Search results for: navigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 314

Search results for: navigation

224 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 55
223 Analysis and Performance of European Geostationary Navigation Overlay Service System in North of Algeria for GPS Single Point Positioning

Authors: Tabti Lahouaria, Kahlouche Salem, Benadda Belkacem, Beldjilali Bilal

Abstract:

The European Geostationary Navigation Overlay Service (EGNOS) provides an augmentation signal to GPS (Global Positioning System) single point positioning. Presently EGNOS provides data correction and integrity information using the GPS L1 (1575.42 MHz) frequency band. The main objective of this system is to provide a better real-time positioning precision than using GPS only. They are expected to be used with single-frequency code observations. EGNOS offers navigation performance for an open service (OS), in terms of precision and availability this performance gradually degrades as moving away from the service area. For accurate system performance, the service will become less and less available as the user moves away from the EGNOS service. The improvement in position solution is investigated using the two collocated dual frequency GPS, where no EGNOS Ranging and Integrity Monitoring Station (RIMS) exists. One of the pseudo-range was kept as GPS stand-alone and the other was corrected by EGNOS to estimate the planimetric and altimetric precision for different dates. It is found that precision in position improved significantly in the second due to EGNOS correction. The performance of EGNOS system in the north of Algeria is also investigated in terms of integrity. The results show that the horizontal protection level (HPL) value is below 18.25 meters (95%) and the vertical protection level (VPL) is below 42.22 meters (95 %). These results represent good integrity information transmitted by EGNOS for APV I service. This service is thus compliant with the aviation requirements for Approaches with Vertical Guidance (APV-I), which is characterised by 40 m HAL (horizontal alarm limit) and 50 m VAL (vertical alarm limit).

Keywords: EGNOS, GPS, positioning, integrity, protection level

Procedia PDF Downloads 187
222 Exploring Pisa Monuments Using Mobile Augmented Reality

Authors: Mihai Duguleana, Florin Girbacia, Cristian Postelnicu, Raffaello Brodi, Marcello Carrozzino

Abstract:

Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.

Keywords: augmented reality, electronic compass, GPS, location-based service

Procedia PDF Downloads 248
221 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements

Authors: Andrey Kupriyanov

Abstract:

In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.

Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)

Procedia PDF Downloads 141
220 The Usage of Thermal Regions as a Air Navigation Rule for Unmanned Aircraft Systems

Authors: Resul Fikir

Abstract:

Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier .One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drug. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wing which can use of thermals like birds and gliders. Thermal regions, which is area of 2-3 NM, exist all around the world. It is free and clean source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.

Keywords: unmanned aircraft systems, Air4All, thermals, gliders

Procedia PDF Downloads 365
219 Dynamic Ad-hoc Topologies for Mobile Robot Navigation Based on Non-Uniform Grid Maps

Authors: Peter Sauer, Thomas Hinze, Petra Hofstedt

Abstract:

To avoid obstacles in the surrounding environment and to navigate to a given target belong to the most important tasks for mobile robots. According to these tasks different data structures are suitable. To avoid near obstacles, occupancy grid maps are an ideal representation of the surroundings. For less fine grained tasks, such as navigating from one room to another in an apartment, pure grid maps are inappropriate. Grid maps are very detailed, calculating paths to navigate between rooms based on grid maps would take too long. Instead, graph-based data structures, so-called topologies, turn out to be a proper choice for such tasks. In this paper we present two methods to dynamically create topologies from grid maps. Both methods are based on non-uniform grid maps. The topologies are generated on-the-fly and can easily be modified to represent changes in the environment. This allows a hybrid approach to control mobile robots, where, depending on the situation and the current task, either the grid map or the generated topology may be used.

Keywords: robot navigation, occupancy grids, topological maps, dynamic map creation

Procedia PDF Downloads 532
218 A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles

Authors: Mbadiwe S. Benyeogor, Oladayo O. Olakanmi, Kosisochukwu P. Nnoli, Olusegun I. Lawal, Eric JJ. Gratton

Abstract:

For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation.

