Search results for: kenaf%20bast%20fiber%20bundles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21

Search results for: kenaf%20bast%20fiber%20bundles

21 NFC Kenaf Core Graphene Paper: In-situ Method Application

Authors: M. A. Izzati, R. Rosazley, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. Jani

Abstract:

Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper.

Keywords: NFC, kenaf core, graphene, in-situ method

Procedia PDF Downloads 369
20 Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites

Authors: C. Tezara, H. Y. Lim, M. H. Yazdi, J. W. Lim, J. P. Siregar

Abstract:

Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion.

Keywords: Kenaf fibre, epoxy, composite, fibre

Procedia PDF Downloads 254
19 Behavior of Oil Palm Shell Reinforced Concrete Beams Added with Kenaf Fibres

Authors: Sharifah M. Syed Mohsin, Sayid J. Azimi, Abdoullah Namdar

Abstract:

The present article reports the findings of a study into the behavior of oil palm shell reinforced concrete (OPSRC) beams with the addition of kenaf fibres. The work aim is to examine the potential of using kenaf fibres to improve the strength and ductility of the OPSRC beams and also observe its potential in serving as part of shear reinforcement in the beams. Two different arrangements of the shear links in OPSRC beams with a selection of kenaf fibres (amount of [10kg/m] ^3 and [20kg/m] ^3) content are tested under monotonic loading. In the first arrangement, the kenaf fibres are added to the beam which has full shear reinforcement to study the structural behavior of OPSRC beams with fibres. In the second arrangement, the spacing between the shear links in the OPSRC beams are increased by 50% and experimental work is carried out to study the effect of kenaf fibres without compromising the beams strength and ductility. The results show that the addition of kenaf fibres enhanced the load carrying capacity, ductility and also altered the failure mode of the beams from a brittle shear mode to a flexural ductile one. Furthermore, the study depicts that kenaf fibres are compatible with OPSRC and suggest prospective results.

Keywords: oil palm shell reinforced concrete, kenaf fibres, peak strength, ductility

Procedia PDF Downloads 392
18 Effect of Chemical Treatment on Mechanical Properties of KENAF Fiber Reinforced Unsaturated Polyester Composites

Authors: S. S. Abdullahi, H. Musa, A. A. Salisu, A. Ismaila, A. H. Birniwa

Abstract:

In this study the treated and untreated kenaf fiber reinforced unsaturated polyester conventional composites were prepared. Hand lay-up technique was used with dump-bell shaped mold. The kenaf bast fiber was retted enzymatically, washed, dried and combed with a nylon brush. A portion of the kenaf fiber was mercerized and treated with benzoylchloride prior to composite fabrication. Untreated kenaf fiber was also used to prepare the composites to serve as control. The cured composites were subjected to various mechanical testes, such as hardness test, impact test and tensile strength test. The results obtained indicated an increase in all the parameters tested with the fiber treatment. This is because the lignin, hemi-celluloses, pectin and other impurities were removed during alkaline treatment (i.e mercerization). This shows that, the durability of the natural cellulosic fibers to different composite applications can be achieved via fiber treatments.

Keywords: composite, kenaf fibre, reinforce, retted

Procedia PDF Downloads 485
17 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation

Authors: Y. C. Ching, K. H. Chong

Abstract:

The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.

Keywords: kenaf fiber, polyester, tensile, thermal stability

Procedia PDF Downloads 324
16 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 431
15 Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper

Authors: A. W. Fareezal, R. Rosazley, M. A. Izzati, M. Z. Shazana, I. Rushdan

Abstract:

Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA).

Keywords: cellulose, CNT paper, PEI solution, electrical conductive paper

Procedia PDF Downloads 202
14 Phytoremediation Potential of Hibiscus Cannabinus L. Grown on Different Soil Cadmium Concentration

Authors: Sarra Arbaoui, Taoufik Bettaieb

Abstract:

Contaminated soils and problems related to them have increasingly become a matter of concern. The most common the contaminants generated by industrial urban emissions and agricultural practices are trace metals). Remediation of trace metals which pollute soils can be carried out using physico-chemical processes. Nevertheless, these techniques damage the soil’s biological activity and require expensive equipment. Phytoremediation is a relatively low-cost technology based on the use of selected plants to remove, degrades or contains pollutants. The potential of kenaf for phytoremediation on Cd-contaminated soil was investigated. kenaf plants have been grown in pots containing different concentrations of cadmium. The observations made were for biomass production and cadmium content in different organs determinate by atomic emission spectrometry. Cadmium transfer from a contaminated soil to plants and into plant tissues are discussed in terms of the Bioconcentration Factor (BCF) and the Transfer Factor (TF). Results showed that Cd was found in kenaf plants at different levels. Tolerance and accumulation potential and biomass productivity indicated that kenaf could be used in phytoremediation.

