Search results for: natural fibre
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5873

Search results for: natural fibre

5693 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers

Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari

Abstract:

Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.

Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete

Procedia PDF Downloads 135
5692 Removal of Vanadium from Industrial Effluents by Natural Ion Exchanger

Authors: Shashikant R. Kuchekar, Haribhau R. Aher, Priti M. Dhage

Abstract:

The removal vanadium from aqueous solution using natural exchanger was investigated. The effects of pH, contact time and exchanger dose were studied at ambient temperature (25 0C ± 2 0C). The equilibrium process was described by the Langmuir isotherm model with adsorption capacity for vanadium. The natural exchanger i.e. tamarindus seeds powder was treated with formaldehyde and sulpuric acid to increase the adsorptivity of metals. The maximum exchange level was attained as 80.1% at pH 3 with exchanger dose 5 g and contact time 60 min. Method is applied for removal of vanadium from industrial effluents.

Keywords: industrial effluent, natural ion exchange, Tamarindous indica, vanadium

Procedia PDF Downloads 211
5691 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres

Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif

Abstract:

With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.

Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite

Procedia PDF Downloads 221
5690 Effect on Physicochemical and Sensory Attributes of Bread Substituted with Different Levels of Matured Soursop (Anona muricata) Flour

Authors: Mardiana Ahamad Zabidi, Akmalluddin Md. Yunus

Abstract:

Soursop (Anona muricata) is one of the underutilized tropical fruits containing nutrients, particularly dietary fibre and antioxidant properties that are beneficial to human health. This objective of this study is to investigate the feasibility of matured soursop pulp flour (SPF) to be substituted with high-protein wheat flour in bread. Bread formulation was substituted with different levels of SPF (0%, 5%, 10% and 15%). The effect on physicochemical properties and sensory attributes were evaluated. Higher substitution level of SPF resulted in significantly higher (p<0.05) fibre, protein and ash content, while fat and carbohydrate content reduced significantly (p<0.05). FESEM showed that the bread crumb surface of control and 5% SPF appeared to distribute evenly and coalesced by thin gluten film. However, higher SPF substitution level in bread formulation exhibited a deleterious effect by formation of discontinuous gluten network. For texture profile analysis, 5% SPF bread resulted in the lowest value of hardness. The score of sensory evaluation showed that 5% SPF bread received good acceptability and is comparable with control bread.

Keywords: soursop pulp flour, bread, physicochemical properties, sensory attributes, scanning electron microscopy (SEM)

Procedia PDF Downloads 282
5689 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG

Authors: R. Hariti, M. Saighi, H. Saidani-Scott

Abstract:

A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.

Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation

Procedia PDF Downloads 503
5688 Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force

Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat

Abstract:

Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.

Keywords: flexural strength, durabilty, lime, coir fibers, bending force, ductility

Procedia PDF Downloads 430
5687 Low Frequency Ultrasonic Degassing to Reduce Void Formation in Epoxy Resin and Its Effect on the Thermo-Mechanical Properties of the Cured Polymer

Authors: A. J. Cobley, L. Krishnan

Abstract:

