Search results for: neuropsychological test batteries in India
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11674

Search results for: neuropsychological test batteries in India

11584 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)

Authors: Sekkak Abdelmalek

Abstract:

The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.

Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing

Procedia PDF Downloads 476
11583 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 48
11582 LiTa2PO8-based Composite Solid Polymer Electrolytes for High-Voltage Cathodes in Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state Lithium metal batteries (SSLMBs) that contain polymer and ceramic solid electrolytes have received considerable attention as an alternative to substitute liquid electrolytes in lithium metal batteries (LMBs) for highly safe, excellent energy storage performance and stability under elevated temperature situations. Here, a novel fast Li-ion conducting material, LiTa₂PO₈ (LTPO), was synthesized and electrochemical performance of as-prepared powder and LTPO-incorporated composite solid polymer electrolyte (LTPO-CPE) membrane were investigated. The as-prepared LTPO powder was homogeneously dispersed in polymer matrices, and a hybrid solid electrolyte membrane was synthesized via a simple solution-casting method. The room temperature total ionic conductivity (σt) of the LTPO pellet and LTPO-CPE membrane were 0.14 and 0.57 mS cm-1, respectively. A coin battery with NCM811 cathode is cycled under 1C between 2.8 to 4.5 V at room temperature, achieving a Coulombic efficiency of 99.3% with capacity retention of 74.1% after 300 cycles. Similarly, the LFP cathode also delivered an excellent performance at 0.5C with an average Coulombic efficiency of 100% without virtually capacity loss (the maximum specific capacity is at 27th: 138 mAh g−1 and 500th: 131.3 mAh g−1). These results demonstrates the feasibility of a high Li-ion conductor LTPO as a filler, and the developed polymer/ceramic hybrid electrolyte has potential to be a high-performance electrolyte for high-voltage cathodes, which may provide a fresh platform for developing more advanced solid-state electrolytes.

Keywords: li-ion conductor, lithium-metal batteries, composite solid electrolytes, liTa2PO8, high-voltage cathode

Procedia PDF Downloads 27
11581 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery

Authors: Abebe Taye

Abstract:

The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.

Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability

Procedia PDF Downloads 27
11580 Dynamics of India's Nuclear Identity

Authors: Smita Singh

Abstract:

Through the constructivist perspective, this paper explores the transformation of India’s nuclear identity from an irresponsible nuclear weapon power to a ‘de-facto nuclear power’ in the emerging international nuclear order From a nuclear abstainer to a bystander and finally as a ‘de facto nuclear weapon state’, India has put forth its case as a unique and exceptional nuclear power as opposed to Iran, Iraq and North Korea with similar nuclear ambitions, who have been snubbed as ‘rogue states’ by the international community. This paper investigates the reasons behind international community’s gradual acceptance of India’s nuclear weapons capabilities and nuclear identity after the Indo-U.S. Nuclear Deal. In this paper, the central concept of analysis is the inter-subjective nature of identity in the nuclear arena. India’s nuclear behaviour has been discursively constituted by India through evolving images of the ‘self’ and the ‘other.’ India’s sudden heightened global status is not solely the consequence of its 1998 nuclear tests but a calibrated projection as a responsible stakeholder in other spheres such as economic potential, market prospects, democratic credentials and so on. By examining India’s nuclear discourse this paper contends that India has used its material and discursive power in presenting a n striking image as a responsible nuclear weapon power (though not yet a legal nuclear weapon state as per the NPT). By historicising India’s nuclear trajectory through an inter-subjective analysis of identities, this paper moves a step ahead in providing a theoretical interpretation of state actions and nuclear identity construction.

Keywords: nuclear identity, India, constructivism, international stakeholder

Procedia PDF Downloads 396
11579 Implied Fundamental Rights under Article 21 of the Constitution of India: Effects and Applicability

Authors: N. Sathish Gowda

Abstract:

A constitution without fundamental rights will become zero. The very object of constitution of three organs viz, legislature, executive and judiciary under the constitution of India is to protect, preserve and promote fundamental rights guaranteed under part-III. In India, along with express fundamental rights, Supreme Court has also recognized implied fundamental rights. But, unfortunately State has not been implementing these implied fundamental rights. In this regard, this research paper discusses the catalogue of implied fundamental rights evolved by the judiciary in interpreting Article 21 of the Constitution of India and seeks to examine the effects and applicability of these rights in India.

Keywords: fundamental rights, nuances of Article 21, express fundamental rights, implied fundamental rights, procedure established by law

Procedia PDF Downloads 341
11578 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India

Authors: Palash Bandyopadhyay

Abstract:

Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.

