Search results for: metabolic pathways
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1293

Search results for: metabolic pathways

1143 Women's Pathways to Prison in Thailand

Authors: Samantha Jeffries, Chontit Chuenurah

Abstract:

Thailand incarcerates the largest number of women and has the highest female incarceration rate in South East Asia. Since the 1990s, there has been a substantial increase in the number, rate and proportion of women imprisoned. Thailand places a high priority on the gender specific contexts out of which offending arises and the different needs of women in the criminal justice system. This is manifested in work undertaken to guide the development of the United Nations Rules for the Treatment of Women Prisoners and Non-Custodial Measures for Women Offenders (the Bangkok Rules); adopted by the United Nations General Assembly in 2010. The Bangkok Rules make a strong statement about Thailand’s recognition of and commitment to the fair and equitable treatment of women throughout their contact with the criminal justice system including at sentencing and in prison. This makes the comparatively high use of imprisonment for women in Thailand particularly concerning and raises questions about the relationship between gender, crime and criminal justice. While there is an extensive body of research in Western jurisdictions exploring women’s pathways to prison, there is a relative dearth of methodologically robust research examining the possible gendered circumstances leading to imprisonment in Thailand. In this presentation, we will report preliminary findings from a qualitative study of women’s pathways to prison in Thailand. Our research aims were to ascertain: 1) the type, frequency, and context of criminal behavior that led to women’s incarceration, 2) women’s experiences of the criminal justice system, 3) the broader life experiences and circumstances that led women to prison in Thailand. In-depth life history interviews (n=77) were utilized to gain a comprehensive understanding of women’s journeys into prison. The interview schedule was open-ended consisting of prisoner responses to broad discussion topics. This approach provided women with the opportunity to describe significant experiences in their lives, to bring together distinct chronologies of events, and to analyze links between their varied life experiences, offending, and incarceration. Analyses showed that women’s journey’s to prison take one of eight pathways which tentatively labelled as follows, the: 1) harmed and harming pathway, 2) domestic/family violence victimization pathway, 3) drug connected pathway, 4) street woman pathway, 5) economically motivated pathway, 6) jealousy anger and/or revenge pathway, 7) naivety pathway, 8) unjust and/or corrupted criminal justice pathway. Each will be fully discussed during the presentation. This research is significant because it is the first in-depth methodologically robust exploration of women’s journeys to prison in Thailand and one of a few studies to explore gendered pathways outside of western contexts. Understanding women’s pathways into Thailand’s prisons is crucial to the development of effective planning, policy and program responses not only while women are in prison but also post-release. To best meet women’s needs in prison and effectively support their reintegration, we must have a comprehensive understanding of who these women are, what offenses they commit, the reasons that trigger their confrontations with the criminal justice system and the impact of the criminal justice system on them.

Keywords: pathways, prison, women, Thailand

Procedia PDF Downloads 215
1142 Cardioprotective Effects of Grape Seed Extract against Lipo-toxicity and Energy Metabolism Alterations in High-Fat-Diet-Induced Obese Rats

Authors: Thouraya Majoul

Abstract:

Obesity is now a real public health issue throughout the world, and it is well-established that obesity leads to cardiovascular diseases. The prevention and treatment of obesity using nutritional supplements has become a realistic and effective approach. This study was carried out to analyze the incidence of a high-fat diet on rat heart metabolism as well as on fatty acids composition, then to investigate the eventual protective effects of a grape seed extract (GSE). The experimental design consisted of three rat groups subjected to three different conditions; standard (SD), high-fat diet (HFD) and HFD+GSE (HG). We showed that GSE counteracted the effect of HFD on fatty acid composition, namely, docosapentaenoic acid, docosahexaenoic acid, arachidonic acid (ARA), palmitic acid (PA) and palmitoleic acid. Besides, GSE treatment restored HFD-altered metabolic pathways through the recovery of some cardiac enzyme activities such as lipase, glucose 6 phosphate dehydrogenase and pyruvate dehydrogenase. The cardiac lactate level and lactate dehydrogenase activity were also analyzed in relation to HFD and GSE administration. To our knowledge, this is the first study showing the anti-obesity and cardioprotective effects of GSE in relation to fatty acid composition and some cardiac enzymes, supporting its role as a therapeutic agent of obesity.

Keywords: Grape seed extract, phenolic, obesity, cardioprotective, lipotoxicity, energy metabolism

Procedia PDF Downloads 44
1141 Broccoli Sprouts Powder Could Improve Metabolic and Liver Disorder-Induced by High-Fructose Corn Syrup

Authors: Zahra Bahadoran, Parvin Mirmiran, Hanieh-Sadat Ejtahed, Maryam Tohidi, Fereidoun Azizi

Abstract:

Background and Aim: Broccoli sprouts, rich source of bioactive compounds specially sulforaphane (SFN), have unique functional properties. This study was conducted to investigate the possible treatment effects of high-SFN broccoli sprouts powder on metabolic and liver disorders in rats fed with high-fructose corn syrup. Methods: Thirty-two male wistar rats, pretreated with an eight-week high-fructose diet (water containing 30% fructose), were randomly allocated into three groups: Baseline control (BC), control (C) (normal diet), and BSP-diet (normal diet+5% BSP). The duration of the study was 6 weeks. Biochemical measurements, liver weight and triglyceride content were evaluated and histopathological examination of liver was performed. Results: After 6-weeks, the liver weight was significantly lower in BSP group compared to controls (13.4 g vs. 11.4 g, P<0.05). After 6 weeks, a significant decrease was observed in fasting serum glucose, total cholesterol and triglyceride levels in both experimental groups (P<0.05). Compared to controls, serum levels of HDL-C were significantly higher in BSP group. The liver TG content in BSP compared to control group was lower (14.6 vs. 16.4 mg/mg tissue). The hepatic levels of alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase had not considerable changes in the groups after the intervention period but the level of alkaline phosphatase significantly decreased in BSP group (P<0.05). The histopathological examination of liver confirmed a decrease lobular and portal inflammation and ballooning in BSP group compared to control. Conclusion: High-SFN broccoli sprouts powder has beneficials effect on metabolic and liver changes-induced by high fructose corn syrup.

