Search results for: immobilised biomass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1010

Search results for: immobilised biomass

950 Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method

Authors: Nais Pinta Adetya, H. Hadiyanto

Abstract:

Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration.

Keywords: extraction, lipid, osmotic shock, protein, ultrasound

Procedia PDF Downloads 321
949 Control of Indoor Carbon through Soft Approaches in Himachal Pradesh, India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

The mountainous regions are very crucial for a country because of their importance for weather, water supply, forests, and various other socio-economic benefits. But the increasing population and its demand for energy and infrastructure have contributed very high loadings of air pollution. Various activities such as cooking, heating, manufacturing, transport, etc. contribute various particulate and gaseous pollutants in the atmosphere. This study was focused upon indoor air pollution and was carried out in four rural households of the Baggi village located in the Hamirpur District of the Himachal Pradesh state. The residents of Baggi village use biomass as fuel for cooking on traditional stove (Chullah). The biomass types include wood (mainly Beul, Grewia Optiva), crop residue and dung cakes. This study aimed to determine the organic carbon (OC), elemental carbon (EC), major cations and anions in the indoor air of each household. During non-cooking hours, it was found that the indoor air contained OC and EC as low as 21µg/m³ and 17µg/m³ respectively. But during cooking hours (with biomass burning), the levels of OC and EC were raised significantly by 91.2% and 85.4% respectively. Then the residents were advised to switch over as per our soft approach options. In the first approach change, they were asked to prepare the meal partially on Chullah using biomass and partially with liquefied petroleum gas (LPG). By doing this change, a considerable reduction in OC (53.1%) and in EC (41.8%) was noticed. The second change of approach included the cooking of entire meal by using LPG. This resulted in the reduction of OC (84.1%) and EC (73.3%) as compared to the values obtained during cooking entirely with biomass. The carbonaceous aerosol levels were higher in the morning hours than in the evening hours because of more biomass burning activity in the morning. According to a general survey done with the residents, the study provided them an awareness about the air pollution and the harmful effects of biomass burning. Some of them correlated their ailments like weakened eyesight, fatigue and respiratory problems with indoor air pollution. This study demonstrated that by replacing biomass with clean fuel such as LPG, the indoor concentrations of EC and OC can be reduced substantially.

Keywords: biomass burning, carbonaceous aerosol, elemental carbon, organic carbon, LPG

Procedia PDF Downloads 90
948 Quantifying and Prioritizing Agricultural Residue Biomass Energy Potential in Ethiopia

Authors: Angesom Gebrezgabiher Tesfay, Afafaw Hailesilasie Tesfay, Muyiwa Samuel Adaramola

Abstract:

The energy demand boost in Ethiopia urges sustainable fuel options while it is mainly supplemented by traditional biomass and imported conventional fuels. To satisfy the deficiency it has to be sourced from all renewables. Thus identifying resources and estimating potential is vital to the sector. This study aims at an in-depth assessment to quantify, prioritize, and analyze agricultural residue biomass energy and related characteristic forms. Biomass use management and modernization seeks successive information and a clue about the resource quantity and characteristic. Five years of crop yield data for thirteen crops were collected. Conversion factors for their 20 residues are surveyed from the literature. Then residues amount potentially available for energy and their energy is estimated regional, crop-wise, residue-wise, and shares compared. Their potential value for energy is analyzed from two perspectives and prioritized. The gross potential is estimated to be 495PJ, equivalent to 12/17 million tons of oil/coal. At 30% collection efficiency, it is the same as conventional fuel import in 2018. Maize and sorghum potential and spatial availability are preeminent. Cotton and maize presented the highest potential values for energy from application and resource perspectives. Oromia and Amhara regions' contributions are the highest. The resource collection and application trends are required for future management that implicates a prospective study.

Keywords: crop residue, biomass potential, biomass resource, Ethiopian energy

Procedia PDF Downloads 73
947 Effect of Nitrogen Management on Nitrogen Uptake, Dry Matter Production and Some Yield Parameters

Authors: Mandana Tayefe, Ebrahim Amiri, Azin Nasrollah Zade

Abstract:

Effect of nitrogen (N) fertilizer levels on nitrogen uptake, dry matter production, yield and some yield components of rice (Hashemi, Kazemi, Khazar) was investigated in an experiment as factorial in RCBD with 3 replications in a paddy light soil at Guilan province, Iran, 2008-2009. In this experiment, four treatments including: N1-control (no N fertilizer); N2- 30 kgN/ha; N3- 60 kgN/ha; N4- 90 kgN/ha were compared. Results showed that total biomass (8386 kg/ha), grain yield (3662 kg/ha), panicles m-2 (235.8) and total grain per panicle (103.8) were reached the highest value at high nitrogen level. Among the varieties the highest total biomass (7734 kg/ha), grain yield (3414 kg/ha) and total grain per panicle (78.2) belonged to Khazar. Dry matter, total N uptake was varied in different cultivars significantly and Khazar variety had the highest contents. Total biomass and total N uptake was varied significantly with the increasement of the amount of nitrogen applied. As total biomass and total N uptake increased with increasing in N fertilizing.

