Search results for: nanoSiO₂/fly ash/activated carbon composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5102

Search results for: nanoSiO₂/fly ash/activated carbon composite

842 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting

Authors: D. O. Ramadan, R. S. Dwyer-Joyce

Abstract:

The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.

Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring

Procedia PDF Downloads 449
841 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue

Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella

Abstract:

Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.

Keywords: automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis

Procedia PDF Downloads 53
840 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna

Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh

Abstract:

Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.

Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation

Procedia PDF Downloads 166
839 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures

Authors: S. Mohajeri

Abstract:

Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.

Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating

Procedia PDF Downloads 220
838 Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor

Authors: Lakshmidevi Rajendran, Bharathidasan Kanniappan, Gopi Raja, Muthukumar Karuppan

Abstract:

This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis.

Keywords: airlift photobioreactor, crude glycerol, microalgae Scenedesmus sp., mixotrophic cultivation, lutein production

Procedia PDF Downloads 139
837 Comparative Effects of Resveratrol and Energy Restriction on Liver Fat Accumulation and Hepatic Fatty Acid Oxidation

Authors: Iñaki Milton-Laskibar, Leixuri Aguirre, Maria P. Portillo

Abstract:

Introduction: Energy restriction is an effective approach in preventing liver steatosis. However, due to social and economic reasons among others, compliance with this treatment protocol is often very poor, especially in the long term. Resveratrol, a natural polyphenolic compound that belongs to stilbene group, has been widely reported to imitate the effects of energy restriction. Objective: To analyze the effects of resveratrol under normoenergetic feeding conditions and under a mild energy restriction on liver fat accumulation and hepatic fatty acid oxidation. Methods: 36 male six-week-old rats were fed a high-fat high-sucrose diet for 6 weeks in order to induce steatosis. Then, rats were divided into four groups and fed a standard diet for 6 additional weeks: control group (C), resveratrol group (RSV, resveratrol 30 mg/kg/d), restricted group (R, 15 % energy restriction) and combined group (RR, 15 % energy restriction and resveratrol 30 mg/kg/d). Liver triacylglycerols (TG) and total cholesterol contents were measured by using commercial kits. Carnitine palmitoyl transferase 1a (CPT 1a) and citrate synthase (CS) activities were measured spectrophotometrically. TFAM (mitochondrial transcription factor A) and peroxisome proliferator-activator receptor alpha (PPARα) protein contents, as well as the ratio acetylated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/Total PGC1α were analyzed by Western blot. Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: No differences were observed among the four groups regarding liver weight and cholesterol content, but the three treated groups showed reduced TG when compared to the control group, being the restricted groups the ones showing the lowest values (with no differences between them). Higher CPT 1a and CS activities were observed in the groups supplemented with resveratrol (RSV and RR), with no difference between them. The acetylated PGC1α /total PGC1α ratio was lower in the treated groups (RSV, R and RR) than in the control group, with no differences among them. As far as TFAM protein expression is concerned, only the RR group reached a higher value. Finally, no changes were observed in PPARα protein expression. Conclusions: Resveratrol administration is an effective intervention for liver triacylglycerol content reduction, but a mild energy restriction is even more effective. The mechanisms of action of these two strategies are different. Thus resveratrol, but not energy restriction, seems to act by increasing fatty acid oxidation, although mitochondriogenesis seems not to be induced. When both treatments (resveratrol administration and a mild energy restriction) were combined, no additive or synergic effects were appreciated. Acknowledgements: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.

Keywords: energy restriction, fat, liver, oxidation, resveratrol

Procedia PDF Downloads 181
836 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 81
835 Impact of Varying Malting and Fermentation Durations on Specific Chemical, Functional Properties, and Microstructural Behaviour of Pearl Millet and Sorghum Flour Using Response Surface Methodology

Authors: G. Olamiti; TK. Takalani; D. Beswa, AIO Jideani

Abstract:

The study investigated the effects of malting and fermentation times on some chemical, functional properties and microstructural behaviour of Agrigreen, Babala pearl millet cultivars and sorghum flours using response surface methodology (RSM). Central Composite Rotatable Design (CCRD) was performed on two independent variables: malting and fermentation times (h), at intervals of 24, 48, and 72, respectively. The results of dependent parameters such as pH, titratable acidity (TTA), Water absorption capacity (WAC), Oil absorption capacity (OAC), bulk density (BD), dispersibility and microstructural behaviour of the flours studied showed a significant difference in p < 0.05 upon malting and fermentation time. Babala flour exhibited a higher pH value at 4.78 at 48 h malted and 81.9 fermentation times. Agrigreen flour showed a higher TTA value at 0.159% at 81.94 h malted and 48 h fermentation times. WAC content was also higher in malted and fermented Babala flour at 2.37 ml g-1 for 81.94 h malted and 48 h fermentation time. Sorghum flour exhibited the least OAC content at 1.67 ml g-1 at 14 h malted and 48 h fermentation times. Agrigreen flour recorded the least bulk density, at 0.53 g ml-1 for 72 h malted and 24 h fermentation time. Sorghum flour exhibited a higher content of dispersibility, at 56.34%, after 24 h malted and 72 h fermented time. The response surface plots showed that increased malting and fermentation time influenced the dependent parameters. The microstructure behaviour of malting and fermentation times of pearl millet varieties and sorghum flours showed isolated, oval, spherical, or polygonal to smooth surfaces. The optimal processing conditions, such as malting and fermentation time for Agrigreen, were 32.24 h and 63.32 h; 35.18 h and 34.58 h for Babala; and 36.75 h and 47.88 h for sorghum with high desirability of 1.00. The validation of the optimum processing malting and fermentation times (h) on the dependent improved the experimented values. Food processing companies can use the study's findings to improve food processing and quality.

Keywords: Pearl millet, malting, fermentation, microstructural behaviour

Procedia PDF Downloads 29
834 Proposal of Analytical Model for the Seismic Performance Evaluation of Reinforced Concrete Frames with Coupled Cross-laminated Timber Infill Panels

Authors: Velázquez Alejandro, Pradhan Sujan, Yoon Rokhyun, Sanada Yasushi

Abstract:

The utilization of new materials as an alternative solution to decrease the environmental impact of the construction industry has been gaining more relevance in the architectural design and construction industry. One such material is cross-laminated timber (CLT), an engineered timber solution that excels for its faster construction times, workability, lightweight, and capacity for carbon storage. This material is usually used alone for the entire structure or combined with steel frames, but a hybrid with reinforced concrete (RC) is rarer. Since RC is one of the most used materials worldwide, a hybrid with CLT would allow further utilization of the latter, and in the process, it would help reduce the environmental impact of RC construction to achieve a sustainable society, but first, the structural performance of such hybrids must be understood. This paper focuses on proposing a model to predict the seismic performance of RC frames with CLT panels as infills. A series of static horizontal cyclic loading experiments were conducted on two 40% scale specimens of reinforced concrete frames with and without CLT panels at Osaka University, Japan. An analytical model was created to simulate the seismic performance of the RC frame with CLT infill based on the experimental results. The proposed model was verified by comparing the experimental and analytical results, showing that the load-deformation relationship and the failure mechanism agreed well with limited error. Hence, the proposed analytical model can be implemented for the seismic performance evaluation of the RC frames with CLT infill.

Keywords: analytical model, multi spring, performance evaluation, reinforced concrete, rocking mechanism, wooden wall

Procedia PDF Downloads 60
833 Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media

Authors: Karen B. Ghazaryan

Abstract:

Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out.

Keywords: surface shear waves, magneto-electro-elastic composites, piezoactive crystals, functionally graded elastic materials

Procedia PDF Downloads 179
832 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy

Authors: Yasam Palguna, Rajesh Korla

Abstract:

The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.

Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures

Procedia PDF Downloads 118
831 Exploring Tourist’s Attitude towards Environmentally Friendly Practices

Authors: René Haarhoff

Abstract:

Consumers are constantly reminded of their responsibility towards the environment in a world where words such as global warming, carbon footprint, recycling or ‘green’’ everything has become common language. What was previously considered to be ordinary practices are in many instances frowned upon today and consumers are expected to individually contribute towards a greener mother earth. However unused recycle bins, single travelers in luxury cars, busy airports and vast deforested areas for new developments tell another story. The question arises whether the everyday man in the street really takes the responsibility to balance the three pillars of sustainability: the planet, its people and profit. Undeniably our activities impact on the environment where a healthy economy is needed in a fast paced global environment. The situation is further gloomed in instances where the consumer has paid for inclusive services which directly impacts on the environment. A prime example of this is the tourism industry: accommodation establishments or resorts include clean, daily washed towels and bedding, large bath tubs, inclusive use of electricity and water to name a few. This research evaluates environmentally friendly practices consumers follow at home and also when on holiday. Respondents at Bloemfontein airport, often using tourism products were included in the study. Results reveal that the majority of respondents state that they are concerned about the environment yet when questioned on donation towards endangered species, switching off lights in hotel rooms or using water sparingly a significant difference in results are evident. From the research results it is evident that consumers do not practice what they preach towards a greener environment.

Keywords: green, environment, consumer, tourism, sustainable practices

Procedia PDF Downloads 311
830 Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions

Authors: Seyed Mostafa Jafari Raad, Hassan Hassanzadeh

Abstract:

Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites.

Keywords: CO₂ storage, solubility trapping, convective dissolution, storage efficiency

Procedia PDF Downloads 158
829 Tracing the Courtyard Typology from the Past: Highlighting a Need for Conservation in Case of Historic Settlement in Historic Town of Gwalior

Authors: Shivani Dolas, A. Richa Mishra

Abstract:

The existence of Courtyards in India can be traced back to ‘Indus valley civilization’ and various layers of history bearing implications like socio-cultural, traditional, religious, climatic, etc., moreover serving as a breathing space in case of historical core areas. Over time, with the overlay of various historic layers within the historic urban cores and the present high density populace, the cores are getting congested day by day. In this case, courtyards may emerge out as an efficient medium to provide quality of life through livable spaces. Presently, with the growing population of the historic town of Gwalior, town in Madhya Pradesh holds remarkable essence of courtyards with its multiple concepts over time. Its scale and function varies from an imposing grand appearance in palatial form, up to functional practices as residential. Its privilege can also be drawn in urban forms, in sharing single space by multiple dwellings and in temples which can be sketched specifically in the region. Moreover, the effectiveness of courtyards has proven balance and control of micro-climate in such composite climate region. The research paper aims to underline the concept of courtyards in case of a mixed use neighborhood, Naya bazar, in Lashkar area of Gwalior, which developed during 19th century, highlighting the need of its preservation. The paper also elaborates its various implications on user-space relationship as in the present context, and growing congestion in the area, user and space relationship is seen lost. The noticeable change in the behavioral context in buildings and users can be noticed with the downfall of courtyards, isolating users with land. Also, a concern has been expressed on negligence of courtyard planning in future development, suggesting recommendations on preserving the courtyard typology as heritage.

Keywords: courtyards, Gwalior, historic settlement, heritage

Procedia PDF Downloads 107
828 Bioconversion of Kitchen Waste to Bio-Ethanol for Energy Security and Solid Waste Management

Authors: Sanjiv Kumar Soni, Chetna Janveja

Abstract:

The approach of utilizing zero cost kitchen waste residues for growing suitable strains of fungi for the induction of a cocktail of hydrolytic enzymes and ethanol generation has been validated in the present study with the objective of developing an indigenous biorefinery for low cost bioethanol production with the generation of zero waste. Solid state fermentation has been carried out to evaluate the potential of various steam pretreated kitchen waste residues as substrates for the co-production of multiple carbohydrases including cellulases, hemicellulases, pectinase and amylases by a locally isolated strain of Aspergillus niger C-5. Of all the residues, potato peels induced the maximum yields of all the enzyme components corresponding to 64.0±1.92 IU of CMCase, 17.0±0.54 IU of FPase , 42.8±1.28 IU of β-glucosidase, 990.0±28.90 IU of xylanase, 53.2±2.12 IU of mannanase, 126.0±3.72 IU of pectinase, 31500.0±375.78 IU of α-amylase and 488.8±9.82 IU of glucoamylase/g dry substrate respectively. Saccharification of various kitchen refuse residues using inhouse produced crude enzyme cocktail resulted in the release of 610±10.56, 570±8.89, 435±6.54, 475±4.56, 445±4.27, 385±4.49, 370±6.89, 490±10.45 mg of total reducing sugars/g of dried potato peels, orange peels, pineapple peels, mausami peels, onion peels, banana stalks, pea pods and composite mixture respectively revealing carbohydrate conversion efficiencies in the range of 97.0-99.4%. After fermentation of released hexoses by Saccharomyces cerevisae, ethanol yields ranging from 80-262 mL/ kg of dry residues were obtained. The study has successfully evaluated the valorization of kitchen garbage, a highly biodegradable component in Municipal Solid Waste by using it as a substrate for the in-house co-production of multiple carbohydrases and employing the steam treated residues as a feed stock for bioethanol production. Such valorization of kitchen garbage may reduce the level of Municipal Solid Waste going into land-fills thus lowering the emissions of greenhouse gases. Moreover, the solid residue left after the bioconversion may be used as a biofertilizer for improving the fertility of the soils.