Keywords: broccoli sprouts, metabolic disorders, fatty liver, food science

Procedia PDF Downloads 381
1140 The Mechanism of Parabacteroides goldsteinii on Immune Modulation and Anti-Obsogenicity

Authors: Yu-Ling Tsai, Chih-Jung Chang, Chia-Chen Lu, Eric Wu, Chuan-Sheng Lin, Tzu-Lung Lin, Hsin-Chih Lai

Abstract:

It is urgent that novel anti-obesity measures that are safe, effective and widely available are developed for counteracting the rapidly growing obesity epidemics. In the present study, we show that a probiotic bacterium Parabacteroides goldsteinii screened through culture under the high molecular weight polysaccharides prepared from two iconic medicinal fungi, the Ganoderma lucidum and the Hirsutella sinensis, reduced body weight by ca. 20% in high-fat diet (HFD)-fed mice. The bacterium also decreased intestinal permeability, metabolic endotoxemia, inflammation and insulin resistance. Notably, oral administration of live, but not high temperature-killed, P. goldsteinii to HFD fed mice considerably reduces weight gain and obesity-associated metabolic disorders. A three months feeding of the mice with P. goldsteinii did not show any aberrant side effects, indicating the safety of this bacterium. Transcriptome analysis indicated that P. goldsteinii enhances immunity in resting dendritic cells, but reduces inflammation in lipopolysaccharide (LPS)-induced dendritic cells. On top, Naïve T-cells were skewed towards regulatory T-cells after encountering with dendritic cells (DCs) pretreated with P. goldsteinii. These results indicated P. goldsteinii showed anti-inflammatory effects and can work as a potential probiotic ameliorating obesogenicity and related metabolic syndromes.

Keywords: Parabacteroides goldsteinii, gut microbiome, obesity, immune modulation

Procedia PDF Downloads 138
1139 Genetic Analysis of CYP11A1 Gene with Polycystic Ovary Syndrome from North India

Authors: Ratneev Kaur, Tajinder Kaur, Anupam Kaur

Abstract:

Introduction: Polycystic Ovary Syndrome (PCOS) is a heterogenous disorder of endocrine system among women of reproductive age. PCOS is characterized by hyperandrogenism, anovulation, polycystic ovaries, hirsutism, obesity, and hyperinsulinemia. Several pathways are implicated in its etiology including the metabolic pathway of steroid hormone synthesis regulatory pathways. PCOS is an androgen excess disorder, genes operating in steroidogenesis may alter pathogenesis of PCOS. The cytochrome P450scc is a cholesterol side chain cleavage enzyme coded by CYP11A1 gene and catalyzes conversion of cholesterol to pregnenolone, the initial and rate-limiting step in steroid hormone synthesis. It is postulated that polymorphisms in this gene may play an important role in the regulation of CYP11A1 expression and leading to increased or decreased androgen production. The present study will be the first study from north India to best of our knowledge, to analyse the association of CYP11A1 (rs11632698) polymorphism in women suffering from PCOS. Methodology: The present study was approved by ethical committee of Guru Nanak Dev University in consistent with declaration of Helsinki. A total of 300 samples (150 PCOS cases and 150 controls) were recruited from Hartej hospital, for the present study. Venous blood sample (3ml) was withdrawn from women diagnosed with PCOS by doctor, according to Rotterdam 2003 criteria and from healthy age matched controls only after informed consent and detailed filled proforma. For molecular genetics analysis, blood was stored in EDTA vials. After DNA isolation by organic method, PCR-RFLP approach was used for genotyping and association analysis of rs11632698 polymorphism. Statistical analysis was done to check for significance of selected polymorphism with PCOS. Results: In 150 PCOS cases, the frequency of AA, AG and GG genotype was found to be 48%, 35%, and 13% compared to 62%, 27% and 8% in 150 controls. The major allele (A) and minor allele (G) frequency was 68% and 32% in cases and 78% and 22% in controls. Minor allele frequency was higher in cases as compared to controls, as well as the distribution of genotype was observed to be statistically significant (ᵡ²=6.525, p=0.038). Odds ratio in dominant, co-dominant and recessive models observed was 1.81 (p=0.013), 1.54 (p=0.012) and 1.77 (p=0.132) respectively. Conclusion: The present study showed statistically significant association of rs11632698 with PCOS (p=0.038) in North Indian women.