The demand for multi-functional lightweight materials in sectors such as automotive, aerospace, electronics is growing, and for this reason fibre-reinforced, epoxy polymer composites are being widely utilized. The fibre reinforcing material is mainly responsible for the strength and stiffness of the composites whilst the main role of the epoxy polymer matrix is to enhance the load distribution applied on the fibres as well as to protect the fibres from the effect of harmful environmental conditions. The superior properties of the fibre-reinforced composites are achieved by the best properties of both of the constituents. Although factors such as the chemical nature of the epoxy and how it is cured will have a strong influence on the properties of the epoxy matrix, the method of mixing and degassing of the resin can also have a significant impact. The production of a fibre-reinforced epoxy polymer composite will usually begin with the mixing of the epoxy pre-polymer with a hardener and accelerator. Mechanical methods of mixing are often employed for this stage but such processes naturally introduce air into the mixture, which, if it becomes entrapped, will lead to voids in the subsequent cured polymer. Therefore, degassing is normally utilised after mixing and this is often achieved by placing the epoxy resin mixture in a vacuum chamber. Although this is reasonably effective, it is another process stage and if a method of mixing could be found that, at the same time, degassed the resin mixture this would lead to shorter production times, more effective degassing and less voids in the final polymer. In this study the effect of four different methods for mixing and degassing of the pre-polymer with hardener and accelerator were investigated. The first two methods were manual stirring and magnetic stirring which were both followed by vacuum degassing. The other two techniques were ultrasonic mixing/degassing using a 40 kHz ultrasonic bath and a 20 kHz ultrasonic probe. The cured cast resin samples were examined under scanning electron microscope (SEM), optical microscope, and Image J analysis software to study morphological changes, void content and void distribution. Three point bending test and differential scanning calorimetry (DSC) were also performed to determine the thermal and mechanical properties of the cured resin. It was found that the use of the 20 kHz ultrasonic probe for mixing/degassing gave the lowest percentage voids of all the mixing methods in the study. In addition, the percentage voids found when employing a 40 kHz ultrasonic bath to mix/degas the epoxy polymer mixture was only slightly higher than when magnetic stirrer mixing followed by vacuum degassing was utilized. The effect of ultrasonic mixing/degassing on the thermal and mechanical properties of the cured resin will also be reported. The results suggest that low frequency ultrasound is an effective means of mixing/degassing a pre-polymer mixture and could enable a significant reduction in production times.

Keywords: degassing, low frequency ultrasound, polymer composites, voids

Procedia PDF Downloads 268
5686 Affectivity of Smoked Edible Sachet in Preventing Oxidation of Natural Condiment Stored in Ambient Temperature

Authors: Feny Mentang, Roike Iwan Montolalu, Henny Adeleida Dien, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon

Abstract:

Smoked fish is one of the famous fish products in North Sulawesi, Indonesia. Research in producing smoked fish using smoke liquid, and the use of that product as main taste for a new “natural condiment” have been done, including a series of researches to find materials for sachet. Research aims are to determine the effectiveness of smoked edible sachets, in preventing oxidation of natural condiment, stored in ambient temperature. Two kinds of natural condiment flavors were used, i.e. smoked Skipjack flavor, and Sea Food flavor. Three variables of edible sachets were used for the natural condiments, i.e. non-sachet, edible sachet without smoke liquid, and edible sachet with smoke liquid. The natural condiments were then stored in ambient temperature, for 0, 10, 20, and 30 days. To determine the effectiveness of edible sachets in preventing oxidation, analysis of TBA, water content, and pH were conducted. The results shown that natural condiment with smoked seafood taste had TBA values higher than that of smoked Skipjack. Edible sachet gave a highly significant effect (P > 0.01) on TBA. Natural condiment in smoked edible sachet has a lower TBA than natural condiment non-sachet, and with sachet without smoke liquid. The longer storing time, the higher TBA, especially for non-sachet and with sachet without smoke liquid. There were no significant effect (P > 0.05) of edible sachet on water content and pH.

Keywords: edible sachet, smoke liquid, natural condiment, oxidation

Procedia PDF Downloads 482
5685 Trends and Inequalities in Distance to and Use of Nearest Natural Space in the Context of the 20-Minute Neighbourhood: A 4-Wave National Repeat Crosssectional Study, 2013 to 2019

Authors: Jonathan R. Olsen, Natalie Nicholls, Jenna Panter, Hannah Burnett, Michael Tornow, Richard Mitchell

Abstract:

The 20-minute neighborhood is a policy priority for governments worldwide and a key feature of this policy is providing access to natural space within 800 meters of home. The study aims were to (1) examine the association between distance to nearest natural space and frequent use over time and (2) examine whether frequent use and changes in use were patterned by income and housing tenure over time. Bi-annual Scottish Household Survey data were obtained for 2013 to 2019 (n:42128 aged 16+). Adults were asked the walking distance to their nearest natural space, the frequency of visits to this space and their housing tenure, as well as age, sex and income. We examined the association between distance from home of nearest natural space, housing tenure, and the likelihood of frequent natural space use (visited once a week or more). Two-way interaction terms were further applied to explore variation in the association between tenure and frequent natural space use over time. We found that 87% of respondents lived within 10 minute walk of a natural space, meeting the policy specification for a 20-minute neighbourhood. Greater proximity to natural space was associated with increased use; individuals living a 6 to 10 minute walk and over 10 minute walk were respectively 53% and 78% less likely to report frequent natural space use than those living within a 5 minute walk. Housing tenure was an important predictor of frequent natural space use; private renters and homeowners were more likely to report frequent natural space use than social renters. Our findings provide evidence that proximity to natural space is a strong predictor of frequent use. Our study provides important evidence that time-based access measures alone do not consider deep-rooted socioeconomic variation in use of Natural space. Policy makers should ensure a nuanced lens is applied to operationalising and monitoring the 20-minute neighbourhood to safeguard against exacerbating existing inequalities.

