Search results for: injector installation angle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1916

Search results for: injector installation angle

1766 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers

Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati

Abstract:

Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.

Keywords: cocoa bean shell, paper, beeswax, coating, contact angle

Procedia PDF Downloads 112
1765 Particle Filter Implementation of a Non-Linear Dynamic Fall Model

Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.

Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter

Procedia PDF Downloads 173
1764 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number

Authors: Amit K. Singh, Subhankar Sen

Abstract:

The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.

Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element

Procedia PDF Downloads 302
1763 Angular Correlation and Independent Particle Model in Two-Electron Atomic Systems

Authors: Tokuei Sako

Abstract:

The ground and low-lying singly-excited states of He and He-like atomic ions have been studied by the Full Configuration Interaction (FCI) method focusing on the angular correlation between two electrons in the studied systems. The two-electron angle density distribution obtained by integrating the square-modulus of the FCI wave function over the coordinates other than the interelectronic angle shows a distinct trend between the singlet-triplet pair of states for different values of the nuclear charge Zn. Further, both of these singlet and triplet distributions tend to show an increasingly stronger dependence on the interelectronic angle as Zn increases, in contrast to the well-known fact that the correlation energy approaches towards zero for increasing Zn. This controversial observation has been rationalized on the basis of the recently introduced concept of so-called conjugate Fermi holes.

Keywords: He-like systems, angular correlation, configuration interaction wave function, conjugate Fermi hole

Procedia PDF Downloads 382
1762 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table

Authors: Anthony El Hachem, Hosam Salman

Abstract:

Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.

Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing

Procedia PDF Downloads 156
1761 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: darrieus wind turbine, VAWT, NACA airfoil, performance

Procedia PDF Downloads 337
1760 Computational Analysis of Cavity Effect over Aircraft Wing

Authors: P. Booma Devi, Dilip A. Shah

Abstract:

This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.

Keywords: lift, drag reduce, square dimple, triangle dimple, enhancement of stall angle

Procedia PDF Downloads 301
1759 Solid Angle Approach to Quantify the Shape of Daughter Cavity in Drying Nano Colloidal Sessile Droplets

Authors: Rishabh Hans, Saksham Sharma

Abstract:

Drying of a sessile droplet imbibed with colloidal solution is a complex process in many aspects. Till now, most of the work revolves around; conditions for buckling onset, post-buckling effects, nature of change of droplet shape etc. In this work, we are determining the shape of daughter cavity (DC) formed during post-buckling onset, a less explored stage, and its relationship with experimental parameters. We have introduced solid angle as a special parameter that can quantify the shape of DC at any instant. It facilitates us to compare the shape while experimenting across different substrate types, droplet sizes and particle concentration. Furthermore, the angular location of ‘weak spot’ on the periphery of droplet, which marks the initiation of cavity growth, varies in different conditions. To solve this problem, we have evaluated the deflection angle of weak spots w.r.t. the vertical axis going through the middle of droplet. Subsequently, the solid angle subtended by DC is analyzed about that inclined axis. Finally, results of analysis allude that increasing colloidal concentration has inverse effect on the growth rate of cavity’s shape. Moreover, the cap radius of DC is observed lower for high PLR which makes the capillary pressure higher and thus tougher to expedite cavity formation relatively. This analysis can be helpful in further studies to relate the shape, deflection angle, growth rate of daughter cavity to the type of droplet crust formed in the end. Examining DC stage shall add another layer to nano-colloidal research which aims to influence many industrial applications like patterning, coatings, drug delivery, food processing etc.