Keywords: kitchen waste, bioethanol, solid waste, bioconversion, waste management

Procedia PDF Downloads 354
827 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method

Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga

Abstract:

Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.

Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses

Procedia PDF Downloads 223
826 Culturable Microbial Diversity of Agave Artisanal Fermentations from Central Mexico

Authors: Thalía Moreno-García Malo, Santiago Torres-Ríos, María G. González-Cruz, María M. Hernández-Arroyo, Sergio R. Trejo-Estrada

Abstract:

Agave atrovirens is the main source of agave sap, the raw material for the production of pulque, an artisanal fermented beverage, traditional since prehispanic times in the highlands of central Mexico. Agave sap is rich in glucose, sucrose and fructooligosaccharides, and strongly differs from agave syrup from A. tequilana, which is mostly a high molecular weight fructan. Agave sap is converted into pulque by a highly diverse microbial community which includes bacteria, yeast and even filamentous fungi. The bacterial diversity has been recently studied. But the composition of consortia derived from directed enrichments differs sharply from the whole fermentative consortium. Using classical microbiology methods, and selective liquid and solid media formulations, either bacterial or fungal consortia were developed and analyzed. Bacterial consortia able to catabolize specific prebiotic saccharides were selected and preserved for future developments. Different media formulations, selective for bacterial genera such as Bifidobacterium, Lactobacillus, Pediococcus, Lactococcus and Enterococcus were also used. For yeast, specific media, osmotic pressure and unique carbon sources were used as selective agents. Results show that most groups are represented in the enrichment cultures; although very few are recoverable from the whole consortium in artisanal pulque. Diversity and abundance vary among consortia. Potential bacterial probiotics obtained from agave sap and agave juices show tolerance to hydrochloric acid, as well as strong antimicrobial activity.

Keywords: Agave, pulque, microbial consortia, prebiotic activity

Procedia PDF Downloads 352
825 Performance Investigation of Silica Gel Fluidized Bed

Authors: Sih-Li Chen, Chih-Hao Chen, Chi-Tong Chan

Abstract:

Poor ventilation and high carbon dioxide (CO2) concentrations lead to the formation of sick buildings. This problem cannot simply be resolved by introducing fresh air from outdoor environments because this creates extra loads on indoor air-conditioning systems. Desiccants are widely used in air conditioning systems in tropical and subtropical regions with high humidity to reduce the latent heat load from fresh air. Desiccants are usually used as a packed-bed type, which is low cost, to combine with air-conditioning systems. Nevertheless, the pressure drop of a packed bed is too high, and the heat of adsorption caused by the adsorption process lets the temperature of the outlet air increase, bringing about an extra heat load, so the high pressure drop and the increased temperature of the outlet air are energy consumption sources needing to be resolved. For this reason, the gas-solid fluidised beds that have high heat and mass transfer rates, uniform properties and low pressure drops are very suitable for use in air-conditioning systems.This study experimentally investigates the performance of silica gel fluidized bed device which applying to an air conditioning system. In the experiments, commercial silica gel particles were filled in the two beds and to form a fixed packed bed and a fluidized bed. The results indicated that compared to the fixed packed bed device, the total adsorption and desorption by amounts of fluidized bed for 40 minutes increased 20.6% and 19.9% respectively when the bed height was 10 cm and superficial velocity was set to 2 m/s. In addition, under this condition, the pressure drop and outlet air temperature raise were reduced by 36.0% and 30.0%. Given the above results, application of the silica gel fluidized bed to air conditioning systems has great energy-saving potential.