Keywords: natural space, housing, inequalities, 20-minute neighbourhood, urban design

Procedia PDF Downloads 79
5684 Use of Recycled Aggregates in Current Concretes

Authors: K. Krizova, R. Hela

Abstract:

The paper a summary of the results of concretes with partial substitution of natural aggregates with recycled concrete is solved. Design formulas of the concretes were characterised with 20, 40 and 60% substitution of natural 8-16 mm fraction aggregates with a selected recycled concrete of analogous coarse fractions. With the product samples an evaluation of coarse fraction aggregates influence on fresh concrete consistency and concrete strength in time was carried out. The results of concretes with aggregates substitution will be compared to reference formula containing only the fractions of natural aggregates.

Keywords: recycled concrete, natural aggregates, fresh concrete, properties of concrete

Procedia PDF Downloads 360
5683 Comparative Study of Natural Coarse Aggregate Concrete with Recycled Concrete Aggregate Concrete

Authors: Ahmad Saadiq, Neeraj Sahu

Abstract:

The partial or full replacement of natural coarse aggregate by recycled concrete aggregate (RCA) is of great benefit to the environment, as the demand of natural coarse aggregate reduces. In the modern construction and practice, the use of RCA is limited to backfilling and road construction. The establishment of RCA for its wide application can only be done after having an understanding of the use of RCA in conventional concrete. To have an insight to this, various tests to determine the compressive strength, elastic strength, workability, durability and drying shrinkage tests can be done and the test results may be different from that obtained from natural coarse aggregates, by using natural coarse aggregate in concrete. This paper gives a comprehensive review of the said tests done on RCA concrete. The results obtained from the tests indicate that RCA concrete gives comparable compressive strength, stiffness, and workability relative to the corresponding results obtained from the natural coarse aggregates. However, the durability and drying shrinkage had more variance but well within recommended limits.

Keywords: aggregate, compressive strength, durability, modulus of elasticity, recycled concrete, shrinkage, workability

Procedia PDF Downloads 235
5682 Carbon Fibre Reinforced Polymers Modified with PET-G/MWCNTs Nonwovens

Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska

Abstract:

Carbon fibre reinforced polymers (CFRPs) are characterized by very high strength and stiffness in relation to their weight. In addition, properties such as corrosion resistance and low thermal expansion allow them to replace traditional materials, i.e., wood or metals, in many industries such as aerospace, automotive, marine, and sports goods. However, CFRPs, have some disadvantages -they have relatively low electrical conductivity and break brittle, which significantly limits their application possibilities. Moreover, conventional CFRPs are usually manufactured based on thermosets, which makes them difficult to recycle. The solution to these drawbacks is the use of the innovative thermoplastic resin (ELIUM from ARKEMA) as a matrix of composites and the modification by introducing into their structure thermoplastic nonwovens based on PET-G with the addition of multi-wall carbon nanotubes (MWCNTs). The acrylic-carbon composites, which were produced by the infusion technique, were tested for mechanical, thermo-mechanical, and electrical properties, and the effect of modifications on their microstructure was studied. Acknowledgment: This study was carried out with funding from grant no. LIDER/46/0185/L-11/19/NCBR/2020, financed by The National Centre for Research and Development.