Keywords: financial performance, crude oil and natural gas companies, India, linear regression

Procedia PDF Downloads 292
11577 An Empirical Study on Growth, Trade, Foreign Direct Investment and Environment in India

Authors: Shilpi Tripathi

Abstract:

India has adopted the policy of economic reforms (Globalization, Liberalization, and Privatization) in 1991 which has reduced the trade barriers and investment restrictions and further increased the economy’s international trade, foreign direct investment (FDI) inflows and Gross Domestic Product (GDP) growth. The paper empirically studies the relationship between India’s international trades, GDP, FDI and environment during 1978-2012. The first part of the paper focuses on the background and trends of FDI, GDP, trade, and environment (CO2). The second part focuses on the literature regarding the relationship among all the variables. The last part of paper, we examine the results of empirical analysis like co integration and Granger causality between foreign trade, FDI inflows, GDP and CO2 since 1978. The findings of the paper revealed that there is only one uni- directional causality exists between GDP and trade. The direction of causality reveals that international trade is one of the major contributors to the economic growth (GDP). While, there is no causality found between GDP and FDI, FDI, and CO2 and International trade and CO2. The paper concludes with the policy recommendations that will ensure environmental friendly trade, investment and growth in India for future.

Keywords: international trade, foreign direct investment, GDP, CO2, co-integration, granger causality test

Procedia PDF Downloads 404
11576 Discovery of Two-dimensional Hexagonal MBene HfBO

Authors: Nanxi Miao, Junjie Wang

Abstract:

The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.

Keywords: 2D materials, DFT calculations, high-throughput screening, lithium-ion batteries

Procedia PDF Downloads 19
11575 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application

Authors: Zeinab Sanaee, Hossein Jafaripour

Abstract:

Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.

Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery

Procedia PDF Downloads 51
11574 Prospective Use of Rice Husk Ash to Produce Concrete in India

Authors: Kalyan Kumar Moulick

Abstract:

In this paper the author studied the possibilities of using Rice Husk Ash (RHA) available in India; to produce concrete. The effect of RHA on concrete discussed. Traditional uses of Rice Husk in India pointed out and the advantages of using RHA in making concrete highlighted. Suggestion provided regarding prospective application of RHA concrete in India which in turn will definitely reduce the cost of concrete and environmental friendly due to utilization of waste and replacement of Cement.

Keywords: cement replacement, concrete, environmental friendly, rice husk ash

Procedia PDF Downloads 472
11573 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 295
11572 Sustainability of Healthcare Insurance in India: A Review of Health Insurance Scheme Launched by States in India

Authors: Mohd Zuhair, Ram Babu Roy

Abstract:

This paper presents an overview of the accessibility, design, and functioning of health insurance plans launched by state governments in India. In recent years, the governments of several states in India have come forward to provide health insurance coverage for the low-income group and rural population to reduce the out of pocket expenditure (OPE) on healthcare. Different health insurance schemes have different structures and offerings which differ in the different demographic factors. This study will portray a comparative analysis of the various health insurance schemes by analyzing different offerings and finance generation of the schemes. The comparative analysis will explain the lesson to be learned from these schemes and extend the existing knowledge of the health insurance in India. This would help in recognizing tension between various drivers and identifying issues pertaining to the sustainability of health insurance schemes in India.

Keywords: health insurance, out of pocket expenditure, universal healthcare, sustainability

Procedia PDF Downloads 194
11571 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption

Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko

Abstract:

Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.

Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.

Procedia PDF Downloads 78
11570 Genome-Wide Significant SNPs Proximal to Nicotinic Receptor Genes Impact Cognition in Schizophrenia

Authors: Mohammad Ahangari

Abstract:

Schizophrenia is a psychiatric disorder with symptoms that include cognitive deficits and nicotine has been suggested to have an effect on cognition. In recent years, the advents of Genome-Wide Association Studies(GWAS) has evolved our understanding about the genetic causes of complex disorders such as schizophrenia and studying the role of genome-wide significant genes could potentially lead to the development of new therapeutic agents for treatment of cognitive deficits in schizophrenia. The current study identified six Single Nucleotide Polymorphisms (SNP) from schizophrenia and smoking GWAS that are located on or in close proximity to the nicotinic receptor gene cluster (CHRN) and studied their association with cognition in an Irish sample of 1297 cases and controls using linear regression analysis. Further on, the interaction between CHRN gene cluster and Dopamine receptor D2 gene (DRD2) during working memory was investigated. The effect of these polymorphisms on nicotinic and dopaminergic neurotransmission, which is disrupted in schizophrenia, have been characterized in terms of their effects on memory, attention, social cognition and IQ as measured by a neuropsychological test battery and significant effects in two polymorphisms were found across global IQ domain of the test battery.