Keywords: buckling of sessile droplets, daughter cavity, droplet evaporation, nanoporous shell formation, solid angle

Procedia PDF Downloads 243
1758 The Interventricular Septum as a Site for Implantation of Electrocardiac Devices - Clinical Implications of Topography and Variation in Position

Authors: Marcin Jakiel, Maria Kurek, Karolina Gutkowska, Sylwia Sanakiewicz, Dominika Stolarczyk, Jakub Batko, Rafał Jakiel, Mateusz K. Hołda

Abstract:

Proper imaging of the interventricular septum during endocavital lead implantation is essential for successful procedure. The interventricular septum is located oblique to the 3 main body planes and forms angles of 44.56° ± 7.81°, 45.44° ± 7.81°, 62.49° (IQR 58.84° - 68.39°) with the sagittal, frontal and transverse planes, respectively. The optimal left anterior oblique (LAO) projection is to have the septum aligned along the radiation beam and will be obtained for an angle of 53.24° ± 9,08°, while the best visualization of the septal surface in the right anterior oblique (RAO) projection is obtained by using an angle of 45.44° ± 7.81°. In addition, the RAO angle (p=0.003) and the septal slope to the transverse plane (p=0.002) are larger in the male group, but the LAO angle (p=0.003) and the dihedral angle that the septum forms with the sagittal plane (p=0.003) are smaller, compared to the female group. Analyzing the optimal RAO angle in cross-sections lying at the level of the connections of the septum with the free wall of the right ventricle from the front and back, we obtain slightly smaller angle values, i.e. 41.11° ± 8.51° and 43.94° ± 7.22°, respectively. As the septum is directed leftward in the apical region, the optimal RAO angle for this area decreases (16.49° ± 7,07°) and does not show significant differences between the male and female groups (p=0.23). Within the right ventricular apex, there is a cavity formed by the apical segment of the interventricular septum and the free wall of the right ventricle with a depth of 12.35mm (IQR 11.07mm - 13.51mm). The length of the septum measured in longitudinal section, containing 4 heart cavities, is 73.03mm ± 8.06mm. With the left ventricular septal wall formed by the interventricular septum in the apical region at a length of 10.06mm (IQR 8.86 - 11.07mm) already lies outside the right ventricle. Both mentioned lengths are significantly larger in the male group (p<0.001). For proper imaging of the septum from the right ventricular side, an oblique position of the visualization devices is necessary. Correct determination of the RAO and LAO angle during the procedure allows to improve the procedure performed, and possible modification of the visual field when moving in the anterior, posterior and apical directions of the septum will avoid complications. Overlooking the change in the direction of the interventricular septum in the apical region and a significant decrease in the RAO angle can result in implantation of the lead into the free wall of the right ventricle with less effective pacing and even complications such as wall perforation and cardiac tamponade. The demonstrated gender differences can also be helpful in setting the right projections. A necessary addition to the analysis will be a description of the area of the ventricular septum, which we are currently working on using autopsy material.

Keywords: anatomical variability, angle, electrocardiological procedure, intervetricular septum

Procedia PDF Downloads 70
1757 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 205
1756 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis

Procedia PDF Downloads 416
1755 Patella Proximo-Distal Displacement Following Modified Maquet Technique

Authors: T. Giansetto, E. Pierrot, P. Picavet, M. Lefebvre, S. Claeys, M. Balligand

Abstract:

Objective: To test the low sensitivity of the Allberg and Miles index to the stifle opening angle, to evaluate the displacement of the patella after a Modified Maquet Technique using this index, and to assess the incidence of patella luxation post-Modified Maquet Technique in dogs. Materials and methods: Medical records were reviewed from 2012 to 2017. Allberg Miles index was determined for each stifle pre and post-operatively, as well as the stifle joint opening of each case. The occurrence of patella luxation was recorded. Results: 137 stifles on 116 dogs were reviewed. The stifle opening angle did not influence the Allberg Miles index (p=0.41). Pre and post-operative index showed a distal displacement of the patella after a Modified Maquet Procedure, especially at a 90° of stifle opening angle. Only 1/137 cases demonstrated patella luxation after the surgery. Conclusion: The Allberg Miles radiographic index is largely independent of the stifle opening angle and can be used to assess the proximo-distal position of the patella in relation to the femoral trochlear groove. If patella baja is clearly induced by the Modified Maquet Technique, the latter does not seem to predispose patients to post-operative patella luxation in a large variety of dog breeds.