Keywords: CFRP, MWCNT, ELIUM, electrical properties, infusion

Procedia PDF Downloads 99
5681 Numerical Analysis of Multiplicity and Transition Phenomena in Natural Convection

Authors: Hadi Kafil, Ali Ecder

Abstract:

Heat transfer by natural convection in two-dimensional and three-dimensional axisymmetric enclosure fitted with partially heated vertical walls is investigated numerically. The range of Rayleigh number is varied from 10³ until convective flow becomes unstable. This research focuses on multiplicity and transition phenomena in natural convection and is based on a parametric analysis to study the onset of bifurcations. It is found that, even at low Rayleigh numbers, the flow undergoes a series of turning-point bifurcations which increase the rate of natural convention. On the other hand, by partially heating or cooling the walls, more effective results can be achieved for both heating and cooling applications, such as cooling of electronic devices and heating processes in solidification and crystal growth.

Keywords: natural convection, partial heated, onset of bifurcation, Rayleigh number

Procedia PDF Downloads 337
5680 Community Participation in Decentralized Management of Natural Resources in the Sudano-Sahelian Zone of West Africa

Authors: Clarisse Umutoni, Augustine Ayantunde, Matthew Turner, Germain J. Sawadogo

Abstract:

Decentralized governance of natural resources is considered one of the key strategies for promoting sustainable management of natural resources at local level. The rationale behind decentralization of natural resources is that local populations are both better situated and more highly motivated than outside agencies to manage the resources in an ecologically and economically sustainable manner. Effective decentralized natural resource management requires strong local natural resource institutions. Therefore, strengthening local institutions governing natural resource management is essential to promoting strong participation of local communities in managing their resources. This paper investigated the existing local institutions (rules, norms and or local conventions) governing the management of natural resources and forms of community participation in the development of these natural resource institutions. Group discussions and individual interviews were conducted to collect data. Our findings showed significant variation within the study sites regarding the level of knowledge of existing local rules and norms governing the management of natural resources by the respondents. The results also show that participation was dominated by a small group of individuals, often community leaders and elites. The results suggest that women are marginalized. In general, factors which influence the level of participation include; age, year of residence in the community, gender and education level. This study also highlights the strengths of local natural resource institutions especially if enforced. Presently, the big challenge that faces the institutions governing natural resource use in the study area is the system of representativeness in the community in the development of local rules and norms as community leaders and household heads often dominate, which does not encourage active participation of community members. Therefore, for effective implementation of local natural resource institutions, the interest of key natural resource users should be taken into account. It is also important to promote rules and norms that attempt to protect or strengthen women’s access to natural resources in the community.

Keywords: decentralization, land use plan, local institutions, Mali

Procedia PDF Downloads 355
5679 Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission

Authors: Parisa Javid

Abstract:

In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment.

Keywords: modern lighting systems, natural light, reduced energy consumption

Procedia PDF Downloads 60
5678 Associated Mycoflora AF Mucuna Sloanei Seeds and Their Effects on Nutritional and Phytochemical Contents of the Seeds

Authors: U.N. Emiri, E. Moroyei

Abstract:

Mycoflora associated with the seed rot disease of Mucuna sloanei and their effects on nutrient and phytochemical composition of the seeds were investigated. The fungal pathogens implicated in the seed rot disease were Rhizopus stolonifer, Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum. The fungal isolates were aseptically inoculated into healthy M. Sloanei seeds and incubated for 7 days at room temperature of 25 ± 30c. The results of the proximate and mineral analysis in mg/100g of fungal infected and non-infected (control) seeds that were carried out revealed that there was an increase in Moisture and Carbohydrate content of the fungal infected seeds relative to the non-infected seeds (control). However, there was a decrease in Ash, Fibre, Lipid, and Protein content of the fungal infected seeds relative to the non-infected (control). It was observed that moisture had increased from 10.50 ± 0.16 in the non-infected seeds to 17.60 ± 0.20 in the infected samples and Carbohydrate content had also increased from 49.6 ± 0.25 in the non-infected to 52.50 ± 0.29 in the infected seeds. The following parameters decreased in the infected than in the non-infected seeds. They include Ash 2.60 ± 0.12, Crude fibre 1.9 ± 0.08, Lipid 6.50 ± 0.16, and Protein content 18.50 ± 0.06. Similarly, Calcium 2.50 ± 0.12, Phosphorus 1.80 + 0.12 and Potassium 1.80 + 0.09 increased in the infected than in the non-infected seed, while iron 0.20 ± 0.05, Sodium 0.02 ± 0.01 and Magnesium 0.06 ± 0.02 decreased in the infected seeds. All phytochemical contents analyzed increased in the infected seeds viz Tannim 0.50 ± 0.12, Oxalate 1.60 ± 0.05, Hydrogen cyanide 1.82 ± 0.06, and Saponin 2.50+0.28. However, the nutrient compositions and Phytochemical between the infected and non-infected seeds are not significantly different (p > 0.05).