Keywords: polycystic ovary syndrome, CYP11A1, rs11632698, hyperandrogenism

Procedia PDF Downloads 102
1138 Environmental Metabolic Rift and Tourism Development: A Look at the Impact of the Malawi Tourism Industry Development Pattern

Authors: Lameck Zetu Khonje, Mulala Danny Simatele

Abstract:

The tourism industry in Malawi has grown tremendously during the past twenty-five years. This growth is attributed to the change in the political system which opened doors to international tourist and investment opportunities in the country which previously was under a strict repressive one-party political system. This research paper focuses on the developments that took place in the accommodation sector during the same period and the impact that it has partly caused on an environmental metabolic rift in the country which is now vulnerable to climate change-related catastrophes. Respondents from the government departments and the hotel sector were recruited for in-depth interviews. These interviews were conducted between July and November 2015 and follow up interviews were conducted between September and December 2017. Both results indicated there were minimal efforts pursued from the public sector to cartel capitalistic development tendencies in the accommodation sector. The results from the hotel revealed there were considerable efforts pursued driven by operating cost-cutting motive. Applying systems thinking the paper recommends that the policing machinery needs improvement to ensure that the industry also focuses on environmental wellbeing instead of profit maximization. This paper contributes to the body of knowledge on tourism development and climate change.

Keywords: accommodation sector, climate change, metabolic rift, Malawi, tourism industry

Procedia PDF Downloads 105
1137 Evaluation of the Spatial Regulation of Hydrogen Sulphide Producing Enzymes in the Placenta during Labour

Authors: F. Saleh, F. Lyall, A. Abdulsid, L. Marks

Abstract:

Background: Labour in human is a complex biological process that involves interactions of neurological, hormonal and inflammatory pathways, with the placenta being a key regulator of these pathways. It is known that uterine contractions and labour pain cause physiological changes in gene expression in maternal and fetal blood, and in placenta during labour. Oxidative and inflammatory stress pathways are implicated in labour and they may cause alteration of placental gene expression. Additionally, in placental tissues, labour increases the expression of genes involved in placental oxidative stress, inflammatory cytokines, angiogenic regulators and apoptosis. Recently, Hydrogen Sulphide (H2S) has been considered as an endogenous gaseous mediator which promotes vasodilation and exhibits cytoprotective anti-inflammatory properties. The endogenous H2S is synthesised predominantly by two enzymes: cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). As the H2S pathway has anti-oxidative and anti-inflammatory characteristics thus, we hypothesised that the expression of CBS and CSE in placental tissues would alter during labour. Methods: CBS and CSE expressions were examined in placentas using western blotting and RT-PCR in inner, middle and outer placental zones in placentas obtained from healthy non labouring women who delivered by caesarian section. These were compared with the equivalent zone of placentas obtained from women who had uncomplicated labour and delivered vaginally. Results: No differences in CBS and CSE mRNA or protein levels were found between the different sites within placentas in either the labour or non-labour group. There were no significant differences in either CBS or CSE expression between the two groups at the inner site and middle site. However, at the outer site there was a highly significant decrease in CBS protein expression in the labour group when compared to the non-labour group (p = 0.002). Conclusion: To the best of author’s knowledge, this is the first report to suggest that, CBS is expressed in a spatial manner within the human placenta. Further work is needed to clarify the precise function and mechanism of this spatial regulation although it is likely that inflammatory pathways regulation is a complex process in which this plays a role.

Keywords: anti-inflammatory, hydrogen sulphide, labour, oxidative stress

Procedia PDF Downloads 215
1136 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification

Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli

Abstract:

Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.

Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics

Procedia PDF Downloads 25
1135 Evaluation of Mito-Uncoupler Induced Hyper Metabolic and Aggressive Phenotype in Glioma Cells

Authors: Yogesh Rai, Saurabh Singh, Sanjay Pandey, Dhananjay K. Sah, B. G. Roy, B. S. Dwarakanath, Anant N. Bhatt

Abstract:

One of the most common signatures of highly malignant gliomas is their capacity to metabolize more glucose to lactic acid than normal brain tissues, even under normoxic conditions (Warburg effect), indicating that aerobic glycolysis is constitutively upregulated through stable genetic or epigenetic changes. However, oxidative phosphorylation (OxPhos) is also required to maintain the mitochondrial membrane potential for tumor cell survival. In the process of tumorigenesis, tumor cells during fastest growth rate exhibit both high glycolytic and high OxPhos. Therefore, metabolically reprogrammed cancer cells with combination of both aerobic glycolysis and altered OxPhos develop a robust metabolic phenotype, which confers a selective growth advantage. In our study, we grew the high glycolytic BMG-1 (glioma) cells with continuous exposure of mitochondrial uncoupler 2, 4, dinitro phenol (DNP) for 10 passages to obtain a phenotype of high glycolysis with enhanced altered OxPhos. We found that OxPhos modified BMG (OPMBMG) cells has similar growth rate and cell cycle distribution but high mitochondrial mass and functional enzymatic activity than parental cells. In in-vitro studies, OPMBMG cells showed enhanced invasion, proliferation and migration properties. Moreover, it also showed enhanced angiogenesis in matrigel plug assay. Xenografted tumors from OPMBMG cells showed reduced latent period, faster growth rate and nearly five folds reduction in the tumor take in nude mice compared to BMG-1 cells, suggesting that robust metabolic phenotype facilitates tumor formation and growth. OPMBMG cells which were found radio-resistant, showed enhanced radio-sensitization by 2-DG as compared to the parental BMG-1 cells. This study suggests that metabolic reprogramming in cancer cells enhances the potential of migration, invasion and proliferation. It also strengthens the cancer cells to escape the death processes, conferring resistance to therapeutic modalities. Our data also suggest that combining metabolic inhibitors like 2-DG with conventional therapeutic modalities can sensitize such metabolically aggressive cancer cells more than the therapies alone.