Keywords: rlca, modified Maquet technique, patella luxation, orthopedic

Procedia PDF Downloads 92
1754 Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+

Authors: Hsien Hao Teng

Abstract:

This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing.

Keywords: lambda wing, wall function, turbulence model, computational fluid dynamics

Procedia PDF Downloads 209
1753 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine

Authors: G. Barański, P. Kacejko, M. Wendeker

Abstract:

The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: algorithm, combustion process, radial engine, spark plug

Procedia PDF Downloads 261
1752 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach

Authors: Mortez Alijani, Anas Osman

Abstract:

Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.

Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point

Procedia PDF Downloads 124
1751 Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution

Authors: Abbasali Abouei Mehrizi, Hao Wang

Abstract:

The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation.

Keywords: advancing, condensation, microscopic contact angle, partial wetting

Procedia PDF Downloads 266
1750 Numerical Predictions of Trajectory Stability of a High-Speed Water-Entry and Water-Exit Projectile

Authors: Lin Lu, Qiang Li, Tao Cai, Pengjun Zhang

Abstract:

In this study, a detailed analysis of trajectory stability and flow characteristics of a high-speed projectile during the water-entry and water-exit process has been investigated numerically. The Zwart-Gerber-Belamri (Z-G-B) cavitation model and the SST k-ω turbulence model based on the Reynolds Averaged Navier-Stokes (RANS) method are employed. The numerical methodology is validated by comparing the experimental photograph of cavitation shape and the experimental underwater velocity with the numerical simulation results. Based on the numerical methodology, the influences of rotational speed, water-entry and water-exit angle of the projectile on the trajectory stability and flow characteristics have been carried out in detail. The variation features of projectile trajectory and total resistance have been conducted, respectively. In addition, the cavitation characteristics of water-entry and water-exit have been presented and analyzed. Results show that it may not be applicable for the water-entry and water-exit to achieve the projectile stability through the rotation of projectile. Furthermore, there ought to be a critical water-entry angle for the water-entry stability of practical projectile. The impact of water-exit angle on the trajectory stability and cavity phenomenon is not as remarkable as that of the water-entry angle.

Keywords: cavitation characteristics, high-speed projectile, numerical predictions, trajectory stability, water-entry, water-exit

Procedia PDF Downloads 103
1749 Assessment of the Photovoltaic and Solar Thermal Potential Installation Area on Residential Buildings: Case Study of Amman, Jordan

Authors: Jenan Abu Qadourah

Abstract:

The suitable surface areas for the ST and PV installation are determined based on incident solar irradiation on different surfaces, shading analysis and suitable architectural area for integration considering limitations due to the constructions, available surfaces area and use of the available surfaces for other purposes. The incident solar radiation on the building surfaces and the building solar exposure analysis of the location of Amman, Jordan, is performed with Autodesk Ecotect analysis 2011 simulation software. The building model geometry within the typical urban context is created in “SketchUp,” which is then imported into Ecotect. The hourly climatic data of Amman, Jordan selected are the same ones used for the building simulation in IDA ICE and Polysun simulation software.

Keywords: photovoltaic, solar thermal, solar incident, simulation, building façade, solar potential

Procedia PDF Downloads 101
1748 Study of The Ballistic Impact at Low Speed on Angle-Ply Fibrous Structures

Authors: Daniel Barros, Carlos Mota, Raul Fangueiro, Pedro Rosa, Gonçalo Domingos, Alfredo Passanha, Norberto Almeida

Abstract:

The main aim of the work was to compare the ballistic performance of developed composites using different types of fiber woven fabrics [0,90] and different layers orientation (Angle-ply). The ballistic laminate composites were developed using E-glass, S-glass and aramid fabrics impregnated with thermosetting epoxy resin and using different layers orientation (0,0)º and (0,15)º. The idea of the study is to compare the ballistic performance of each laminate produced by studying the velocity loss of the fragment fired into the laminate surface. There are present some mechanical properties for laminates produced using the different types of fiber, where tensile, flexural and impact Charpy properties were studied. Overall, the angle-ply laminates produced using orientations of (0,15)º, despite the slight loss of mechanical properties compared to the (0,0)º orientation, presents better ballistic resistance and dissipation of energy, for lower ballistic impact velocities (under 290 m/s-1). After treatment of ballistic impact results, the S-Glass with (0,15)º laminate presents better ballistic perforce compared to the other combinations studied.