Keywords: cognition, dopamine, GWAS, nicotine, schizophrenia, SNPs

Procedia PDF Downloads 300
11569 Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations

Authors: Muhammed Ashiq Villanthenkodath, Shreya Pal

Abstract:

Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization.

Keywords: economic globalization, ecological footprint, India, dynamic ARDL simulation model

Procedia PDF Downloads 86
11568 A Political Analytical Evaluation of Religion Influence on Indian Politics

Authors: Mangesh Govindrao Acharya

Abstract:

The influence of religion on politics in India can be seen in the British period. The British used partition politics to create a schism between Hindus and Muslims in India. India was partitioned in1947 due to this policy of the British. In independent India, the principle of secularism was prioritized as a solution to this in the constitution created by the people. Secularism was provided for in 1978 by the 42nd Constitutional Amendment. Although India has embraced secularism, the role of religion in politics has not ended. Although 75 years of India's independence have been completed, politics is still done in the name of religion in India. Political parties choose their candidates, keeping in mind the influence of religion in a particular constituency. People think more about religion and caste while choosing their candidates. Caste riots occur due to the influence of religion-influenced politics. There is a new dispute between the minority and the majority. The Temple-Masjid controversy has become a focal point of Indian politics. Religious hatred in India is causing a huge loss of lives and property and is creating tension among the citizens. All the aspects of Indian politics that have been corrupted by religious fanaticism have been studied in this research paper. This paper mainly explores the causality of the influence of religion on Indian politics.

Keywords: religion, Indian politics, equality and justice, Muslim society, political parties

Procedia PDF Downloads 90
11567 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 222
11566 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India

Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra

Abstract:

Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.

Keywords: antimalarial medicines, counterfeit, substandard, TLC

Procedia PDF Downloads 276
11565 Long Run Estimates of Population, Consumption and Economic Development of India: An ARDL Bounds Testing Approach of Cointegration

Authors: Sanjay Kumar, Arumugam Sankaran, Arjun K., Mousumi Das

Abstract:

The amount of domestic consumption and population growth is having a positive impact on economic growth and development as observed by the Harrod-Domar and endogenous growth models. The paper negates the Solow growth model which argues the population growth has a detrimental impact on per capita and steady-state growth. Unlike the Solow model, the paper observes, the per capita income growth never falls zero, and it sustains as positive. Hence, our goal here is to investigate the relationship among population, domestic consumption and economic growth of India. For this estimation, annual data from 1980-2016 has been collected from World Development Indicator and Reserve Bank of India. To know the long run as well as short-run dynamics among the variables, we have employed the ARDL bounds testing approach of cointegration followed by modified Wald causality test to know the direction of causality. The conclusion from cointegration and ARDL estimates reveal that there is a long run positive and statistically significant relationship among the variables under study. At the same time, the causality test shows that there is a causal relationship that exists among the variables. Hence, this calls for policies which have a long run perspective in strengthening the capabilities and entitlements of people and stabilizing domestic demand so as to serve long run and short run growth and stability of the economy.

Keywords: cointegration, consumption, economic development, population growth

Procedia PDF Downloads 116
11564 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities

Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su

Abstract:

The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.

Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient

Procedia PDF Downloads 430
11563 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries

Authors: Ramon Alberto Paredes Camacho, Li Lu

Abstract:

Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.

Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping

Procedia PDF Downloads 25
11562 Differences in Nutritional Awareness Among Urban Semi Urban and Rural Girls of South India

Authors: N. R. Ramkumar

Abstract:

The foremost aim of physical education has been to inculcate a healthy mind in a healthy body. The aim of this study was to find out the differences in nutritional awareness among urban, semi urban and rural girls of South India. The investigator administered a nutritional awareness questionnaire consisting of 25 statements among 100 rural; 100 semi urban and 100 urban girls studying in different schools in South India. The filled up questionnaire were scored and the total scores for all the twenty five statements were considered as the nutritional awareness level of the subjects. The differences on nutritional awareness among urban, semi urban and rural girls were tested for statistical significance using ANOVA. In all cases 0.05 level was fixed to test the significance. The results proved that there were significant differences on nutritional awareness among urban, semi urban and rural girls (P<0.05). The paired mean comparisons proved that urban girls were having highest nutritional awareness (M: 86.86), followed by semi urban girls (M: 81.86) and then by rural girls (M: 79.48). The differences between urban and semi urban girls and urban and rural girls were significant and there was no significant differences between semi urban and rural girls. The findings of this study proved that rural girls were significantly having lesser nutritional awareness and hence the study recommends the strong need of nutritional education for rural girls in South India.