Keywords: 2-DG, BMG, DNP, OPM-BMG

Procedia PDF Downloads 185
1134 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth

Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen

Abstract:

Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.  

Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast

Procedia PDF Downloads 133
1133 Hematologic Inflammatory Markers and Inflammation-Related Hepatokines in Pediatric Obesity

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity in children particularly draws attention because it may threaten the individual’s future life due to many chronic diseases it may lead to. Most of these diseases, including obesity itself altogether are related to inflammation. For this reason, inflammation-related parameters gain importance. Within this context, complete blood cell counts, ratios or indices derived from these counts have recently found some platform to be used as inflammatory markers. So far, mostly adipokines were investigated within the field of obesity. The liver is at the center of the metabolic pathways network. Metabolic inflammation is closely associated with cellular dysfunction. In this study, hematologic inflammatory markers and two major hepatokines, cytokines produced predominantly by the liver, fibroblast growth factor-21 (FGF-21) and fetuin A were investigated in pediatric obesity. Two groups were constituted from seventy-six obese children based on World Health Organization criteria. Group 1 was composed of children whose age- and sex-adjusted body mass index (BMI) percentiles were between 95 and 99. Group 2 consists of children who are above the 99ᵗʰ percentile. The first and the latter groups were defined as obese (OB) and morbid obese (MO). Anthropometric measurements of the children were performed. Informed consent forms and the approval of the institutional ethics committee were obtained. Blood cell counts and ratios were determined by an automated hematology analyzer. The related ratios and indexes were calculated. Statistical evaluation of the data was performed by the SPSS program. There was no statistically significant difference in terms of neutrophil-to lymphocyte ratio, monocyte-to-high density lipoprotein cholesterol ratio and the platelet-to-lymphocyte ratio between the groups. Mean platelet volume and platelet distribution width values were decreased (p<0.05), total platelet count, red cell distribution width (RDW) and systemic immune inflammation index values were increased (p<0.01) in MO group. Both hepatokines were increased in the same group; however, increases were not statistically significant. In this group, also a strong correlation was calculated between FGF-21 and RDW when controlled by age, hematocrit, iron and ferritin (r=0.425; p<0.01). In conclusion, the association between RDW, a hematologic inflammatory marker, and FGF-21, an inflammation-related hepatokine, found in MO group is an important finding discriminating between OB and MO children. This association is even more powerful when controlled by age and iron-related parameters.

Keywords: childhood obesity, fetuin A , fibroblast growth factor-21, hematologic markers, red cell distribution width

Procedia PDF Downloads 165
1132 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures

Authors: Latife Merve Oktay, Berrin Tugrul

Abstract:

Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.

Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer

Procedia PDF Downloads 331
1131 Antimicrobial and Anti-Biofilm Activity of Non-Thermal Plasma

Authors: Jan Masak, Eva Kvasnickova, Vladimir Scholtz, Olga Matatkova, Marketa Valkova, Alena Cejkova

Abstract:

Microbial colonization of medical instruments, catheters, implants, etc. is a serious problem in the spread of nosocomial infections. Biofilms exhibit enormous resistance to environment. The resistance of biofilm populations to antibiotic or biocides often increases by two to three orders of magnitude in comparison with suspension populations. Subjects of interests are substances or physical processes that primarily cause the destruction of biofilm, while the released cells can be killed by existing antibiotics. In addition, agents that do not have a strong lethal effect do not cause such a significant selection pressure to further enhance resistance. Non-thermal plasma (NTP) is defined as neutral, ionized gas composed of particles (photons, electrons, positive and negative ions, free radicals and excited or non-excited molecules) which are in permanent interaction. In this work, the effect of NTP generated by the cometary corona with a metallic grid on the formation and stability of biofilm and metabolic activity of cells in biofilm was studied. NTP was applied on biofilm populations of Staphylococcus epidermidis DBM 3179, Pseudomonas aeruginosa DBM 3081, DBM 3777, ATCC 15442 and ATCC 10145, Escherichia coli DBM 3125 and Candida albicans DBM 2164 grown on solid media on Petri dishes and on the titanium alloy (Ti6Al4V) surface used for the production joint replacements. Erythromycin (for S. epidermidis), polymyxin B (for E. coli and P. aeruginosa), amphotericin B (for C. albicans) and ceftazidime (for P. aeruginosa) were used to study the combined effect of NTP and antibiotics. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Fluorescence microscopy was applied to visualize the biofilm on the surface of the titanium alloy; SYTO 13 was used as a fluorescence probe to stain cells in the biofilm. It has been shown that biofilm populations of all studied microorganisms are very sensitive to the type of used NTP. The inhibition zone of biofilm recorded after 60 minutes exposure to NTP exceeded 20 cm², except P. aeruginosa DBM 3777 and ATCC 10145, where it was about 9 cm². Also metabolic activity of cells in biofilm differed for individual microbial strains. High sensitivity to NTP was observed in S. epidermidis, in which the metabolic activity of biofilm decreased after 30 minutes of NTP exposure to 15% and after 60 minutes to 1%. Conversely, the metabolic activity of cells of C. albicans decreased to 53% after 30 minutes of NTP exposure. Nevertheless, this result can be considered very good. Suitable combinations of exposure time of NTP and the concentration of antibiotic achieved in most cases a remarkable synergic effect on the reduction of the metabolic activity of the cells of the biofilm. For example, in the case of P. aeruginosa DBM 3777, a combination of 30 minutes of NTP with 1 mg/l of ceftazidime resulted in a decrease metabolic activity below 4%.