Keywords: active suspension, autonomous robots, edge computing, navigational sensors, terramechanics

Procedia PDF Downloads 112
217 Spatial Abilities, Memory, and Intellect of Drivers with Different Professional Experience

Authors: Khon Natalya, Kim Alla, Mukhitdinova Tansulu

Abstract:

The aim of the research was to reveal the link between mental variables, such as spatial abilities, memory, intellect and professional experience of drivers. Participants were allocated within 4 groups: no experience, inexperienced, skilled and professionals (total 85 participants). Level of ability for spatial navigation and indicator of nonverbal memory grow along the process of accumulation of driving experience. At high levels of driving experience this tendency is especially noticeable. The professionals having personal achievements in driving (racing) differ from skilled drivers in better feeling of direction which is specific for them not just in a short-term situation of an experimental task, but in life-size perspective. The level of ability of mental rotation does not grow with growth of driving experience which confirms the multiple intelligence theory according to which spatial abilities represent specific, other than logical intelligence type of intellect. The link between spatial abilities, memory, intellect, and professional experience of drivers seems to be different relating spatial navigation or mental rotation as different kinds of spatial abilities.

Keywords: memory, spatial ability, intellect, drivers

Procedia PDF Downloads 580
216 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments

Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis

Abstract:

In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.

Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion

Procedia PDF Downloads 172
215 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm

Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie

Abstract:

Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.

Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments

Procedia PDF Downloads 117
214 Synchronization of Two Mobile Robots

Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez

Abstract:

It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.

Keywords: robots, synchronization, bidirectional, coordinate navigation

Procedia PDF Downloads 320
213 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

Authors: D. Vidhyaprakash, A. Elango

Abstract:

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory

Procedia PDF Downloads 239
212 Comparative Evaluation of a Dynamic Navigation System Versus a Three-Dimensional Microscope in Retrieving Separated Endodontic Files: An in Vitro Study

Authors: Mohammed H. Karim, Bestoon M. Faraj

Abstract:

Introduction: This study aimed to compare the effectiveness of a Dynamic Navigation System (DNS) and a three-dimensional microscope in retrieving broken rotary NiTi files when using trepan burs and the extractor system. Materials and Methods: Thirty maxillary first bicuspids with sixty separate roots were split into two comparable groups based on a comprehensive Cone-Beam Computed Tomography (CBCT) analysis of the root length and curvature. After standardized access opening, glide paths, and patency attainment with the K file (sizes 10 and 15), the teeth were arranged on 3D models (three per quadrant, six per model). Subsequently, controlled-memory heat-treated NiTi rotary files (#25/0.04) were notched 4 mm from the tips and fractured at the apical third of the roots. The C-FR1 Endo file removal system was employed under both guidance to retrieve the fragments, and the success rate, canal aberration, treatment time and volumetric changes were measured. The statistical analysis was performed using IBM SPSS software at a significance level of 0.05. Results: The microscope-guided group had a higher success rate than the DNS guidance, but the difference was insignificant (p > 0.05). In addition, the microscope-guided drills resulted in a substantially lower proportion of canal aberration, required less time to retrieve the fragments and caused minimal change in the root canal volume (p < 0.05). Conclusion: Although dynamically guided trephining with the extractor can retrieve separated instruments, it is inferior to three-dimensional microscope guidance regarding treatment time, procedural errors, and volume change.

