Search results for: inter satellite link (ISL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2854

Search results for: inter satellite link (ISL)

2794 Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions

Authors: P. Brunne, K. Ciechowska, K. Gajc, K. Gawin, M. Gawin, M. Kania, J. Kindracki, Z. Kusznierewicz, D. Pączkowska, F. Perczyński, K. Pilarski, D. Rafało, E. Ryszawa, M. Sobiecki, I. Uwarowa

Abstract:

Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites.

Keywords: cubesat, deorbitation, sail, space, debris

Procedia PDF Downloads 264
2793 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation

Authors: Feng Yin

Abstract:

Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.

Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation

Procedia PDF Downloads 249
2792 Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model

Authors: Toby Li, Julian Zhu

Abstract:

In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment.

Keywords: Starlink, collision probability, debris, geometry model

Procedia PDF Downloads 45
2791 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: orbit determination, STK, Matlab-GUI, satellite tracking

Procedia PDF Downloads 237
2790 The Effect of Ingredients Mixing Sequence in Rubber Compounding on the Formation of Bound Rubber and Cross-Link Density of Natural Rubber

Authors: Abu Hasan, Rochmadi, Hary Sulistyo, Suharto Honggokusumo

Abstract:

This research purpose is to study the effect of Ingredients mixing sequence in rubber compounding onto the formation of bound rubber and cross link density of natural rubber and also the relationship of bound rubber and cross link density. Analysis of bound rubber formation of rubber compound and cross link density of rubber vulcanizates were carried out on a natural rubber formula having masticated and mixing, followed by curing. There were four methods of mixing and each mixing process was followed by four mixing sequence methods of carbon black into the rubber. In the first method of mixing sequence, rubber was masticated for 5 min and then rubber chemicals and carbon black N 330 were added simultaneously. In the second one, rubber was masticated for 1 min and followed by addition of rubber chemicals and carbon black N 330 simultaneously using the different method of mixing then the first one. In the third one, carbon black N 660 was used for the same mixing procedure of the second one, and in the last one, rubber was masticated for 3 min, carbon black N 330 and rubber chemicals were added subsequently. The addition of rubber chemicals and carbon black into masticated rubber was distinguished by the sequence and time allocated for each mixing process. Carbon black was added into two stages. In the first stage, 10 phr was added first and the remaining 40 phr was added later along with oil. In the second one to the fourth one, the addition of carbon black in the first and the second stage was added in the phr ratio 20:30, 30:20, and 40:10. The results showed that the ingredients mixing process influenced bound rubber formation and cross link density. In the three methods of mixing, the bound rubber formation was proportional with crosslink density. In contrast in the fourth one, bound rubber formation and cross link density had contradictive relation. Regardless of the mixing method operated, bound rubber had non linear relationship with cross link density. The high cross link density was formed when low bound rubber formation. The cross link density became constant at high bound rubber content.

Keywords: bound-rubber, cross-link density, natural rubber, rubber mixing process

Procedia PDF Downloads 372
2789 Graphene-Based Reconfigurable Lens Antenna for 5G/6G and Satellite Networks

Authors: André Lages, Victor Dmitriev, Juliano Bazzo, Gianni Portela

Abstract:

This work evaluates the feasibility of the graphene application to perform as a wideband reconfigurable material for lens antennas in 5G/6G and satellite applications. Based on transformation optics principles, the electromagnetic waves can be efficiently guided by modifying the effective refractive index. Graphene behavior can range between a lossy dielectric and a good conductor due to the variation of its chemical potential bias, thus arising as a promising solution for electromagnetic devices. The graphene properties and a lens antenna comprising multiples layers and periodic arrangements of graphene patches were analyzed using full-wave simulations. A dipole directivity was improved from 7 to 18.5 dBi at 29 GHz. In addition, the realized gain was enhanced 7 dB across a 14 GHz bandwidth within the Ka/5G band.

Keywords: 5G/6G, graphene, lens, reconfigurable, satellite

Procedia PDF Downloads 111
2788 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: building detection, shadow detection, landscape generation, label, partitioning, very high resolution (VHR) satellite imagery

Procedia PDF Downloads 286
2787 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 372
2786 Behaviour and Design of the Candle-Loc Inter-Module Connection in High-Rise Modular Buildings under Seismic Action

Authors: Alessandro Marzucchini, Yie Sue Chua, Andrew Lian, Richard Shonn Mills

Abstract:

A unique, fast and easy installed inter-module connection named Candle-Loc was developed and applied in several high-rise steel and reinforced concrete modular buildings in Singapore and Hong Kong, China. However, its effect on the global behaviour of modular buildings in high seismic zones was not studied. Therefore, the design concept and the structural performance of each component in this connection was investigated through analytical approach. Response spectrum, linear time-history, and nonlinear time-history analyses were conducted to investigate the effects of the different joint models of the Candle-Loc in the global analysis of high-rise buildings under high seismic loads. It is found that it is important to assess the level of plasticity developed in the inter-module connection under high seismic loads. The ductility of the lateral force resisting system influences the amount of load taken by the inter-module connections.