Keywords: fluidized bed, packed bed, silica gel, adsorption, desorption, pressure drop

Procedia PDF Downloads 492
824 Contribution of Different Farming Systems to Soil and Ecological Health in Trans Nzoia County, Kenya

Authors: Janeth Chepkemoi, Richard Onwonga, Noel Templer, Elkana Kipkoech, Angela Gitau

Abstract:

Conventional agriculture is one of the leading causes of land degradation, threatening the sustainability of food production. Organic farming promotes practices that have the potential of feeding the world while also promoting ecological health. A study was therefore carried out with the aim of conceptualizing how such farming systems are contributing to ecological health in Trans Nzoia County. 71 farmers were interviewed and data was collected on parameters such as land preparation, agroforestry, soil fertility management, soil and water conservation, and pests and diseases. A soil sample was also collected from each farm for laboratory analysis. Data collected were analyzed using Microsoft Excel and SPSS version 21. Results showed that 66% of the respondents practiced organic farming whereas 34% practiced conventional farming. Intercropping and crop rotations were the most common cropping systems and the most preferred land preparation tools among both organic and conventional farmers were tractors and hand hoes. Organic farms fared better in agroforestry, organic soil amendments, land and water conservation, and soil chemical properties. Pests and disease, however, affected organic farms more than conventional. The average nitrogen (%), K (Cmol/ kg and P (ppm) of organic soils were 0.26, 0.7 and 26.18 respectively, conventional soils were 0.21, 0.66 and 22.85. Soil organic carbon content of organic farms averaged a higher percentage of 2.07% as compared to 1.91 for the conventional. In conclusion, most farmers in Trans Nzoia County had transitioned into ecologically friendly farming practices that improved the quality and health of the soil and therefore promoted its sustainability.

Keywords: organic farming, conventional farming, ecological health, soil health

Procedia PDF Downloads 76
823 Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite

Authors: F. Z. Abir, M. Mesnaoui, Y. Abouliatim, L. Nibou, Y. El Hafiane, A. Smith

Abstract:

The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates.

Keywords: calcium sulfoaluminate cement, ferritic phase, sintering, solid-state synthesis, ye’elimite

Procedia PDF Downloads 152
822 Hiveopolis - Honey Harvester System

Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios

Abstract:

Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.

Keywords: honey harvesting, honeybee, hiveopolis, nitinol

Procedia PDF Downloads 60
821 Comparison of Donor Motivations in National Collegiate Athletic Association Division I vs Division II

Authors: Soojin Kim, Yongjae Kim

Abstract:

Continuous economic downturn and ongoing budget cuts poses higher education with profound challenges which has a direct impact on the collegiate athletic programs. In response to the ever-changing landscape of the fiscal environment, universities seek to boost revenues, resorting to alternative sources of funding. In particular, athletic programs have become increasingly dependent on financial support from their alumni and boosters, which is how athletic departments attempt to offset budget shortfalls and make capital improvements. Although there currently exists three major divisions within National Collegiate Athletic Association (NCAA), the majority of the sport management studies on college sport tend to focus on Division I level. Particularly within the donor motivation literature, a plethora of donor motivation studies exist, but mainly on NCAA Division I athletic programs. Since each athletic department functions differently in a number of different dimensions, while institutional difference can also have a huge impact on athletic donor motivations, the current study attempts to fill this gap that exists in the literature. As such, the purpose of this study was to (I) reexamine the factor structure of the Athletic Donor motivation scale; and (II) identify the prominent athletic donor motives in a NCAA Division II athletic program. For the purpose of this study, a total of 232 actual donors were used for analysis. A confirmatory factor analysis (CFA) was employed to test construct validity, and the reliability of the scale was assessed using Composite Reliability. To identify the prominent motivational factors, the means and standard deviations were examined. Results of this study indicated that Vicarious Achievement, Philanthropy, and Commitment are the three primary motivational factors, while Tangible Benefits, was consistently found as an important motive in prior studies was found low. Such findings highlight the key difference and suggest different salient motivations exist that are specific to the context.