Keywords: separated instruments retrieval, dynamic navigation system, 3D video microscope, trephine burs, extractor

Procedia PDF Downloads 35
211 Newly Designed Ecological Task to Assess Cognitive Map Reading Ability: Behavioral Neuro-Anatomic Correlates of Mental Navigation

Authors: Igor Faulmann, Arnaud Saj, Roland Maurer

Abstract:

Spatial cognition consists in a plethora of high level cognitive abilities: among them, the ability to learn and to navigate in large scale environments is probably one of the most complex skills. Navigation is thought to rely on the ability to read a cognitive map, defined as an allocentric representation of ones environment. Those representations are of course intimately related to the two geometrical primitives of the environment: distance and direction. Also, many recent studies point to a predominant hippocampal and para-hippocampal role in spatial cognition, as well as in the more specific cluster of navigational skills. In a previous study in humans, we used a newly validated test assessing cognitive map processing by evaluating the ability to judge relative distances and directions: the CMRT (Cognitive Map Recall Test). This study identified in topographically disorientated patients (1) behavioral differences between the evaluation of distances and of directions, and (2) distinct causality patterns assessed via VLSM (i.e., distinct cerebral lesions cause distinct response patterns depending on the modality (distance vs direction questions). Thus, we hypothesized that: (1) if the CMRT really taps into the same resources as real navigation, there would be hippocampal, parahippocampal, and parietal activation, and (2) there exists underlying neuroanatomical and functional differences between the processing of this two modalities. Aiming toward a better understanding of the neuroanatomical correlates of the CMRT in humans, and more generally toward a better understanding of how the brain processes the cognitive map, we adapted the CMRT as an fMRI procedure. 23 healthy subjects (11 women, 12 men), all living in Geneva for at least 2 years, underwent the CMRT in fMRI. Results show, for distance and direction taken together, than the most active brain regions are the parietal, frontal and cerebellar parts. Additionally, and as expected, patterns of brain activation differ when comparing the two modalities. Furthermore, distance processing seems to rely more on parietal regions (compared to other brain regions in the same modality and also to direction). It is interesting to notice that no significant activity was observed in the hippocampal or parahippocampal areas. Direction processing seems to tap more into frontal and cerebellar brain regions (compared to other brain regions in the same modality and also to distance). Significant hippocampal and parahippocampal activity has been shown only in this modality. This results demonstrated a complex interaction of structures which are compatible with response patterns observed in other navigational tasks, thus showing that the CMRT taps at least partially into the same brain resources as real navigation. Additionally, differences between the processing of distances and directions leads to the conclusion that the human brain processes each modality distinctly. Further research should focus on the dynamics of this processing, allowing a clearer understanding between the two sub-processes.

Keywords: cognitive map, navigation, fMRI, spatial cognition

Procedia PDF Downloads 264
210 Evaluating the Effect of Spatial Qualities, Openness and Complexity, on Human Cognitive Performance within Virtual Reality

Authors: Pierre F. Gerard, Frederic F. Leymarie, William Latham

Abstract:

Architects have developed a series of objective evaluations, using spatial analysis tools such as Isovist, that show how certain spatial qualities are beneficial to specific human activities hosted in the built environments. In return, they can build more adapted environments by tuning those spatial qualities in their design. In parallel, virtual reality technologies have been developed by engineers with the dream of creating a system that immerses users in a new form of spatial experiences. They already have demonstrated a useful range of benefits not only in simulating critical events to assist people in acquiring new skills, but also to enhance memory retention, to name just a few. This paper investigates the effects of two spatial qualities, openness, and complexity, on cognitive performance within immersive virtual environments. Isovist measure is used to design a series of room settings with different levels of each spatial qualities. In an empirical study, each room was then used by every participant to solve a navigational puzzle game and give a rating of their spatial experience. They were then asked to fill in a questionnaire before solving the visual-spatial memory quiz, which addressed how well they remembered the different rooms. Findings suggest that those spatial qualities have an effect on some of the measures, including navigation performance and memory retention. In particular, there is an order effect for the navigation puzzle game. Participants tended to spend a longer time in the complex room settings. Moreover, there is an interaction effect while with more open settings, participants tended to perform better when in a simple setting; however, with more closed settings, participants tended to perform better in a more complex setting. For the visual-spatial memory quiz, participants performed significantly better within the more open rooms. We believe this is a first step in using virtual environments to enhance participant cognitive performances through better use of specific spatial qualities.

Keywords: architecture, navigation, spatial cognition, virtual reality

Procedia PDF Downloads 92
209 A Cooperative Signaling Scheme for Global Navigation Satellite Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.