Keywords: nutrition, awareness, urban, semi urban, rural girls

Procedia PDF Downloads 613
11561 Indian Diplomacy in a Post Pandemic World

Authors: Esha Banerji

Abstract:

This paper attempts an assessment of India's behaviour as a foreign policy actor amidst the COVID 19 pandemic by briefly surveying the various introductions and alterations made to India's foreign policy. First, the paper attempts to establish the key strategic pillars of Indian foreign policy after reviewing the existing works. It then proceeds to assess the prominent part played by Health Diplomacy ("Vaccine Maitri") in India's bilateral and multilateral relations during the pandemic and the role of the Indian diaspora in shaping India's foreign policy. This is followed by examining "India's Neighbourhood First policy" and the way it's been employed by the Indian government to extend India’s strategic influence during the pandemic. An empirical assessment will be done to examine the changing dynamics of India's relation with different regional groupings like SAARC, ASEAN, BIMSTEC, etc. The paper also explores the new alliances formed post-pandemic and India's role in them. This paper analyses the contemporary challenges that the largest nation in South Asia faces with the onset of a global pandemic and how Ancient Indian values like "Vasudhaiva Kutumbakam" have influenced India's foreign policy, especially during the pandemic. It also attempts to grasp the changes within the negotiation style of the Indian government, and the role played by various stakeholders in shaping India's position in the present geopolitical landscape. The study has been conducted using data collected from government records, External Affairs Ministry database, and other available literature. The paper concludes with an attempt to predict the far-reaching strategic implications that the policy, as mentioned above, may have for India.

Keywords: Indian foreign policy, COVID19, diplomacy, post pandemic world

Procedia PDF Downloads 258
11560 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature

Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang

Abstract:

Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10 ℃, 0 ℃, 25 ℃). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10 ℃, this feature is quite favorable for the safety of the battery pack.

Keywords: batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution

Procedia PDF Downloads 441
11559 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)

Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha

Abstract:

Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.

Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol

Procedia PDF Downloads 537
11558 Fill Rate Window as a Criterion for Spares Allocation

Authors: Michael Dreyfuss, Yahel Giat

Abstract:

Limited battery range and long recharging times are the greatest obstacles to the successful adoption of electric cars. One of the suggestions to overcome these problems is that carmakers retain ownership of batteries and provide battery swapping service so that customers exchange their depleted batteries for recharged batteries. Motivated by this example, we consider the problem of optimal spares allocation in an exchangeable-item, multi-location repair system. We generalize the standard service measures of fill rate and average waiting time to reflect the fact that customers penalize the service provider only if they have to wait more than a ‘tolerable’ time window. These measures are denoted as the window fill rate and the truncated waiting time, respectively. We find that the truncated waiting time is convex and therefore a greedy algorithm solves the spares allocation problem efficiently. We show that the window fill rate is generally S-shaped and describe an efficient algorithm to find a near-optimal solution and detail a priori and a posteriori upper bounds to the distance from optimum. The theory is complemented with a large scale numerical example demonstrating the spare battery allocation in battery swapping stations.

Keywords: convex-concave optimization, exchangeable item, M/G/infinity, multiple location, repair system, spares allocation, window fill rate

Procedia PDF Downloads 459
11557 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor

Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee

Abstract:

Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.

Keywords: accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test

Procedia PDF Downloads 577
11556 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 49
11555 South Asia’s Political Landscape: Precipitating Terrorism

Authors: Saroj Kumar Rath

Abstract:

India's Muslims represent 15 percent of the nation's population, the world's third largest group in any nation after Indonesia and Pakistan. Extremist groups like the Islamic State, Al Qaeda, the Taliban and the Haqqani network increasingly view India as a target. Several trends explain the rise: Terrorism threats in South Asia are linked and mobile - if one source is batted down, jihadists relocate to find another Islamic cause. As NATO withdraws from Afghanistan, some jihadists will eye India. Pakistan regards India as a top enemy and some officials even encourage terrorists to target areas like Kashmir or Mumbai. Meanwhile, a stream of Wahhabi preachers have visited India, offering hard-line messages; extremist groups like Al Qaeda and the Islamic State compete for influence, and militants even pay jihadists. Muslims as a minority population in India could offer fertile ground for the extremist recruiters. This paper argues that there is an urgent need for the Indian government to profile militants and examine social media sites to attack Wahhabi indoctrination while supporting education and entrepreneurship for all of India's citizens.

Keywords: Al Qaeda, terrorism, Islamic state, India, haqqani network, Pakistan, Taliban

Procedia PDF Downloads 580