Keywords: Mycoflora, mucuna sloanei, seeds, phytochemical, nutrient composition

Procedia PDF Downloads 119
5677 Secret Sharing in Visual Cryptography Using NVSS and Data Hiding Techniques

Authors: Misha Alexander, S. B. Waykar

Abstract:

Visual Cryptography is a special unbreakable encryption technique that transforms the secret image into random noisy pixels. These shares are transmitted over the network and because of its noisy texture it attracts the hackers. To address this issue a Natural Visual Secret Sharing Scheme (NVSS) was introduced that uses natural shares either in digital or printed form to generate the noisy secret share. This scheme greatly reduces the transmission risk but causes distortion in the retrieved secret image through variation in settings and properties of digital devices used to capture the natural image during encryption / decryption phase. This paper proposes a new NVSS scheme that extracts the secret key from randomly selected unaltered multiple natural images. To further improve the security of the shares data hiding techniques such as Steganography and Alpha channel watermarking are proposed.

Keywords: decryption, encryption, natural visual secret sharing, natural images, noisy share, pixel swapping

Procedia PDF Downloads 376
5676 The Effect of Mineral Addition (Natural Pozzolana) on the Capillary Absorption and Compressive Strength of Environmental Mortar

Authors: W. Deboucha, M. N. Oudjit, A. Bouzid, L. Belagraa, A.Noui

Abstract:

The cement manufacturing is the one of the factors that pollutes the atmosphere in the industrial sector. The common way to reduce this pollution is using mineral additions as partial replacement of Portland cement. Particularly, natural pozzolana (NP) is component in which they can be used to decrease the rate of pollution. The main objective of this experimental work is the study of the effect of mineral addition (natural pozzolana) on the capillary water absorption and compressive-flexural strength of cement mortar. The results obtained in the present research showed that the higher dosages of natural pozzolana added could be the principal parameter of such decrease in strength at early and medium term. Further, this increase of incorporated addition has been believed to reduce the capillary water absorption.

Keywords: Natural pozzolana, mortar, strength, capillary absorption

Procedia PDF Downloads 308
5675 Improving the Method for Characterizing Structural Fabrics for Shear Resistance and Formability

Authors: Dimitrios Karanatsis

Abstract:

Non-crimp fabrics (NCFs) allow for high mechanical performance of a manufacture composite component by maintaining the fibre reinforcements parallel to each other. The handling of NCFs is enabled by the stitching of the tows. Although the stitching material has negligible influence to the performance of the manufactured part, it can affect the ability of the structural fabric to shear and drape over the part’s geometry. High resistance to shearing is attributed to the high tensile strain of the stitching yarn and can cause defects in the fabric. In the current study, a correlation based on the stitch tension and shear behaviour is examined. The purpose of the research is to investigate the upper and lower limits of non-crimp fabrics manufacture and how these affect the shear behaviour of the fabrics. Experimental observations show that shear behaviour of the fabrics is significantly affected by the stitch tension, and there is a linear effect to the degree of shear they experience. It was found that the lowest possible stitch tension on the manufacturing line settings produces an NCF that exhibits very low tensile strain on it’s yarns and that has shear properties similar to a woven fabric. Moreover, the highest allowable stitch tension results in reduced formability of the fabric, as the stitch thread rearranges the fibre filaments where these become packed in a tight formation with constricted movement.