Keywords: ballistic impact, angle-ply, ballistic composite, s-glass fiber, aramid fiber, fabric fiber, energy dissipation, mechanical performance

Procedia PDF Downloads 172
1747 Effect of Design Parameters on a Two Stage Launch Vehicle Performance

Authors: Assem Sallam, Aly Elzahaby, Ahmed Makled, Mohamed Khalil

Abstract:

Change in design parameters of launch vehicle affects its overall flight path trajectory. In this paper, several design parameters are introduced to study their effect. Selected parameters are the launch vehicle mass, which is presented in the form of payload mass, the maximum allowable angle of attack the launch vehicle can withstand, the flight path angle that is predefined for the launch vehicle second stage, the required inclination and its effect on the launch azimuth and finally by changing the launch pad coordinate. Selected design parameters are studied for their effect on the variation of altitude, ground range, absolute velocity and the flight path angle. The study gives a general mean of adjusting the design parameters to reach the required launch vehicle performance.

Keywords: launch vehicle azimuth, launch vehicle trajectory, launch vehicle payload, launch pad location

Procedia PDF Downloads 283
1746 A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System

Authors: Tijing Cai, Qimeng Xu, Daijin Zhou

Abstract:

This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°.

Keywords: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit), BDS (BeiDou Navigation Satellite System), dual-antenna, integrated navigation

Procedia PDF Downloads 163
1745 Aesthetic Embodiment of the Visual and/or Non-Visual: the Becoming of a Spatial Installation Exhibition Influenced by Shamanic Healing

Authors: Ningfei Xiao, Simon Twose, Hannah Hopewell

Abstract:

In urban settings worldwide, artists and researchers have drawn from shamanic healing, providing insightful responses to the environment. This project is a transdisciplinary creative research project where architecture and art practice draw from shamanic healing and provide the potential to expand knowledge of public space and inspire more aesthetic explorations of public spatial visions. The research started from the encounters with the Ewengki/Evenki shaman tribe in settlement areas of northern China in 2019 and extended through the partnerships with Maori artists in Poneke Aotearoa, New Zealand, in 2023. Based on the learnings and collaborations with female indigenous tradition practitioners and the healing that the researcher received from the land, a spatial installation exhibition was developed in this project. Indigenous practices are intricately woven with contemporary technology, merging visuals, soundscapes, and other non-visual aesthetics influenced by the researcher's personal experiences of embodied shamanic healing with brainwave generative technology. This synthesis seeks to ritualize and reimagine future public spaces, encompassing streetscapes and greenscapes from China to Aotearoa, and fostering connections between urbanized human body, mind, spirit, and land. In doing so, the project presents a feminist posthuman inquiry into how individuals perceive materiality within the context of a future city. Grounded in creative research and embodied methodologies, this paper focuses on the conceptual and autoethnographic aspects of visual-non-visual aesthetics and their creative representation. Through the exploration of aesthetics beyond the visual realm within urban and spatial contexts, this project showcases the spatial installation exhibition as an example of shamanic influence and related response to public space through embodied artistry and transdisciplinary creative inquiry.

Keywords: aesthetic, embodiment, visual and/or non-visual, spatial installation, shamanic healing, public space

Procedia PDF Downloads 10
1744 Wind Power Assessment for Turkey and Evaluation by APLUS Code

Authors: Ibrahim H. Kilic, A. B. Tugrul

Abstract:

Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.

