Search results for: multi-arm bandit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: multi-arm bandit

6 Regret-Regression for Multi-Armed Bandit Problem

Authors: Deyadeen Ali Alshibani

Abstract:

In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.

Keywords: optimal, bandit problem, optimization, dynamic programming

Procedia PDF Downloads 453
5 Static Analysis of Security Issues of the Python Packages Ecosystem

Authors: Adam Gorine, Faten Spondon

Abstract:

Python is considered the most popular programming language and offers its own ecosystem for archiving and maintaining open-source software packages. This system is called the python package index (PyPI), the repository of this programming language. Unfortunately, one-third of these software packages have vulnerabilities that allow attackers to execute code automatically when a vulnerable or malicious package is installed. This paper contributes to large-scale empirical studies investigating security issues in the python ecosystem by evaluating package vulnerabilities. These provide a series of implications that can help the security of software ecosystems by improving the process of discovering, fixing, and managing package vulnerabilities. The vulnerable dataset is generated using the NVD, the national vulnerability database, and the Snyk vulnerability dataset. In addition, we evaluated 807 vulnerability reports in the NVD and 3900 publicly known security vulnerabilities in Python Package Manager (pip) from the Snyk database from 2002 to 2022. As a result, many Python vulnerabilities appear in high severity, followed by medium severity. The most problematic areas have been improper input validation and denial of service attacks. A hybrid scanning tool that combines the three scanners bandit, snyk and dlint, which provide a clear report of the code vulnerability, is also described.

Keywords: Python vulnerabilities, bandit, Snyk, Dlint, Python package index, ecosystem, static analysis, malicious attacks

Procedia PDF Downloads 140
4 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference

Procedia PDF Downloads 109
3 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design

Authors: Kenny Raharjo, Ramon Lawrence

Abstract:

Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.

Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics

Procedia PDF Downloads 511
2 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs

Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili

Abstract:

OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.

Keywords: LWD measurements, caliper log, correlations, analysis

Procedia PDF Downloads 122
1 Antibacterial Effects of Garcinia mangostana on Canine Superficial Pyoderma Pathogen, Staphylococcus pseudintermedius

Authors: Sineenat Kempubpha, Phornpa-Ngan Muadmuang, Putthamas Phetmuangprab, Surin Promphet, Sopita Bandit

Abstract:

Introduction: Discarded pericarp of mangosteen (Garcinia mangostana) is a benefit to be developed as veterinary phytopharmacal products since it made up of abundance pharmacological active compounds. The active compounds of mangosteen pericarp not only act as an antihistamine, an anti-inflammatory, heart disease and HIV therapeutic substances but also act as antibacterial and antifungal agents. Aim: This study was an in vitro procedural attempt to determine the antibacterial effects of mangosteen pericarp 95% ethanol extract on the main causative pathogen of canine superficial pyoderma, Staphylococcus pseudintermedius. Methods: S. pseudintermedius were collected from various sites of the skin of canine superficial pyoderma dogs and were revived and lawn cultured. The S. pseudintermedius growth inhibition study was determined by disc diffusion technique, the mangosteen pericarp crude extracted was dissolved in 3 types of solvents (95% ethanol, 2% DMSO and distilled water, respectively). The micro broth dilution technique was used for determining both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Statistical analysis was done by calculating the mean of the zones of inhibition of tested microorganisms. Results: S. pseudintermedius growth inhibition study showed that the inhibition efficacy of 95% ethanol was greater than the inhibition efficacy of 2% DMSO and distilled water (9.10±0.18 mm, 6.95±0.60 mm and 6.80±0.18 mm, respectively). The MIC value was 125 µg/ml and the MBC value was 1 mg/ml. Conclusion: Mangosteen pericarp extract dissolved with 95% ethanol showed the highest zone of inhibition against the tested microorganisms. The MIC value was 125 µg/ml and the MBC value was 1 mg/ml which suggests its potent antibacterial action against S. pseudintermedius. However, further analytical studies are needed to isolate the key molecules of mangosteen pericarp for higher effect on canine superficial pyoderma microorganism therapeutic products.

Keywords: mangosteen, Garcinia mangostana, Staphylococcus pseudintermedius, canine superficial pyoderma, in vitro study

Procedia PDF Downloads 280