Keywords: rice, nitrogen, nitrogen uptake, dry matter

Procedia PDF Downloads 381
946 Fluidised Bed Gasification of Multiple Agricultural Biomass-Derived Briquettes

Authors: Rukayya Ibrahim Muazu, Aiduan Li Borrion, Julia A. Stegemann

Abstract:

Biomass briquette gasification is regarded as a promising route for efficient briquette use in energy generation, fuels and other useful chemicals, however, previous research work has focused on briquette gasification in fixed bed gasifiers such as updraft and downdraft gasifiers. Fluidised bed gasifier has the potential to be effectively sized for medium or large scale. This study investigated the use of fuel briquettes produced from blends of rice husks and corn cobs biomass residues, in a bubbling fluidised bed gasifier. The study adopted a combination of numerical equations and Aspen Plus simulation software to predict the product gas (syngas) composition based on briquette's density and biomass composition (blend ratio of rice husks to corn cobs). The Aspen Plus model was based on an experimentally validated model from the literature. The results based on a briquette size of 32 mm diameter and relaxed density range of 500 to 650 kg/m3 indicated that fluidisation air required in the gasifier increased with an increase in briquette density, and the fluidisation air showed to be the controlling factor compared with the actual air required for gasification of the biomass briquettes. The mass flowrate of CO2 in the predicted syngas composition, increased with an increase in the air flow rate, while CO production decreased and H2 was almost constant. The H2/CO ratio for various blends of rice husks and corn cobs did not significantly change at the designed process air, but a significant difference of 1.0 for H2/CO ratio was observed at higher air flow rate, and between 10/90 to 90/10 blend ratio of rice husks to corn cobs. This implies the need for further understanding of biomass variability and hydrodynamic parameters on syngas composition in biomass briquette gasification.

Keywords: aspen plus, briquettes, fluidised bed, gasification, syngas

Procedia PDF Downloads 409
945 PLA Production from Multi Supply Lignocellulosic Biomass Residues: A Pathway for Agrifood Sector

Authors: Sónia Ribeiro, Diana Farinha, Hélia Sales, Rita Pontes, João Nunes

Abstract:

The demand and commitment to sustainability in the agrifood sector introduce news opportunities for new composite materials. Composite materials are emerging as a vital entity for the sustainable development. Polylactic acid (PLA) has been recognized as a potential polymer with attractive characteristics for agrifood sector applications. PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The production of PLA from lignocellulosic biomass residues matrix is a key option towards a sustainable and circular bioeconomy and a non-competitive application with feed and food sector. The Flui and BeirInov projects presents news developments in the production of PLA composites to value the Portuguese forest ecosystem, with high amount of lignocellulosic biomass residues and available. A performance production of lactic acid from lignocellulosic biomass undergoes a process of autohydrolysis, saccharification and fermentation, originating a lactic acid fermentation medium with a 72.27g.L-1 was obtained and a final purification of 72%. The high purification PLA from multi lignocellulosic residues representing one economic expensive process, and a new materials and application for the polymers and a combination with others types of composites matrix characteristic is the drive-up for this green market.

Keywords: polylactic acid, lignocellulosic biomass, agrifood, composite materials

Procedia PDF Downloads 45
944 Algae for Wastewater Treatment and CO₂ Sequestration along with Recovery of Bio-Oil and Value Added Products

Authors: P. Kiran Kumar, S. Vijaya Krishna, Kavita Verma1, V. Himabindu

Abstract:

Concern about global warming and energy security has led to increased biomass utilization as an alternative feedstock to fossil fuels. Biomass is a promising feedstock since it is abundant and cheap and can be transformed into fuels and chemical products. Microalgae biofuels are likely to have a much lower impact on the environment. Microalgae cultivation using sewage with industrial flue gases is a promising concept for integrated biodiesel production, CO₂ sequestration, and nutrients recovery. Autotrophic, Mixotrophic, and Heterotrophic are the three modes of cultivation for microalgae biomass. Several mechanical and chemical processes are available for the extraction of lipids/oily components from microalgae biomass. In organic solvent extraction methods, a prior drying of biomass and recovery of the solvent is required, which are energy-intensive. Thus, the hydrothermal process overcomes the drawbacks of conventional solvent extraction methods. In the hydrothermal process, the biomass is converted into oily components by processing in a hot, pressurized water environment. In this process, in addition to the lipid fraction of microalgae, other value-added products such as proteins, carbohydrates, and nutrients can also be recovered. In the present study was (Scenedesmus quadricauda) was isolated and cultivated in autotrophic, heterotrophic, and mixotrophically using sewage wastewater and industrial flue gas in batch and continuous mode. The harvested algae biomass from S. quadricauda was used for the recovery of lipids and bio-oil. The lipids were extracted from the algal biomass using sonication as a cell disruption method followed by solvent (Hexane) extraction, and the lipid yield obtained was 8.3 wt% with Palmitic acid, Oleic acid, and Octadeonoic acid as fatty acids. The hydrothermal process was also carried out for extraction of bio-oil, and the yield obtained was 18wt%. The bio-oil compounds such as nitrogenous compounds, organic acids, and esters, phenolics, hydrocarbons, and alkanes were obtained by the hydrothermal process of algal biomass. Nutrients such as NO₃⁻ (68%) and PO₄⁻ (15%) were also recovered along with bio-oil in the hydrothermal process.

Keywords: flue gas, hydrothermal process, microalgae, sewage wastewater, sonication

Procedia PDF Downloads 103
943 Biosorption of Nickel by Penicillium simplicissimum SAU203 Isolated from Indian Metalliferous Mining Overburden

Authors: Suchhanda Ghosh, A. K. Paul

Abstract:

Nickel, an industrially important metal is not mined in India, due to the lack of its primary mining resources. But, the chromite deposits occurring in the Sukinda and Baula-Nuasahi region of Odhisa, India, is reported to contain around 0.99% of nickel entrapped in the goethite matrix of the lateritic iron rich ore. Weathering of the dumped chromite mining overburden often leads to the contamination of the ground as well as the surface water with toxic nickel. Microbes inherent to this metal contaminated environment are reported to be capable of removal as well as detoxification of various metals including nickel. Nickel resistant fungal isolates obtained in pure form from the metal rich overburden were evaluated for their potential to biosorb nickel by using their dried biomass. Penicillium simplicissimum SAU203 was the best nickel biosorbant among the 20 fungi tested and was capable to sorbing 16.85 mg Ni/g biomass from a solution containing 50 mg/l of Ni. The identity of the isolate was confirmed using 18S rRNA gene analysis. The sorption capacity of the isolate was further standardized following Langmuir and Freundlich adsorption isotherm models and the results reflected energy efficient sorption. Fourier-transform infrared spectroscopy studies of the nickel loaded and control biomass in a comparative basis revealed the involvement of hydroxyl, amine and carboxylic groups in Ni binding. The sorption process was also optimized for several standard parameters like initial metal ion concentration, initial sorbet concentration, incubation temperature and pH, presence of additional cations and pre-treatment of the biomass by different chemicals. Optimisation leads to significant improvements in the process of nickel biosorption on to the fungal biomass. P. simplicissimum SAU203 could sorb 54.73 mg Ni/g biomass with an initial Ni concentration of 200 mg/l in solution and 21.8 mg Ni/g biomass with an initial biomass concentration of 1g/l solution. Optimum temperature and pH for biosorption was recorded to be 30°C and pH 6.5 respectively. Presence of Zn and Fe ions improved the sorption of Ni(II), whereas, cobalt had a negative impact. Pre-treatment of biomass with various chemical and physical agents has affected the proficiency of Ni sorption by P. simplicissimum SAU203 biomass, autoclaving as well as treatment of biomass with 0.5 M sulfuric acid and acetic acid reduced the sorption as compared to the untreated biomass, whereas, NaOH and Na₂CO₃ and Twin 80 (0.5 M) treated biomass resulted in augmented metal sorption. Hence, on the basis of the present study, it can be concluded that P. simplicissimum SAU203 has the potential for the removal as well as detoxification of nickel from contaminated environments in general and particularly from the chromite mining areas of Odhisa, India.