Keywords: college athletics, donor, motivation, NCAA

Procedia PDF Downloads 108
820 Mineralogy and Thermobarometry of Xenoliths in Basalt from the Chanthaburi-Trat Gem Fields, Thailand

Authors: Apichet Boonsoong

Abstract:

In the Chanthaburi-Trat basalts, xenoliths are composed of essentially ultramafic xenoliths (particularly spinel lherzolite) with a few of an aggregate of feldspar. Some 19 ultramafic xenoliths were collected from 13 different locations. They range in size from 3.5 to 60mm across. Most are weathered and oxidized on the surface but fresh samples are obtained from cut surfaces. Chemical analyses were performed on carbon-coated polished thin sections using a fully automated CAMECA SX-50 electron microprobe (EMPA) in wavelength-dispersive mode. In thin section, they are seen to consist of variable amounts of olivine, clinopyroxene, orthopyroxene with minor spinel and plagioclase, and are classed as lherzolite. Modal compositions of the ultramafic nodules vary with olivine (60-75%), clinopyroxene (20-30%), orthopyroxene (0-15%), minor spinel (1-3%) and plagioclase (<1%). The essential minerals form an equigranular, medium- to coarse-grained, granoblastic texture, and all are in mutual contact indicating attainment of equilibrium. Reaction rims are common along the nodule margins and in some are also present along grain boundaries. Zoning occurs in clinopyroxene, and to a lesser extent in orthopyroxene. The homogeneity of mineral compositions in lherzolite xenoliths suggests the attainment of equilibrium. The equilibration temperatures of these xenoliths are estimated to be in the range of 973 to 1063°C. Pressure estimates are not so easily obtained because no suitable barometer exists for garnet-free lherzolites and so an indirect method was used. The general mineral assemblage of the lherzolite xenoliths and the absence of garnet indicate a pressure range of approximately 12–19kbar, which is equivalent to depths approximately of 38 to 60km.

Keywords: chanthaburi-trat basalts, spinel lherzolite, xenoliths, 973 to 1063°C, 38 to 60km

Procedia PDF Downloads 84
819 Study of the Relationship between the Civil Engineering Parameters and the Floating of Buoy Model Which Made from Expanded Polystyrene-Mortar

Authors: Panarat Saengpanya

Abstract:

There were five objectives in this study including the study of housing type with water environment, the physical and mechanical properties of the buoy material, the mechanical properties of the buoy models, the floating of the buoy models and the relationship between the civil engineering parameters and the floating of the buoy. The buoy examples made from Expanded Polystyrene (EPS) covered by 5 mm thickness of mortar with the equal thickness on each side. Specimens are 0.05 m cubes tested at a displacement rate of 0.005 m/min. The existing test method used to assess the parameters relationship is ASTM C 109 to provide comparative results. The results found that the three type of housing with water environment were Stilt Houses, Boat House, and Floating House. EPS is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of mortar, while the mortar strength was found 72 times of EPS. One of the advantage of composite is that two or more materials could be combined to take advantage of the good characteristics of each of the material. The strength of the buoy influenced by mortar while the floating influenced by EPS. Results showed the buoy example compressed under loading. The Stress-Strain curve showed the high secant modulus before reached the peak value. The failure occurred within 10% strain then the strength reduces while the strain was continuing. It was observed that the failure strength reduced by increasing the total volume of examples. For the buoy examples with same area, an increase of the failure strength is found when the high dimension is increased. The results showed the relationship between five parameters including the floating level, the bearing capacity, the volume, the high dimension and the unit weight. The study found increases in high of buoy lead to corresponding decreases in both modulus and compressive strength. The total volume and the unit weight had relationship with the bearing capacity of the buoy.

Keywords: floating house, buoy, floating structure, EPS

Procedia PDF Downloads 106
818 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems

Authors: Raouf Alizadeh, Kadijeh Hemmati

Abstract:

The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.

Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior

Procedia PDF Downloads 280
817 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 165
816 Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Manomita Mollick, Gartzen Lopez, Martin Olazar

Abstract:

The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented.