Keywords: global navigation satellite network, cooperative signaling, data combining, nodes

Procedia PDF Downloads 253
208 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 270
207 Comparative Evaluation of a Dynamic Navigation System Versus a Three-Dimensional Microscope in Retrieving Separated Endodontic Files: An in Vitro Study

Authors: Mohammed H. Karim, Bestoon M. Faraj

Abstract:

Introduction: instrument separation is a common challenge in the endodontic field. Various techniques and technologies have been developed to improve the retrieval success rate. This study aimed to compare the effectiveness of a Dynamic Navigation System (DNS) and a three-dimensional microscope in retrieving broken rotary NiTi files when using trepan burs and the extractor system. Materials and Methods: Thirty maxillary first bicuspids with sixty separate roots were split into two comparable groups based on a comprehensive Cone-Beam Computed Tomography (CBCT) analysis of the root length and curvature. After standardised access opening, glide paths, and patency attainment with the K file (sizes 10 and 15), the teeth were arranged on 3D models (three per quadrant, six per model). Subsequently, controlled-memory heat-treated NiTi rotary files (#25/0.04) were notched 4 mm from the tips and fractured at the apical third of the roots. The C-FR1 Endo file removal system was employed under both guidance to retrieve the fragments, and the success rate, canal aberration, treatment time and volumetric changes were measured. The statistical analysis was performed using IBM SPSS software at a significance level of 0.05. Results: The microscope-guided group had a higher success rate than the DNS guidance, but the difference was insignificant (p > 0.05). In addition, the microscope-guided drills resulted in a substantially lower proportion of canal aberration, required less time to retrieve the fragments and caused a minor change in the root canal volume (p < 0.05). Conclusion: Although dynamically guided trephining with the extractor can retrieve separated instruments, it is inferior to three-dimensional microscope guidance regarding treatment time, procedural errors, and volume change.

Keywords: dynamic navigation system, separated instruments retrieval, trephine burs and extractor system, three-dimensional video microscope

Procedia PDF Downloads 44
206 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled

Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov

Abstract:

This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.

Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS

Procedia PDF Downloads 304
205 Development of an Indoor Drone Designed for the Needs of the Creative Industries

Authors: V. Santamarina Campos, M. de Miguel Molina, S. Kröner, B. de Miguel Molina

Abstract:

With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process.

Keywords: virtual reality, 3D reconstruction, indoor positioning system, RPAS, remotely piloted aircraft systems, aerial film, intelligent navigation, advanced safety measures, creative industries

Procedia PDF Downloads 154
204 Tuning of Kalman Filter Using Genetic Algorithm

Authors: Hesham Abdin, Mohamed Zakaria, Talaat Abd-Elmonaem, Alaa El-Din Sayed Hafez

Abstract:

Kalman filter algorithm is an estimator known as the workhorse of estimation. It has an important application in missile guidance, especially in lack of accurate data of the target due to noise or uncertainty. In this paper, a Kalman filter is used as a tracking filter in a simulated target-interceptor scenario with noise. It estimates the position, velocity, and acceleration of the target in the presence of noise. These estimations are needed for both proportional navigation and differential geometry guidance laws. A Kalman filter has a good performance at low noise, but a large noise causes considerable errors leads to performance degradation. Therefore, a new technique is required to overcome this defect using tuning factors to tune a Kalman filter to adapt increasing of noise. The values of the tuning factors are between 0.8 and 1.2, they have a specific value for the first half of range and a different value for the second half. they are multiplied by the estimated values. These factors have its optimum values and are altered with the change of the target heading. A genetic algorithm updates these selections to increase the maximum effective range which was previously reduced by noise. The results show that the selected factors have other benefits such as decreasing the minimum effective range that was increased earlier due to noise. In addition to, the selected factors decrease the miss distance for all ranges of this direction of the target, and expand the effective range which leads to increase probability of kill.