Keywords: anti-biofilm activity, antibiotic, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 157
1130 Cybernetic Modeling of Growth Dynamics of Debaryomyces nepalensis NCYC 3413 and Xylitol Production in Batch Reactor

Authors: J. Sharon Mano Pappu, Sathyanarayana N. Gummadi

Abstract:

Growth of Debaryomyces nepalensis on mixed substrates in batch culture follows diauxic pattern of completely utilizing glucose during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming xylose. The present study deals with the development of cybernetic mathematical model for prediction of xylitol production and yield. Production of xylitol from xylose in batch fermentation is investigated in the presence of glucose as the co-substrate. Different ratios of glucose and xylose concentrations are assessed to study the impact of multi substrate on production of xylitol in batch reactors. The parameters in the model equations were estimated from experimental observations using integral method. The model equations were solved simultaneously by numerical technique using MATLAB. The developed cybernetic model of xylose fermentation in the presence of a co-substrate can provide answers about how the ratio of glucose to xylose influences the yield and rate of production of xylitol. This model is expected to accurately predict the growth of microorganism on mixed substrate, duration of intermediate lag phase, consumption of substrate, production of xylitol. The model developed based on cybernetic modelling framework can be helpful to simulate the dynamic competition between the metabolic pathways.

Keywords: co-substrate, cybernetic model, diauxic growth, xylose, xylitol

Procedia PDF Downloads 292
1129 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells

Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee

Abstract:

Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region

Keywords: anti-inflammation, myristic acid, ROS, ultraviolet light

Procedia PDF Downloads 171
1128 Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation

Authors: M. Dehestani, F. Kamali, M. Klantari Pour, L. Zeidabadi-Nejad

Abstract:

Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG.

Keywords: interaction, interferons, molecular dynamics simulation, polyethylene glycol

Procedia PDF Downloads 199
1127 A New Index for the Differential Diagnosis of Morbid Obese Children with and without Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolic syndrome (MetS) is a severe health problem which is common among obese individuals. The components of MetS are rather stable in adults compared to the components discussed for children. Due to the ambiguity in this group of the population, how to diagnose MetS in morbid obese (MO) children still constitutes a matter of discussion. For this purpose, a formula, which facilitates the diagnosis of MetS in MO children, was investigated. The aim of this study was to develop a formula which was capable of discriminating MO children with and without MetS findings. Study population comprised MO children. Age and sex-dependent body mass index (BMI) percentiles of the children were above 99. Metabolic syndrome components were also determined. Elevated systolic and diastolic blood pressures (SBP and DBP), elevated fasting blood glucose (FBG), elevated triglycerides (TRG), and/or depressed high density lipoprotein cholesterol (HDL-C) in addition to central obesity were listed as MetS components for each child. Presence of at least two of these components confirmed that the case was MetS. Two groups were constituted. In the first group, there were forty-two MO children without MetS components. Second group was composed of forty-four MO children with at least two MetS components. Anthropometric measurements, including weight, height, waist, and hip circumferences, were performed following physical examination. Body mass index and homeostatic model assessment of insulin resistance values were calculated. Informed consent forms were obtained from the parents of the children. Institutional Non-Interventional Ethics Committee approved the study design. Blood pressure values were recorded. Routine biochemical analysis, including FBG, insulin (INS), TRG, HDL-C were performed. The performance and the clinical utility of the Diagnostic Obesity Notation Model Assessment Metabolic Syndrome Index (DONMA MetS index) [(INS/FBG)/(HDL-C/TRG)*100] was tested. Appropriate statistical tests were applied to the study data. p value smaller than 0.05 was defined as significant. Metabolic syndrome index values were 41.6±5.1 in MO group and 104.4±12.8 in MetS group. Corresponding values for HDL-C values were 54.5±13.2 mg/dl and 44.2±11.5 mg/dl. There were statistically significant differences between the groups (p<0.001). Upon evaluation of the correlations between MetS index and HDL-C values, a much stronger negative correlation was found in MetS group (r=-0.515; p=0.001) in comparison with the correlation detected in MO group (r=-0.371; p=0.016). From these findings, it was concluded that the statistical significance degree of the difference between MO and MetS groups was highly acceptable for this recently introduced MetS index as expected. This was due to the involvement of all of the biochemically defined MetS components into the index. This is particularly important because each of these four parameters used in the formula is cardiac risk factor. Aside from discriminating MO children with and without MetS findings, MetS index introduced in this study is important from the cardiovascular risk point of view in MetS group of children.

Keywords: children, fasting blood glucose, high density lipoprotein cholesterol, index, insulin, metabolic syndrome, morbid obesity, triglycerides.

Procedia PDF Downloads 57
1126 Characterization of PRL-3 Oncogenic Phosphatase in Its Role in Mediating Acquired Resistance to Bortezomib in Multiple Myeloma

Authors: Shamill Amedot Udonwa, Phyllis S. Y. Chong, Lim S. L. Julia, Wee-Joo Chng

Abstract:

In this paper, we investigated how PRL-3 expression in H929 and U266 cells affects the efficacy of drug treatment. H929 and U266 cells were treated with Bortezomib (BTZ) of different concentrations, and it was observed that H929 cells were resistant to BTZ, while U266 cells were not viable. Investigations into how BTZ targets these cells were conducted, and it was observed that BTZ affects the PARP-Caspase3 pathway as well as PRL-3-Leo1 pathways. These pathways regulate cell proliferation and cell cycle, respectively. Hence, we are able to show the mechanism of how BTZ affects cells and also the role PRL-3 plays on downstream oncogenes such as cyclin-D1 and c-MYC. More importantly, this investigation into PRL-3 in BTZ resistance will be highly applicable in the future as the first clinical trials of PRL-3 antibody (PRL3-zumab) are ongoing at the National University Hospital, Singapore (NUHS). This would mean that understanding the mechanism of resistance through PRL-3, which has yet to be studied, will demonstrate the potential of PRL-3 in developing novel strategies to improve the treatment of MM.