Keywords: carbon fibres, composite manufacture, shear testing, textiles

Procedia PDF Downloads 114
5674 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 98
5673 Structural Characteristics of HPDSP Concrete on Beam Column Joints

Authors: Hari Krishan Sharma, Sanjay Kumar Sharma, Sushil Kumar Swar

Abstract:

Inadequate transverse reinforcement is considered as the main reason for the beam column joint shear failure observed during recent earthquakes. DSP matrix consists of cement and high content of micro-silica with low water to cement ratio while the aggregates are graded quartz sand. The use of reinforcing fibres leads not only to the increase of tensile/bending strength and specific fracture energy, but also to reduction of brittleness and, consequently, to production of non-explosive ruptures. Besides, fibre-reinforced materials are more homogeneous and less sensitive to small defects and flaws. Recent works on the freeze-thaw durability (also in the presence of de-icing salts) of fibre-reinforced DSP confirm the excellent behaviour in the expected long term service life.DSP materials, including fibre-reinforced DSP and CRC (Compact Reinforced Composites) are obtained by using high quantities of super plasticizers and high volumes of micro-silica. Steel fibres with high tensile yield strength of smaller diameter and short length in different fibre volume percentage and aspect ratio tilized to improve the performance by reducing the brittleness of matrix material. In the case of High Performance Densified Small Particle Concrete (HPDSPC), concrete is dense at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. Beam-column sub-assemblages used as moment resisting constructed using HPDSPC in the joint region with varying quantities of steel fibres, fibre aspect ratio and fibre orientation in the critical section. These HPDSPC in the joint region sub-assemblages tested under cyclic/earthquake loading. Besides loading measurements, frame displacements, diagonal joint strain and rebar strain adjacent to the joint will also be measured to investigate stress-strain behaviour, load deformation characteristics, joint shear strength, failure mechanism, ductility associated parameters, stiffness and energy dissipated parameters of the beam column sub-assemblages also evaluated. Finally a design procedure for the optimum design of HPDSPC corresponding to moment, shear forces and axial forces for the reinforced concrete beam-column joint sub-assemblage proposed. The fact that the implementation of material brittleness measure in the design of RC structures can improve structural reliability by providing uniform safety margins over a wide range of structural sizes and material compositions well recognized in the structural design and research. This lead to the development of high performance concrete for the optimized combination of various structural ratios in concrete for the optimized combination of various structural properties. The structural applications of HPDSPC, because of extremely high strength, will reduce dead load significantly as compared to normal weight concrete thereby offering substantial cost saving and by providing improved seismic response, longer spans, and thinner sections, less reinforcing steel and lower foundation cost. These cost effective parameters will make this material more versatile for use in various structural applications like beam-column joints in industries, airports, parking areas, docks, harbours, and also containers for hazardous material, safety boxes and mould & tools for polymer composites and metals.

Keywords: high performance densified small particle concrete (HPDSPC), steel fibre reinforced concrete (SFRC), slurry infiltrated concrete (SIFCON), Slurry infiltrated mat concrete (SIMCON)

Procedia PDF Downloads 273
5672 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP

Authors: Yannick Willemin

Abstract:

Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.

Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing

Procedia PDF Downloads 63
5671 Natural Language Processing; the Future of Clinical Record Management

Authors: Khaled M. Alhawiti

Abstract:

This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications.

Keywords: clinical information, information retrieval, natural language processing, automated applications

Procedia PDF Downloads 371
5670 Study of NGL Feed Price Calculation for a Typical NGL Fractionation Plant

Authors: Simin Eydivand, Ali Ghanadieslami, Reza Amiri

Abstract:

Natural gas liquids (NGLs) are light hydrocarbons that are dissolved in associated or non‐associated natural gas in a hydrocarbon reservoir and are produced within a gas stream. There are different ways to calculate the price of NGL. In this study, a spreadsheet calculation method is used for calculation of NGL price with an attractive economy of IRR 25%. For a typical NGL Plant with 3,200,000 t/y capacity of investment and operation of 90% capacity to have IRR 25%, the price of NGL is calculated 277 $/t.

Keywords: natural gas liquid, NGL, LPG, price, NGL fractionation, NF, investment, IRR, NPV

Procedia PDF Downloads 373
5669 Use of Natural Fibers in Landfill Leachate Treatment

Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes

Procedia PDF Downloads 320
5668 Research on the Planning and Design of National Park Gateway Communities from the Perspective of Nature Education

Authors: Yulin Liang

Abstract:

Under the background of protecting ecology, natural education is an effective way for people to understand nature. At the same time, it is a new means of sustainable development of eco-tourism, which can improve the functions of China's protected areas and develop new business formats for the development of national parks. This study takes national park gateway communities as the research object and uses literature review, inductive reasoning and other research methods to sort out the development process of natural education in China and the research progress of natural education design in national park gateway communities. Finally, we discuss how gateway communities can use natural education to transform their development methods and provide a theoretical and practical basis for the development of gateway communities in national parks.