Keywords: proportional navigation, differential geometry, Kalman filter, genetic algorithm

Procedia PDF Downloads 473
203 Flashsonar or Echolocation Education: Expanding the Function of Hearing and Changing the Meaning of Blindness

Authors: Thomas, Daniel Tajo, Kish

Abstract:

Sight is primarily associated with the function of gathering and processing near and extended spatial information which is largely used to support self-determined interaction with the environment through self-directed movement and navigation. By contrast, hearing is primarily associated with the function of gathering and processing sequential information which may typically be used to support self-determined communication through the self-directed use of music and language. Blindness or the lack of vision is traditionally characterized by a lack of capacity to access spatial information which, in turn, is presumed to result in a lack of capacity for self-determined interaction with the environment due to limitations in self-directed movement and navigation. However, through a specific protocol of FlashSonar education developed by World Access for the Blind, the function of hearing can be expanded in blind people to carry out some of the functions normally associated with sight, that is to access and process near and extended spatial information to construct three-dimensional acoustic images of the environment. This perceptual education protocol results in a significant restoration in blind people of self-determined environmental interaction, movement, and navigational capacities normally attributed to vision - a new way to see. Thus, by expanding the function of hearing to process spatial information to restore self-determined movement, we are not only changing the meaning of blindness, and what it means to be blind, but we are also recasting the meaning of vision and what it is to see.

Keywords: echolocation, changing, sensory, function

Procedia PDF Downloads 121
202 A Real-Time Simulation Environment for Avionics Software Development and Qualification

Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Luca Garbarino, Urbano Tancredi, Domenico Accardo, Michele Grassi, Giancarmine Fasano, Anna Elena Tirri

Abstract:

The development of guidance, navigation and control algorithms and avionic procedures requires the disposability of suitable analysis and verification tools, such as simulation environments, which support the design process and allow detecting potential problems prior to the flight test, in order to make new technologies available at reduced cost, time and risk. This paper presents a simulation environment for avionic software development and qualification, especially aimed at equipment for general aviation aircrafts and unmanned aerial systems. The simulation environment includes models for short and medium-range radio-navigation aids, flight assistance systems, and ground control stations. All the software modules are able to simulate the modeled systems both in fast-time and real-time tests, and were implemented following component oriented modeling techniques and requirement based approach. The paper describes the specific models features, the architectures of the implemented software systems and its validation process. Performed validation tests highlighted the capability of the simulation environment to guarantee in real-time the required functionalities and performance of the simulated avionics systems, as well as to reproduce the interaction between these systems, thus permitting a realistic and reliable simulation of a complete mission scenario.

Keywords: ADS-B, avionics, NAVAIDs, real-time simulation, TCAS, UAS ground control station

Procedia PDF Downloads 188
201 Determination of Tide Height Using Global Navigation Satellite Systems (GNSS)

Authors: Faisal Alsaaq

Abstract:

Hydrographic surveys have traditionally relied on the availability of tide information for the reduction of sounding observations to a common datum. In most cases, tide information is obtained from tide gauge observations and/or tide predictions over space and time using local, regional or global tide models. While the latter often provides a rather crude approximation, the former relies on tide gauge stations that are spatially restricted, and often have sparse and limited distribution. A more recent method that is increasingly being used is Global Navigation Satellite System (GNSS) positioning which can be utilised to monitor height variations of a vessel or buoy, thus providing information on sea level variations during the time of a hydrographic survey. However, GNSS heights obtained under the dynamic environment of a survey vessel are affected by “non-tidal” processes such as wave activity and the attitude of the vessel (roll, pitch, heave and dynamic draft). This research seeks to examine techniques that separate the tide signal from other non-tidal signals that may be contained in GNSS heights. This requires an investigation of the processes involved and their temporal, spectral and stochastic properties in order to apply suitable recovery techniques of tide information. In addition, different post-mission and near real-time GNSS positioning techniques will be investigated with focus on estimation of height at ocean. Furthermore, the study will investigate the possibility to transfer the chart datums at the location of tide gauges.