Keywords: drug resistance, hematology, multiple myeloma, oncogene

Procedia PDF Downloads 108
1125 Hypergraph Models of Metabolism

Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova

Abstract:

In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.

Keywords: complexity, hypergraphs, reciprocity, metabolism

Procedia PDF Downloads 260
1124 Metabolic Changes during Reprogramming of Wheat and Triticale Microspores

Authors: Natalia Hordynska, Magdalena Szechynska-Hebda, Miroslaw Sobczak, Elzbieta Rozanska, Joanna Troczynska, Zofia Banaszak, Maria Wedzony

Abstract:

Albinism is a common problem encountered in wheat and triticale breeding programs, which require in vitro culture steps e.g. generation of doubled haploids via androgenesis process. Genetic factor is a major determinant of albinism, however, environmental conditions such as temperature and media composition influence the frequency of albino plant formation. Cold incubation of wheat and triticale spikes induced a switch from gametophytic to sporophytic development. Further, androgenic structures formed from anthers of the genotypes susceptible to androgenesis or treated with cold stress, had a pool of structurally primitive plastids, with small starch granules or swollen thylakoids. High temperature was a factor inducing andro-genesis of wheat and triticale, but at the same time, it was a factor favoring the formation of albino plants. In genotypes susceptible to albinism or after heat stress conditions, cells formed from anthers were vacuolated, and plastids were eliminated. Partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes result in formation of tissues or whole plant unable to perform photosynthesis. Indeed, susceptibility to the andro-genesis process was associated with an increase of total concentration of photosynthetic pigments in anthers, spikes and regenerated plants. The proper balance of the synthesis of various pigments, was the starting point for their proper incorporation into photosynthetic membranes. In contrast, genotypes resistant to the androgenesis process and those treated with heat, contained 100 times lower content of photosynthetic pigments. In particular, the synthesis of violaxanthin, zeaxanthin, lutein and chlorophyll b was limited. Furthermore, deregulation of starch and lipids synthesis, which led to the formation of very complex starch granules and an increased number of oleosomes, respectively, correlated with the reduction of the efficiency of androgenesis. The content of other sugars varied depending on the genotype and the type of stress. The highest content of various sugars was found for genotypes susceptible to andro-genesis, and highly reduced for genotypes resistant to androgenesis. The most important sugars seem to be glucose and fructose. They are involved in sugar sensing and signaling pathways, which affect the expression of various genes and regulate plant development. Sucrose, on the other hand, seems to have minor effect at each stage of the androgenesis. The sugar metabolism was related to metabolic activity of microspores. The genotypes susceptible to androgenesis process had much faster mitochondrium- and chloroplast-dependent energy conversion and higher heat production by tissues. Thus, the effectiveness of metabolic processes, their balance and the flexibility under the stress was a factor determining the direction of microspore development, and in the later stages of the androgenesis process, a factor supporting the induction of androgenic structures, chloroplast formation and the regeneration of green plants. The work was financed by Ministry of Agriculture and Rural Development within Program: ‘Biological Progress in Plant Production’, project no HOR.hn.802.15.2018.

Keywords: androgenesis, chloroplast, metabolism, temperature stress

Procedia PDF Downloads 232
1123 Caecotrophy Behaviour of the Rabbits (Oryctolagus cuniculus)

Authors: Awadhesh Kishore

Abstract:

One of the most unique characteristics of rabbit feeding behaviour is caecotrophy, which involves the excretion and immediate consumption of specific faeces known as soft faeces. Caecotrophy in rabbits is the instinctual behaviour of eating soft faeces; reduced caecotrophy decreases rabbit growth and lipid synthesis in the liver. Caecotroph ingestion is highest when rabbits are fed a diet high in indigestible fibre. The colon produces two types of waste: hard and soft pellets. The hard pellets are expelled, but the soft pellets are re-ingested by the rabbit directly upon being expelled from the anus by twisting itself around and sucking in those pellets as they emerge from the anus. The type of alfalfa hay in the feed of the rabbits does not affect volatile fatty acid concentration, the pattern of fermentation, or pH in the faeces. The cecal content and the soft faeces contain significant amounts of retinoids and carotenoids, while in the tissues (blood, liver, and kidney), these pigments do not occur in substantial amounts. Preventing caecotrophy reduced growth and altered lipid metabolism, depressing the development of new approaches for rabbit feeding and production. Relative abundance is depressed for genes related to metabolic pathways such as vitamin C and sugar metabolism, vitamin B2 metabolism, and bile secretion. The key microorganisms that regulate the rapid growth performance of rabbits may provide useful references for future research and the development of microecological preparations.