Keywords: kenaf, cadmium, phytoremediation, contaminated soil

Procedia PDF Downloads 488
13 Effect of Kenaf Fibres on Starch-Grafted-Polypropylene Biopolymer Properties

Authors: Amel Hamma, Allesandro Pegoretti

Abstract:

Kenaf fibres, with two aspect ratios, were melt compounded with two types of biopolymers named starch grafted polypropylene, and then blends compression molded to form plates of 1 mm thick. Results showed that processing induced variation of fibres length which is quantified by optical microscopy observations. Young modulus, stress at break and impact resistance values of starch-grafted-polypropylenes were remarkably improved by kenaf fibres for both matrixes and demonstrated best values when G906PJ were used as matrix. These results attest the good interfacial bonding between the matrix and fibres even in the absence of any interfacial modification. Vicat Softening Point and storage modules were also improved due to the reinforcing effect of fibres. Moreover, short-term tensile creep tests have proven that kenaf fibres remarkably improve the creep stability of composites. The creep behavior of the investigated materials was successfully modeled by the four parameters Burgers model.

Keywords: creep behaviour, kenaf fibres, mechanical properties, starch-grafted-polypropylene

Procedia PDF Downloads 201
12 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties

Authors: Maizatulnisa Othman, Mohamad Bukhari, Zahurin Halim, Souad A. Muhammad, Khalisani Khalid

Abstract:

Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 Gpa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.

Keywords: sandwich structure composite, epoxy, aluminium, kenaf fiber

Procedia PDF Downloads 357
11 Antioxidant Potential, Nutritional Value and Sensory Profiles of Bread Fortified with Kenaf Leaves

Authors: Kar Lin Nyam, Phey Yee Lim

Abstract:

The aim of this study was to determine the antioxidant potential, nutritional composition, and functional properties of kenaf leaves powder. Besides, the effect of kenaf leaves powder in bread qualities, properties, and consumer acceptability were evaluated. Different formulations of bread fortified with 0%, 4% and 8% kenaf leaves powder, respectively were produced. Physical properties of bread, such as loaf volume, dough expansion, crumb colour, and bread texture, were determined. Nine points hedonic scale was utilized in sensory evaluation to determine the best formulation (the highest overall acceptability). Proximate composition, calcium content, and antioxidant properties were also determined for the best formulation. 4% leaves powder bread was the most preferred by the panelists followed by control bread, and the least preferred was being 8% leaves powder bread. 4% leaves powder bread had significantly higher value of DPPH radical scavenging capacity (8.05 mg TE/100g), total phenolic content (12.88 mg GAE/100g) and total flavonoid content (13.26 mg QE/100g) compared to control bread (1.38 mg TE/100g, 8.17 mg GAE/100g, and 8.77 mg QE/100g respectively). Besides, 4% leaves powder bread also showed higher in calcium content and total dietary fiber compared to control bread. Kenaf leaves powder is suitable to be used as a source of natural antioxidant for fortification and nutrient improver in bread.

Keywords: dietary fibre, calcium, total phenolic content, total flavonoid content

Procedia PDF Downloads 93
10 Determination of Alkali Treatment Conditions Effects That Influence the Variability of Kenaf Fiber Mean Cross-Sectional Area

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Shahruddin Mahzan Mohd Zin, Saparudin Ariffin

Abstract:

Fiber cross-sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross-sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions that influence kenaf bast fiber mean cross-sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at two and ten w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minute. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. The cross-sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross-sectional area was reduced 6.77% to 29.88% after alkali treatment. From the analysis of variance, it shows that the interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction that was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated the decrease pattern of variability when the level changed from lower to the higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes.

Keywords: natural fiber, kenaf bast fiber bundles, alkali treatment, cross-sectional area

Procedia PDF Downloads 391
9 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber

Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo

Abstract:

Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.

Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties

Procedia PDF Downloads 324
8 The Effect of Alkaline Treatment on Tensile Strength and Morphological Properties of Kenaf Fibres for Yarn Production

Authors: A. Khalina, K. Shaharuddin, M. S. Wahab, M. P. Saiman, H. A. Aisyah

Abstract:

This paper investigates the effect of alkali treatment and mechanical properties of kenaf (Hibiscus cannabinus) fibre for the development of yarn. Two different fibre sources are used for the yarn production. Kenaf fibres were treated with sodium hydroxide (NaOH) in the concentration of 3, 6, 9, and 12% prior to fibre opening process and tested for their tensile strength and Young’s modulus. Then, the selected fibres were introduced to fibre opener at three different opening processing parameters; namely, speed of roller feeder, small drum, and big drum. The diameter size, surface morphology, and fibre durability towards machine of the fibres were characterized. The results show that concentrations of NaOH used have greater effects on fibre mechanical properties. From this study, the tensile and modulus properties of the treated fibres for both types have improved significantly as compared to untreated fibres, especially at the optimum level of 6% NaOH. It is also interesting to highlight that 6% NaOH is the optimum concentration for the alkaline treatment. The untreated and treated fibres at 6% NaOH were then introduced to fibre opener, and it was found that the treated fibre produced higher fibre diameter with better surface morphology compared to the untreated fibre. Higher speed parameter during opening was found to produce higher yield of opened-kenaf fibres.

Keywords: alkaline treatment, kenaf fibre, tensile strength, yarn production

Procedia PDF Downloads 218
7 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites

Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash

Abstract:

When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.

Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test

Procedia PDF Downloads 42
6 Production and Characterization of Nanofibrillated Cellulose from Kenaf Core (Hibiscus cannabinus) via Ultrasonic

Authors: R. Rosazley, M. A. Izzati, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. A. Ainun Zuriyati

Abstract:

This study focuses on production and characterizations of nanofibrillated cellulose (NFC) from kenaf core. NFC was produced by employing ultrasonic treatments in aqueous solution. Field emission scanning electron microscope (FESEM) and scanning transmission electron microscopy (STEM) were used to study the size and morphology structure. The chemical and characteristics of the cellulose and NFC were studied using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscometer. Degrees of polymerization (DP) of cellulose and NFC were obtained via viscosity value. Results showed that 5 to 47 nm diameters of fibrils were measured. Moreover, the thermal stability of the NFC was increased as compared to the cellulose that confirmed by TGA analysis. It was also found that NFC had higher crystallinity and lower viscosity than the cellulose which were measured by XRD and viscometer, respectively. The NFC characteristics have enormous prospect related to bio-nanocomposite.

Keywords: crystallinity, kenaf core, nanofibrillated cellulose, ultrasonic

Procedia PDF Downloads 294
5 Mechanical Performances and Viscoelastic Behaviour of Starch-Grafted-Polypropylene/Kenaf Fibres Composites

Authors: A. Hamma, A. Pegoretti

Abstract:

The paper focuses on the evaluation of mechanical performances and viscoelastic behaviour of starch-grafted-PP reinforced with kenaf fibres. Investigations were carried out on composites prepared by melt compounding and compression molding. Two aspects have been taken into account, the effects of various fibres loading rates (10, 20 and 30 wt.%) and the fibres aspect ratios (L/D=30 and 160). Good fibres/matrix interaction has been evidenced by SEM observations. However, processing induced variation of fibre length quantified by optical microscopy observations. Tensile modulus and ultimate properties, hardness and tensile impact stress, were found to remarkably increase with fibre loading. Moreover, short term tensile creep tests have proven that kenaf fibres improved considerably the creep stability. Modelling of creep behaviour by a four parameter Burger model was successfully used. An empirical equation involving Halpin-Tsai semi empirical model was also used to predict the elastic modulus of composites.

Keywords: mechanical properties, creep, fibres, thermoplastic composites, starch-grafted-PP

Procedia PDF Downloads 226
4 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 333
3 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glass, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000 kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4 %. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: foamed concrete, fibres, durability, construction, geological engineering

Procedia PDF Downloads 414
2 Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 209
1 Mechanical Analysis of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the field of material engineering, composites are in great concern for their nonbiodegradability and their cost. In order to reduce its cost and weight, plant derived fibers witnessed miraculous triumph. Plant fibers can be of different types like seed fibers, blast fibers, leaf fibers, etc. Composites can be reinforced with exclusively one type of natural fiber or also can be combined with two or more different types of natural or synthetic fibers to boost up their specific properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes like HDPE, LDPE, PET, epoxy, etc. Surface treatments like alkaline treatment in different concentrations were conducted to improve its adhesion and compatibility towards hydrophobic polymer matrix i.e. epoxy resin. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of fiber loading and surface treatments have been studied for different mechanical properties i.e. tensile strength, flexural strength and impact properties of pineapple leaf fiber composites. Analysis of fiber morphology has also been studied using FTIR, XRD. Scanning electron microscopy has also been used to study and compare the morphology of untreated and treated fibers. Also, the fracture surface has been reviewed comparing the reported literature of other eminent researchers of this field.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 228