Keywords: hydrography, GNSS, datum, tide gauge

Procedia PDF Downloads 231
200 Investigation of the Cognition Factors of Fire Response Performances Based on Survey

Authors: Jingjing Yan, Gengen He, Anahid Basiri

Abstract:

The design of an indoor navigation system for fire evacuation support requires not only physical feasibility but also a relatively thorough consideration of the human factors. This study has taken a survey to investigate the fire response performances (FRP) of the indoor occupants in age of 20s, virtually in an environment for their routine life, focusing on the aspects of indoor familiarity (spatial cognition), psychological stress and decision makings. For indoor familiarity, it is interested in three factors, i.e., the familiarity to exits and risky places as well as the satisfaction degree of the current indoor sign installation. According to the results, males have a higher average familiarity with the indoor exits while both genders have a relatively low level of risky place awareness. These two factors are positively correlated with the satisfaction degree of the current installation of the indoor signs, and this correlation is more evident for the exit familiarity. The integration of the height factor with the other two indoor familiarity factors can improve the degree of indoor sign satisfaction. For psychological stress, this study concentrates on the situated cognition of moving difficulty, nervousness, and speed reduction when using a bending posture during the fire evacuation to avoid smoke inhalation. The results have shown that both genders have a similar mid-level of hardness sensation. The females have a higher average level of nervousness, while males have a higher average level of speed reduction sensation. This study has assumed that the growing indoor spatial cognition can help ease the psychological hardness and nervousness. However, it only seems to be true after reaching a certain level. When integrating the effects from indoor familiarity and the other two psychological factors, the correlation to the sensation of speed change can be strengthened, based on a stronger positive correlation with the integrated factors. This study has also investigated the participants’ attitude to the navigation support during evacuation, and the majority of the participants have shown positive attitudes. For following the guidance under some extreme cases, i.e., changing to a longer path and to an alternative exit, the majority of the participants has shown the confidence of keeping trusting the guidance service. These decisions are affected by the combined influences from indoor familiarity, psychological stress, and attitude of using navigation service. For the decision time of the selected extreme cases, it costs more time in average for deciding to use a longer route than to use an alternative exit, and this situation is more evident for the female participants. This requires further considerations when designing a personalized smartphone-based navigation app. This study has also investigated the calming factors for people being trapped during evacuation. The top consideration is the distance to the nearest firefighters, and the following considerations are the current fire conditions in the surrounding environment and the locations of all firefighters. The ranking of the latter two considerations is very gender-dependent according to the results.

Keywords: fire response performances, indoor spatial cognition, situated cognition, survey analysis

Procedia PDF Downloads 94
199 Comparison and Evaluation of Joomla and WordPress Web Content Management Systems for Effective Site Administration

Authors: Abubakar Ibrahim, Muhammad Garba, Adelusi Oluwaseyi Abiodun

Abstract:

Website development and administration has already become a very critical issue in many organisations due to the fact that most of the organisations have embraced the use of the internet to deliver their services and products seamlessly but even with huge advantages of being present on the internet, and website are very difficult and expensive to develop and maintain. In recent years, a number of open-source web Contents Management System (CMS) have been developed to allow organisations to internally develop and maintain their websites without the need to hire professional web developers to provide such services for them. This study aimed at performing a comparative analysis of the two most widely used open source CMS Joomla and wordpress, based on the following criteria: intuitiveness, responsiveness richness in features, meeting expectation, fill secured, ease of navigation, structure, and performance. Two identical applications were developed using the said CMS. In this study, a purposive sampling technique was adopted to administer the questionnaires, and a total of 50 respondents were selected to surf sites and fill out a questionnaire based on their experience on the two sites. Gt-matrix was used to carry out further analysis of the applications. The result shows that Joomla is the best for developing an e-commerce site due to the fact that it is best in terms of performance, better structure, meeting user expectations, rich features, and functionality. Even though Wordpress is intuitive and easy for navigation. One can still argue that Joomla is superior.