Keywords: non thermal plasma, plasma catalysis, steam reforming, syngas, plastic waste, green energy

Procedia PDF Downloads 23
815 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 229
814 Fatty Acid Profile and Dietary Fibre Contents of Some Standardized Soups and Dishes Consumed in Nigeria

Authors: Olufunke O. Obanla, Oluseye O. Onabanjo, Silifat A. Sanni, Mojisola O. Adegunwa, Wasiu A. O. Afolabi, Omolola O. Oyawoye, Atinuke Titilola Lano-Maduagu

Abstract:

Background: Dietary fat is implicated in the increasing development of chronic diseases in developing countries while dietary fibre plays a major role in the management of these diseases. Accurate nutrient composition data for composite dishes unique to a population is essential for the development of a nutrient database and the calculation of dietary intake. Methods: Representative samples of standardized Nigerian soups and dishes were analyzed for fatty acids using gas chromatography-mass spectrophotometry (GC-MS) and dietary fibre using an enzymatic-gravimetric standard method of AOAC. Results: The total Saturated Fatty acids (SFAs) ranged from 0.74+0.3g/100g to 73.82+0.07g/100g. The total monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) ranged from 2.16+1.13g/100g for Yam pottage to 22.25+0.58g/100g for Okazi soup and eba, and from 0.42+0.10g/100g for Yam pottage to 10.22+0.1g/100g for Pounded yam with egusi ball soup, respectively. Trans fat was observed in Alapafubu and Tuwo shinkafa (2.80+0.2g/100g), Yam pottage (0.20+0.15g/100g), Steamed bean pudding (1.28+0.53g/100g) and Ikokore (5.33+0.41g/100g). The Total Dietary Fibre (TDF) contents of the dishes ranged from 12.95+2.99g/100g in Jollof rice to 62.00+0.94g/100g in Melon seed and vegetable soup, the Soluble Dietary Fibre (SDF) ranged from 2.05+0.32g/100g in Steamed bean pudding to 7.81+0.74g/100g in Ikokore while the Insoluble Dietary Fibre (IDF) ranged from 8.20+0.43g/100g in Jollof rice to 57.91+4.69g/100g in melon seed and vegetable soup. Conclusions: The study has indicated that some Nigerian dishes are characterized by high SFAs, TFAs and dietary fibre, moderate MUFAs and very low levels of PUFAs. High levels of SFAs in some soups and dishes are a major public health concern.

Keywords: healthy diet, dietary fibre, fatty acid profile, chronic diseases, Nigerian dishes

Procedia PDF Downloads 322
813 The Effect of Manure Loaded Biochar on Soil Microbial Communities

Authors: T. Weber, D. MacKenzie

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (microcontroller, operational amplifiers, and FPGA). The simulation was used for non-linear dynamic systems behaviour with required observer structure working with parallel real-time simulation based on state-space representation. The proposed deposited model was used for electrodynamic effects including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time and such systems. For further purpose, the spatial temperature distribution may also be used. With upon system, the uncertainties and disturbances may be determined. This provides the estimation of the more precise system states for the required system and additionally the estimation of the ionising disturbances that arise due to radiation effects in space systems. The results have also shown that a system can be developed specifically with the real-time calculation (estimation) of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. TID (Total Ionising Dose) of 1 Gy and Single Effect Transient (SET) free operation up to 50 MeVcm²/mg may assure certain functions. Single-Event Latch-up (SEL) results on the placement of several transistors in the shared substrate of an integrated circuit; ionising radiation can activate an additional parasitic thyristor. This short circuit between semiconductor-elements can destroy the device without protection and measurements. Single-Event Burnout (SEB) on the other hand, increases current between drain and source of a MOSFET and destroys the component in a short time. A Single-Event Gate Rupture (SEGR) can destroy a dielectric of semiconductor also. In order to be able to react to these processes, it must be calculated within a shorter time that ionizing radiation and dose is present. For this purpose, sensors may be used for the realistic evaluation of the diffusion and ionizing effects of the test system. For this purpose, the Peltier element is used for the evaluation of the dynamic temperature increases (dT/dt), from which a measure of the ionization processes and thus radiation will be detected. In addition, the piezo element may be used to record highly dynamic vibrations and oscillations to absorb impacts of charged particle flux. All available sensors shall be used to calibrate the spatial distributions also. By measured value of size and known location of the sensors, the entire distribution in space can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms.

Keywords: cattle, biochar, manure, microbial activity

Procedia PDF Downloads 69