Keywords: natural education, gateway communities, national parks, sustainable development

Procedia PDF Downloads 30
5667 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data

Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi

Abstract:

The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.

Keywords: charcoal, classification, data, images, land use, natural vegetation

Procedia PDF Downloads 340
5666 Adsorption of Basic Dyes Using Activated Carbon Prepared from Date Palm Fibre

Authors: Riham Hazzaa , Mohamed Hussien Abd El Megid

Abstract:

Dyes are toxic and cause severe problems to aquatic environment. The use of agricultural solid wastes is considered as low-cost and eco-friendly adsorbents for removing dyes from waste water. Date palm fibre, an abundant agricultural by-product in Egypt was used to prepare activated carbon by physical activation method. This study investigates the use of date palm fiber (DPF) and activated carbon (DPFAC) for the removal of a basic dye, methylene blue (MB) from simulated waste water. The effects of temperature, pH of solution, initial dye (concentration, adsorbent dosage and contact time were studied. The experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin, Radushkevich and Harkins–Jura isotherms. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order and Elvoich equations. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The results revealed that as the initial dye concentration , amount of adsorbent and temperature increased, the percentage of dye removal increased. The optimum pH required for maximum removal was found to be 6. The adsorption of methylene blue dye was better described by the pseudo-second-order equation. Results indicated that DPFAC and DPF could be an alternative for more costly adsorbents used for dye removal.

Keywords: adsorption, basic dye, palm fiber, activated carbon

Procedia PDF Downloads 304
5665 Durability of Wood Shavel Composites with Environmental Friendly Based Binder

Authors: Jul Endawati

Abstract:

The composite element of 20 mm in thickness were manufactured using high volume fly ash, silica fume as alternative hydraulic binders and Portland cement Type II. Pine wood shavel as by product of local small wood working industries were used as the composite filler. The elements were given in situ wet and dry treatment for 9 months. Visually there is no fiber degradation as a result of the interaction of the environment. The assessment were done to the elements bending strength and dimensional properties. Increase in MoR after 180 days of exposure shown that mechanically this degradation is not seen yet. The increment of MoR (213%) compare to that of 28 days might be affected by the formation of calcium hydroxide (CH) or ettringite in the transition zone. The use of pozzolan showed also a delay or minimize degradation of composites while improving the pore structure, and minimize the mineralization of the fiber bond with the cement matrix. The water absorption is 4,22% at 180 days, 7,94% at 120 days and 12,38% at 28 days, in line with the 68% decrease in Thickness Swelling (TS). This unoccured degradation could also be affected by the presence of silica fume in the binder matrix. After 270 days of exposure under tropical condition, the flexural strength started to decrease.

Keywords: durability, fly ash, natural fibre, silica fume

Procedia PDF Downloads 234
5664 Natural Dyeing of Textile Cotton Fabric and Its Characterization

Authors: Rabia Almas

Abstract:

Today’s world is demanding natural and biological colorants on priority bases as an alternative to toxic and unsustainable synthetic dyes. Sustainable natural colors from plants and/or living organisms such as bacteria's and fungi attracted the world research scholars and textile industries recently due to the excitement and opportunities they covered. So, in the present study, natural colors from food waste, such as orange peels and peanuts, were extracted and applied to cotton fabric. The dyeing recipes were optimized in terms of dye concentration, processing temperature and time for higher color strength. The characterization of the dyes and fabric, such as Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and fastness properties were measured for the identification of the chemical groups involved for a better understanding of the dyeing behavior. The results revealed that proper mordanting and concentration of dye on cotton fabric could give high color strength and good fastness to wash and light and these natural dyes can be used as an alternative to synthetic toxic colorants.

Keywords: textile, textile dyes, natural dyes, bio colors

Procedia PDF Downloads 46