Keywords: APLUS, energy policy, renewable energy, wind power, Turkey

Procedia PDF Downloads 272
1743 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 348
1742 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite

Authors: Mohsen Farahat, Tsuyoshi Hirajima

Abstract:

Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.

Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy

Procedia PDF Downloads 215
1741 A Study on Establishing Criteria for Installation of Small Road Signs

Authors: Sang-KeunBaik, Kyu-Soo Chong, Joon-Yeop Na

Abstract:

This study attempts to reduce the wind load of road signs, improve roadside landscaping, and enhance the safety of road users by establishing criteria for the installation of small road signs. First, we derive the minimum font size that can be used on road signs according to the road’s design speed by considering the visibility and legibility of such road signs. We classify road junctions into eight types based on junction type (intersection, interchange, and expressway) and on the number of road lanes. Furthermore, we propose small sign alternatives, to which the minimum font size is applied, to be placed by each road junction. To verify the effects of the small signs, we implemented a 3D simulation road environment, to which the small road signs were applied, and performed experiments using the driving simulator targeting 50 drivers. The experiments compared and analyzed the effects, whether the driver proceeds to the desired exit and the average driving time, between the existing large road signs and the improved small road signs under the same road conditions and intersection type. We conducted a survey with the participants of the simulation experiment on the preference between graphical signs (large road signs) and exit-centric signs (small road signs). The results show that the participants prefer the exit-centric signs (60%) to the graphical signs (40%). We propose installation criteria for small road signs for intersections, interchanges, and expressways based on the results of the experiment and the survey.

Keywords: 3D simulation, driving simulator, legibility distance, minimum font size, small road signs

Procedia PDF Downloads 448
1740 Finite Element Modelling of Mechanical Connector in Steel Helical Piles

Authors: Ramon Omar Rosales-Espinoza

Abstract:

Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.

Keywords: piles, FEA, steel, mechanical connector

Procedia PDF Downloads 235
1739 Modeling of Cold Tube Drawing with a Fixed Plug by Finite Element Method and Determination of Optimum Drawing Parameters

Authors: E. Yarar, E. A. Guven, S. Karabay

Abstract:

In this study, a comprehensive simulation was made for the cold tube drawing with fixed plug. The cold tube drawing process is preferred due to its high surface quality and the high mechanical properties. In drawing processes applied to materials with low plastic deformability, cracks can occur on the surfaces and the process efficiency decreases. The aim of the work is to investigate the effects of different drawing parameters on drawing forces and stresses. In the simulations, optimum conditions were investigated for four different materials, Ti64Al4V, AA5052, AISI4140, and C365. One of the most important parameters for the cold drawing process is the die angle. Three dies were designed for the analysis with semi die angles of 5°, 10°, and 15°. Three different parameters were used for the friction coefficient between die and the material. In the simulations, reduction of area and the drawing speed is kept constant. Drawing is done in one pass. According to the simulation results, the highest drawing forces were obtained in Ti64Al4V. As the semi die angle increases, the drawing forces decrease. The change in semi die angle was most effective on Ti64Al4V. Increasing the coefficient of friction is another effect that increases the drawing forces. The increase in the friction coefficient has also increased in drawing stresses. The increase in die angle also increased the drawing stress distribution for the other three materials outside C365. According to the results of the analysis, it is found that the designed drawing die is suitable for drawing. The lowest drawing stress distribution and drawing forces were obtained for AA5052. Drawing die parameters have a direct effect on the results. In addition, lubricants used for drawing have a significant effect on drawing forces.

Keywords: cold tube drawing, drawing force, drawing stress, semi die angle

Procedia PDF Downloads 132
1738 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations

Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood

Abstract:

A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.

Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange

Procedia PDF Downloads 281
1737 Effect of Scarp Topography on Seismic Ground Motion

Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song

Abstract:

Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.

Keywords: scarp topography, ground motion, amplification factor, vertical incident wave

Procedia PDF Downloads 235