, cavity, inclined load, strip footing

Procedia PDF Downloads 225
10750 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass

Authors: Martin Botz, Michael Kraus, Geralt Siebert

Abstract:

The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.

Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity

Procedia PDF Downloads 91
10749 Impact Load Response of Light Rail Train Rail Guard

Authors: Eyob Hundessa Gose

Abstract:

Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state.

Keywords: impact load, fiber reinforced polymer, rail guard, LS-DYNA

Procedia PDF Downloads 18
10748 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test

Procedia PDF Downloads 309
10747 Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand

Authors: Javad Shamsi Soosahab, Reza Ziaie Moayed

Abstract:

The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases.

Keywords: helical piles, Optum G2, relative density, constant and various elastic modulus

Procedia PDF Downloads 111
10746 Performance of Constant Load Feed Machining for Robotic Drilling

Authors: Youji Miyake

Abstract:

In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.

Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling

Procedia PDF Downloads 162
10745 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 434
10744 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load

Authors: M. Khoukhi

Abstract:

Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.

Keywords: operating temperature, polystyrene insulation, thermal conductivity, cooling load

Procedia PDF Downloads 335
10743 Worm Gearing Design Improvement by Considering Varying Mesh Stiffness

Authors: A. H. Elkholy, A. H. Falah

Abstract:

A new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well established formulae of spur gears. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time.

Keywords: gear, load/stress distribution, worm, wheel, tooth stiffness, contact line

Procedia PDF Downloads 315
10742 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams

Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar

Abstract:

An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.

Keywords: basalt fiber, steel fiber, reinforced concrete beams, flexural behavior

Procedia PDF Downloads 114
10741 Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine

Authors: Hamid Havasi, Mohamad Reza Gholami Dehbalaei, Hamed Khorami, Shahram Karimi, Hamdi Abdi

Abstract:

Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced.

Keywords: DFIG machine, energy conversion, nonlinear load, THD, DPC, FOC

Procedia PDF Downloads 558