Keywords: open source, content management system, Joomla, WordPress

Procedia PDF Downloads 18
198 A Descriptive Study of Turkish Straits System on Dynamics of Environmental Factors Causing Maritime Accidents

Authors: Gizem Kodak, Alper Unal, Birsen Koldemir, Tayfun Acarer

Abstract:

Turkish Straits System which consists of Istanbul Strait (Bosphorus), Canakkale Strait (Dardanelles) and the Marmara Sea has a strategical location on international maritime as it is a unique waterway between the Mediterranean Sea, Black Sea and the Aegean Sea. Thus, this area has great importance since it is the only waterway between Black Sea countries and the rest of the World. Turkish Straits System has dangerous environmental factors hosts more vessel every day through developing World trade and this situation results in expanding accident risks day by day. Today, a lot of precautions have been taken to ensure safe navigation and to prevent maritime accidents, and international standards are followed to avoid maritime accidents. Despite this, the environmental factors that affect this area, trigger the maritime accidents and threaten the vessels with new accidents risks in different months with different hazards. This descriptive study consists of temporal and spatial analyses of environmental factors causing maritime accidents. This study also aims at contributing to safety navigation including monthly and regionally characteristics of variables. In this context, two different data sets are created consisting of environmental factors and accidents. This descriptive study on the accidents between 2001 and 2017 the mentioned region also studies the months and places of the accidents with environmental factor variables. Environmental factor variables are categorized as dynamic and static factors. Dynamic factors are appointed as meteorological and oceanographical while static factors are appointed as geological factors that threaten safety navigation with geometrical restricts. The variables that form dynamic factors are approached meteorological as wind direction, wind speed, wave altitude and visibility. The circulations and properties of the water mass on the system are studied as oceanographical properties. At the end of the study, the efficient meteorological and oceanographical parameters on the region are presented monthly and regionally. By this way, we acquired the monthly, seasonal and regional distributions of the accidents. Upon the analyses that are done; The Turkish Straits System that connects the Black Sea countries with the other countries and which is one of the most important parts of the world trade; is analyzed on temporal and spatial dimensions on the reasons of the accidents and have been presented as environmental factor dynamics causing maritime accidents.

Keywords: descriptive study, environmental factors, maritime accidents, statistics

Procedia PDF Downloads 161
197 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 198
196 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 136
195 A Multimodal Measurement Approach Using Narratives and Eye Tracking to Investigate Visual Behaviour in Perceiving Naturalistic and Urban Environments

Authors: Khizar Z. Choudhrya, Richard Coles, Salman Qureshi, Robert Ashford, Salim Khan, Rabia R. Mir

Abstract:

Abstract: The majority of existing landscape research has been derived by conducting heuristic evaluations, without having empirical insight of real participant visual response. In this research, a modern multimodal measurement approach (using narratives and eye tracking) was applied to investigate visual behaviour in perceiving naturalistic and urban environments. This research is unique in exploring gaze behaviour on environmental images possessing different levels of saliency. Eye behaviour is predominantly attracted by salient locations. The concept of methodology of this research on naturalistic and urban environments is drawn from the approaches in market research. Borrowing methodologies from market research that examine visual responses and qualities provided a critical and hitherto unexplored approach. This research has been conducted by using mixed methodological quantitative and qualitative approaches. On the whole, the results of this research corroborated existing landscape research findings, but they also identified potential refinements. The research contributes both methodologically and empirically to human-environment interaction (HEI). This study focused on initial impressions of environmental images with the help of eye tracking. Taking under consideration the importance of the image, this study explored the factors that influence initial fixations in relation to expectations and preferences. In terms of key findings of this research it is noticed that each participant has his own unique navigation style while surfing through different elements of landscape images. This individual navigation style is given the name of ‘visual signature’. This study adds the necessary clarity that would complete the picture and bring an insight for future landscape researchers.

Keywords: human-environment interaction (HEI), multimodal measurement, narratives, eye tracking

Procedia PDF Downloads 306