Keywords: caecocolonic microorganisms, caecotrophy, fasting caecotrophy, rabbits, soft pellets

Procedia PDF Downloads 17
1122 Modification of the Risk for Incident Cancer with Changes in the Metabolic Syndrome Status: A Prospective Cohort Study in Taiwan

Authors: Yung-Feng Yen, Yun-Ju Lai

Abstract:

Background: Metabolic syndrome (MetS) is reversible; however, the effect of changes in MetS status on the risk of incident cancer has not been extensively studied. We aimed to investigate the effects of changes in MetS status on incident cancer risk. Methods: This prospective, longitudinal study used data from Taiwan’s MJ cohort of 157,915 adults recruited from 2002–2016 who had repeated MetS measurements 5.2 (±3.5) years apart and were followed up for the new onset of cancer over 8.2 (±4.5) years. A new diagnosis of incident cancer in study individuals was confirmed by their pathohistological reports. The participants’ MetS status included MetS-free (n=119,331), MetS-developed (n=14,272), MetS-recovered (n=7,914), and MetS-persistent (n=16,398). We used the Fine-Gray sub-distribution method, with death as the competing risk, to determine the association between MetS changes and the risk of incident cancer. Results: During the follow-up period, 7,486 individuals had new development of cancer. Compared with the MetS-free group, MetS-persistent individuals had a significantly higher risk of incident cancer (adjusted hazard ratio [aHR], 1.10; 95% confidence interval [CI], 1.03-1.18). Considering the effect of dynamic changes in MetS status on the risk of specific cancer types, MetS persistence was significantly associated with a higher risk of incident colon and rectum, kidney, pancreas, uterus, and thyroid cancer. The risk of kidney, uterus, and thyroid cancer in MetS-recovered individuals was higher than in those who remained MetS but lower than MetS-persistent individuals. Conclusions: Persistent MetS is associated with a higher risk of incident cancer, and recovery from MetS may reduce the risk. The findings of our study suggest that it is imperative for individuals with pre-existing MetS to seek treatment for this condition to reduce the cancer risk.

Keywords: metabolic syndrome change, cancer, risk factor, cohort study

Procedia PDF Downloads 45
1121 Effect Of Selected Food And Nutrition Environments On Prevalence Of Cardio-Metabolic Risk Factors With Emphasis On Worksite Environment In Urban Delhi

Authors: Deepa Shokeen, Bani Tamber Aeri

Abstract:

Food choice is a complex process influenced by the interplay of multiple factors, including physical, socio-cultural and economic factors comprising macro or micro level food environments. While a clear understanding of the relationship between what we eat and the environmental context in which these food choices are made is still needed; it has however now been shown that food environments do play a significant role in the obesity epidemic and increasing cardio-metabolic risk factors. Evidence in other countries indicates that the food environment may strongly influence the prevalence of obesity and cardio-metabolic risk factors among young adults. Although in the Indian context, data does indicate the associations between sedentary lifestyle, stress, faulty diets but very little evidence supports the role of food environment in influencing cardio-metabolic health among employed adults. Thus, this research is required to establish how different environments affect different individuals as individuals interact with the environment on a number of levels. Methodology: The objective of the present study is to assess the effect of selected food and nutrition environments with emphasis on worksite environment and to analyse its impact on the food choices and dietary behaviour of the employees (25-45 years of age) of the organizations under study. In the proposed study an attempt will be made to randomly select various worksite environments from Delhi and NCR. The study will be conducted in two phases. In phase I, Information will be obtained on their socio-demographic profile and various factors influencing their food choices including most commonly consumed foods and most frequently visited eating outlets in and around the work place. Data will also be gathered on anthropometry (height, weight, waist circumference), biochemical parameters (lipid profile and fasting glucose), blood pressure and dietary intake. Based on the findings of phase I, a list of the most frequently visited eating outlets in and around the workplace will be prepared in Phase II. These outlets will then be subjected to nutrition environment assessment survey (NEMS). On the basis of the information gathered from phase I and phase II, influence of selected food and nutrition environments on food choice, dietary behaviour and prevalence of cardio-metabolic risk factors among employed adults will be assessed. Expected outcomes: The proposed study will try to ascertain the impact of selected food and nutrition environments on food choice and dietary intake of the working adults as it is important to learn how these food environments influence the eating perceptions and health behavior of the adults. In addition to this, anthropometry blood pressure and biochemical assessment of the subjects will be done to assess the prevalence of cardio-metabolic risk factors. If the findings indicate that the work environment, where most of these young adults spend their productive hours of the day, influence their health, than perhaps steps maybe needed to make these environments more conducive to health.

Keywords: food and nutrition environment, cardio-metabolic risk factors, India, worksite environment

Procedia PDF Downloads 257
1120 Analysis of the Transcriptional Response of Rhazia stricta to Jasmonic Acid Induction

Authors: Nahid H. Hajrah, Jamal S. M. Sabir, Neil Hall

Abstract:

The jasmonic pathway is ubiquitous in plants and is crucial to plant development. It Is involved in fertility, ripening, and sex determination as well as in response to environmental stresses such as herbivory, pathogen drought or temperature shock. Essentially the jasmonic pathway acts to shut down growth in order to induce defence pathways. These pathways include the production of secondary metabolites which have evolved to defend against herbivores and pathogens but are of increasing interest due to their roll in medicine and biotechnology. Here we describe the transcriptional response of Rhazia stricta (a poisonous shrub widely used in traditional medicine) to jasmonic acid, in order to better characterize the genes involved in secondary metabolite production and its response to stress. We observe coordinated upregulation of flavonoid biosynthesis pathway leading to flavonols, flavones and anthocyanins but no similar coordination of the monoterpene indole alkaloid pathway.