Keywords: high-rise, inter-module connection, nonlinear, seismic, time-history analysis

Procedia PDF Downloads 109
2785 Asynchronous Low Duty Cycle Media Access Control Protocol for Body Area Wireless Sensor Networks

Authors: Yasin Ghasemi-Zadeh, Yousef Kavian

Abstract:

Wireless body area networks (WBANs) technology has achieved lots of popularity over the last decade with a wide range of medical applications. This paper presents an asynchronous media access control (MAC) protocol based on B-MAC protocol by giving an application for medical issues. In WBAN applications, there are some serious problems such as energy, latency, link reliability (quality of wireless link) and throughput which are mainly due to size of sensor networks and human body specifications. To overcome these problems and improving link reliability, we concentrated on MAC layer that supports mobility models for medical applications. In the presented protocol, preamble frames are divided into some sub-frames considering the threshold level. Actually, the main reason for creating shorter preambles is the link reliability where due to some reasons such as water, the body signals are affected on some frequency bands and causes fading and shadowing on signals, therefore by increasing the link reliability, these effects are reduced. In case of mobility model, we use MoBAN model and modify that for some more areas. The presented asynchronous MAC protocol is modeled by OMNeT++ simulator. The results demonstrate increasing the link reliability comparing to B-MAC protocol where the packet reception ratio (PRR) is 92% also covers more mobility areas than MoBAN protocol.

Keywords: wireless body area networks (WBANs), MAC protocol, link reliability, mobility, biomedical

Procedia PDF Downloads 338
2784 Tourism Satellite Account: Approach and Information System Development

Authors: Pappas Theodoros, Mihail Diakomihalis

Abstract:

Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors and which should be observed and measured to reveal, thus, the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article introduces a system of TSA information that encompasses all the works of the TSA, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer insights into the development and implementation of TSA.

Keywords: tourism satellite account, information system, data-based tourist account, relation database

Procedia PDF Downloads 39
2783 The Response of LCC to DC System Faults and HVDC Re-Establishment

Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine

Abstract:

As every power systems short circuit failure can occur for HVDC at the DC link. So, the power devices should be protected against over heath produced by this over-current. This can be achieved through the power switchers or fast breaker. After short circuit the system is unable to restart, only after a time delay, because of the potential distribution along the DC link line. An appropriate fast and safety control is proposed and tested successfully. The detailed development and discussion of these faults is presented in this paper.

Keywords: HVDC, DC link, switchers, short circuit, faults

Procedia PDF Downloads 540
2782 Load Maximization of Two-Link Flexible Manipulator Using Suppression Vibration with Piezoelectric Transducer

Authors: Hamidreza Heidari, Abdollah Malmir Nasab

Abstract:

In this paper, the energy equations of a two-link flexible manipulator were extracted using the Euler-Bernoulli beam hypotheses. Applying Assumed mode and considering some finite degrees of freedom, we could obtain dynamic motions of each manipulator using Euler-Lagrange equations. Using its claws, the robots can carry a certain load with the ached control of vibrations for robot flexible links during the travelling path using the piezoceramics transducer; dynamic load carrying capacity increase. The traveling path of flexible robot claw has been taken from that of equivalent rigid manipulator and coupled; therefore to avoid the role of Euler-Bernoulli beam assumptions and linear strains, material and physical characteristics selection of robot cause deflection of link ends not exceed 5% of link length. To do so, the maximum load carrying capacity of robot is calculated at the horizontal plan. The increasing of robot load carrying capacity with vibration control is 53%.

Keywords: flexible link, DLCC, active control vibration, assumed mode method

Procedia PDF Downloads 364
2781 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 112
2780 Intended and Unintended Outcomes of Partnerships at the Local Level in Slovakia

Authors: Daniel Klimovský

Abstract:

Slovakia belongs to the most fragmented countries if one looks at its local government structure. The Slovak central governments implemented both broad devolution and fiscal decentralization some decades ago. However, neither territorial consolidation nor size categorization of local competences and powers has been implemented yet. Taking this fact into account, it is clear that the local governments are challenged not only by their citizens as customers but also by effectiveness as well as efficiency of delivered services. The paper is focused on behavior of the local governments in Slovakia and their approaches towards other local partners, including other local governments. Analysis of set of interviews shows that inter-municipal cooperation is the most common local partnership in Slovakia, but due to diversity of the local governments, this kind of cooperation leads to both intended and unintended outcomes. While in many cases the local governments are more efficient as well as effective in delivery of local services thanks to inter-municipal cooperation, there are many cases where inter-municipal cooperation fails, and it brings rather questionable or even negative outcomes.

Keywords: local governments, local partnerships, inter-municipal cooperation, delivery of local services

Procedia PDF Downloads 225
2779 Effect of Robot Configuration Parameters, Masses and Friction on Painlevé Paradox for a Sliding Two-Link (P-R) Robot

Authors: Hassan Mohammad Alkomy, Hesham Elkaranshawy, Ahmed Ibrahim Ashour, Khaled Tawfik Mohamed

Abstract:

For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is the reason of a wide range of bouncing motion, observed during sliding of robotic manipulators on rough surfaces. In this research work, the existence of the paradox zone during the sliding motion of a two-link (P-R) robotic manipulator with a unilateral constraint is investigated. Parametric study is performed to investigate the effect of friction, link-length ratio, total height and link-mass ratio on the paradox zone.

Keywords: dynamical system, friction, multibody system, painlevé paradox, robotic systems, sliding robots, unilateral constraint

Procedia PDF Downloads 420
2778 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 49
2777 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing

Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar

Abstract:

The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.

Keywords: hyperspectral, NDNI, nitrogen concentration, regression value

Procedia PDF Downloads 264
2776 The Optical OFDM Equalization Based on the Fractional Fourier Transform

Authors: A. Cherifi, B. S. Bouazza, A. O. Dahman, B. Yagoubi

Abstract:

Transmission over Optical channels will introduce inter-symbol interference (ISI) as well as inter-channel (or inter-carrier) interference (ICI). To decrease the effects of ICI, this paper proposes equalizer for the Optical OFDM system based on the fractional Fourier transform (FrFFT). In this FrFT-OFDM system, traditional Fourier transform is replaced by fractional Fourier transform to modulate and demodulate the data symbols. The equalizer proposed consists of sampling the received signal in the different time per time symbol. Theoretical analysis and numerical simulation are discussed.

Keywords: OFDM, fractional fourier transform, internet and information technology

Procedia PDF Downloads 370
2775 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.

Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm

Procedia PDF Downloads 297
2774 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran

Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani

Abstract:

The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.

Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation

Procedia PDF Downloads 203
2773 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 398
2772 Thermal Vacuum Chamber Test Result for CubeSat Transmitter

Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad

Abstract:

CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.

Keywords: communication system, CubeSat, SNR, UHF transmitter

Procedia PDF Downloads 230
2771 Crater Pattern on the Moon and Origin of the Moon

Authors: Xuguang Leng

Abstract:

The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth.

Keywords: moon, origin, crater, pattern

Procedia PDF Downloads 59
2770 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 400
2769 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 153
2768 Performance Evaluation of Arrival Time Prediction Models

Authors: Bin Li, Mei Liu

Abstract:

Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.

Keywords: bus transit, arrival time prediction, link-based, path-based

Procedia PDF Downloads 331
2767 The Mediatory Role of Innovation in the Link between Social and Financial Performance

Authors: Bita Mashayekhi, Amin Jahangard, Milad Samavat, Saeid Homayoun

Abstract:

In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation.

Keywords: ESG, financial performance, innovation, social performance, structural equation modeling

Procedia PDF Downloads 58
2766 Collocation Assessment between GEO and GSO Satellites

Authors: A. E. Emam, M. Abd Elghany

Abstract:

The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09 ° E/W and +/- 0.07 ° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.

Keywords: satellite, GEO, collocation, risk assessment

Procedia PDF Downloads 364
2765 The Effect of Implant Design on the Height of Inter-Implant Bone Crest: A 10-Year Retrospective Study of the Astra Tech Implant and Branemark Implant

Authors: Daeung Jung

Abstract:

Background: In case of patients with missing teeth, multiple implant restoration has been widely used and is inevitable. To increase its survival rate, it is important to understand the influence of different implant designs on inter-implant crestal bone resorption. There are several implant systems designed to minimize loss of crestal bone, and the Astra Tech and Brånemark Implant are two of them. Aim/Hypothesis: The aim of this 10-year study was to compare the height of inter-implant bone crest in two implant systems; the Astra Tech and the Brånemark implant system. Material and Methods: In this retrospective study, 40 consecutively treated patients were utilized; 23 patients with 30 sites for Astra Tech system and 17 patients with 20 sites for Brånemark system. The implant restoration was comprised of splinted crown in partially edentulous patients. Radiographs were taken immediately after 1st surgery, at impression making, at prosthetics setting, and annually after loading. Lateral distance from implant to bone crest, inter-implant distance was gauged, and crestal bone height was measured from the implant shoulder to the first bone contact. Calibrations were performed with known length of thread pitch distance for vertical measurement, and known diameter of abutment or fixture for horizontal measurement using ImageJ. Results: After 10 years, patients treated with Astra Tech implant system demonstrated less inter-implant crestal bone resorption when implants had a distance of 3mm or less between them. In cases of implants that had a greater than 3 mm distance between them, however, there appeared to be no statistically significant difference in crestal bone loss between two systems. Conclusion and clinical implications: In the situation of partially edentulous patients planning to have more than two implants, the inter-implant distance is one of the most important factors to be considered. If it is impossible to make sure of having sufficient inter-implant distance, the implants with less micro gap in the fixture-abutment junction, less traumatic 2nd surgery approach, and the adequate surface topography would be choice of appropriate options to minimize inter-implant crestal bone resorption.

Keywords: implant design, crestal bone loss, inter-implant distance, 10-year retrospective study

Procedia PDF Downloads 124