Keywords: medicinal plants, Rhazia stricta, jasmonic acid, transcriptional analysis

Procedia PDF Downloads 109
1119 Pathway and Differential Gene Expression Studies for Colorectal Cancer

Authors: Ankita Shukla, Tiratha Raj Singh

Abstract:

Colorectal cancer (CRC) imposes serious mortality burden worldwide and it has been increasing for past consecutive years. Continuous efforts have been made so far to diagnose the disease condition and to identify the root cause for it. In this study, we performed the pathway level as well as the differential gene expression studies for CRC. We analyzed the gene expression profile GSE24514 from Gene Expression Omnibus (GEO) along with the gene pathways involved in the CRC. This analysis helps us to understand the behavior of the genes that have shown differential expression through their targeted pathways. Pathway analysis for the targeted genes covers the wider area which therefore decreases the possibility to miss the significant ones. This will prove to be beneficial to expose the ones that have not been given attention so far. Through this analysis, we attempt to understand the various neighboring genes that have close relationship to the targeted one and thus proved to be significantly controlling the CRC. It is anticipated that the identified hub and neighboring genes will provide new directions to look at the pathway level differently and will be crucial for the regulatory processes of the disease.

Keywords: mismatch repair, microsatellite instability, carcinogenesis, morbidity

Procedia PDF Downloads 288
1118 Identification of Some Factors Influencing Serum Uric Acid Concentration in Individuals With Metabolic Syndrome

Authors: Munkhtuul G., Bolortsetseg Z., Lutzul M., Sugar N., Nyamdorj D., Nomundari B., Zesemdorj O., Erdenebayar N., Lkhagvasuren T. S., Munkhbayarlakh S., Bayasgalan T. Uurtuya S. H.

Abstract:

Background: Elevated serum uric acid (SUA) levels are observed in metabolic and cardiovascular conditions as an early predictor of metabolic syndrome (MS). Hyperuricemia, characterised by high uric acid levels in serum, increases the risk of developing MS by 1.6 times. Being overweight and obese significantly contributes to developing MS and cardiovascular disorders. In Mongolia, the prevalence of overweight and obesity is reaching 48.8% among individuals aged 15 to 49 years, indicating a potential surge in the incidence of MS, cardiovascular disorders, diabetes mellitus, and gout.Objective: This study aimed to determine the SUA levels in men diagnosed with MS and investigate the factors influencing these levels.Methods: A total of 119 men aged 30-60, who underwent preventive examinations and resided in Ulaanbaatar city, were included in the study. The criteria established by the International Diabetes Federation (IDF), American Heart Association (AHA), and the National Heart, Lung, and Blood Institute (NHLBI) were employed to define metabolic syndrome. Hyperuricemia was defined as SUA levels ≥7 mg/dL. Dietary intake was evaluated through the 24-hour recall method.Results: The study revealed that the prevalence of MS among the participants was 42.9% (n=51), with hyperuricemia observed in 16.8% (n=20) of the individuals. Among men diagnosed with MS, 21.3% (n=10) exhibited hyperuricemia. The mean SUA levels were as follows: 4.7±0.8 mg/dL in the healthy group, 5.9±1.1 mg/dL in men without MS but presenting central obesity, and 6.2±1.3 mg/dL in men with MS. After adjusting for age and body mass index (BMI), a positive correlation was observed between SUA levels and triglycerides (β=0.93) as well as lipid accumulation product (LAP) (β=0.92) in men with MS. In the central obesity group, SUA levels exhibited a positive correlation with triglycerides (β=0.91), visceral adiposity index (VAI) (β=0.73), LAP (β=0.92), and cardiometabolic index (CMI) (β=0.69). The risk of hyperuricemia increased by 3.29 times with elevated triglycerides and 3.53 times with an increased LAP.Conclusion: The findings indicate that abdominal fat accumulation, as indicated by elevated triglyceride levels and LAP, is associated with increased SUA levels in men with MS. However, no significant relationship was observed between SUA levels and dietary intake.

Keywords: central obesity, obesity, triglycerides, hyperuricemia

Procedia PDF Downloads 35
1117 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation

Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno

Abstract:

Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.

Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression

Procedia PDF Downloads 101
1116 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 67
1115 Probiotics as Therapeutic Agents in the Treatment of Various Diseases: A Literature Review

Authors: K. B. Chathyushya, M. Shiva Prakash, R. Hemalatha

Abstract:

Introduction: Gastrointestinal (GI) tract has a number of microorganisms (microbiota) that influences the host’s health. The imbalance in the gut microbiota, which is also called as gut dysbiosis, affects human health which causes various metabolic, inflammatory, and infectious diseases. Probiotics play an important role in reinstating the gut balance. Probiotics are involved in the maintenance of healthier gut microbiota and have also been identified as effective adjuvants in insulin resistance therapies. Methods: This paper systematically reviews different randomized, controlled, blinded trials of probiotics for the treatment of various diseases along with the therapeutic or prophylactic properties of probiotic bacteria in different metabolic, inflammatory, infectious and anxiety-related disorders. Conclusion: The present review summarises that probiotics have some considerable effect in the management of various diseases, however, the benefits are strain specific, although more clinical trials are need to be carried out with different probiotic and symbiotic combinations as some probiotics have broad spectrum of benefits and few with specific activity

Keywords: life style diseases, cognition, health, gut dysbiosis, probiotics

Procedia PDF Downloads 96
1114 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez

Abstract:

Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.

Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma

Procedia PDF Downloads 102