Keywords: nickel, fungal biosorption, Penicillium simplicissimum SAU203, Indian chromite mines, mining overburden

Procedia PDF Downloads 162
942 Variation of Phytoplankton Biomass in the East China Sea Based on MODIS Data

Authors: Yumei Wu, Xiaoyan Dang, Shenglong Yang, Shengmao Zhang

Abstract:

The East China Sea is one of four main seas in China, where there are many fishery resources. Some important fishing grounds, such as Zhousan fishing ground important to society. But the eco-environment is destroyed seriously due to the rapid developing of industry and economy these years. In this paper, about twenty-year satellite data from MODIS and the statistical information of marine environment from the China marine environmental quality bulletin were applied to do the research. The chlorophyll-a concentration data from MODIS were dealt with in the East China Sea and then used to analyze the features and variations of plankton biomass in recent years. The statistics method was used to obtain their spatial and temporal features. The plankton biomass in the Yangtze River estuary and the Taizhou region were highest. The high phytoplankton biomass usually appeared between the 88th day to the 240th day (end-March - August). In the peak time of phytoplankton blooms, the Taizhou islands was the earliest, and the South China Sea was the latest. The intensity and period of phytoplankton blooms were connected with the global climate change. This work give us confidence to use satellite data to do more researches about the China Sea, and it also provides some help for us to know about the eco-environmental variation of the East China Sea and regional effect from global climate change.

Keywords: the East China Sea, phytoplankton biomass, temporal and spatial variation, phytoplankton bloom

Procedia PDF Downloads 290
941 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 445
940 Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment

Authors: Lukáš Plošek, Jaroslav Hynšt, Jaroslav Záhora, Jakub Elbl, Antonín Kintl, Ivana Charousová, Silvia Kovácsová

Abstract:

Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water.

Keywords: nitrogen, compost, biomass production, lysimeter

Procedia PDF Downloads 315
939 Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis

Authors: Adilah Shariff, Radin Hakim, Nurhayati Abdullah

Abstract:

Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis.

Keywords: biochar, biomass, rubber wood, slow pyrolysis

Procedia PDF Downloads 283
938 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 477
937 Studies on the Ecology of Sea Grasses in Uppanar Estuary, South East Coast of India

Authors: N. Veerappan

Abstract:

Seasonal variations of sea grasses and physico-chemical parameters were studied from April 2011 to March 2012. Samples were collected in four different seasons, namely post monsoon (January-March), summer (April-June) premonsoon (July-September) and monsoon (October-December) from the Uppanar estuary. Three species of sea grass biomass were measured during the study period: Halophila ovalis (215.3 g/m2 - 38.5 g/m2), Halophila beccarii (75.2 g/m2 –30.1 g/m2) and Halodule pinifolia (65.4 g/m2 - 26.5 g/m2), respectively. Canonical Correspondence Analysis (CCA) showed that NO2, NO3 PO4, and SiO4 influenced Halophila ovalis biomass distribution, whereas for Halophila beccarii and Halodule pinifolia, atmospheric temperature, water temperature, salinity, pH and DO proved important.

Keywords: sea grass, species biomass, Uppanar estuary, water quality

Procedia PDF Downloads 359
936 Growth of Algal Biomass in Laboratory and in Pilot-Scale Algal Photobioreactors in the Temperate Climate of Southern Ireland

Authors: Linda A. O’Higgins, Astrid Wingler, Jorge Oliveira

Abstract:

The growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1 L) and compared to batch growth in sunlit modules (5–25 L) of the commercial Phytobag photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of a 10m2 pilot-scale photobioreactor, Phytobag (10,000 L). The analysis confirmed light limitation in all three photobioreactors. An additional limitation of biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.

Keywords: microalgae, batch cultivation, Chlorella vulgaris, Mathematical model, photobioreactor, scale-up

Procedia PDF Downloads 69
935 Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes

Authors: Stephen J. Mitchual, Kwasi Frimpong-Mensah, Nicholas A. Darkwa

Abstract:

The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied include the species density, gross calorific value, volatile matter, ash, organic carbon, N, H, S, Cu, Pb, As and Cd content. Fuel properties were determined using standard laboratory methods. The result indicates that the Gross Calorific Value (GCV) of the species ranged from 20.16 to 22.22 MJ/kg and they slightly varied from each other. Additionally, the GCV of the biomass materials were higher than that of other biomass materials like; wheat straw, rice straw, maize straw and sugar cane. The ash and volatile matter content varied from 0.6075 to 5.0407%, and 75.23% to 83.70% respectively. The overall rating of the properties of the six biomass materials suggest that Piptadenia africana has the best fuel property to be used as briquettes and Aningeria robusta the worse. This study therefore suggests that a holistic assessment of a biomass material needs to be done before selecting it for fuel purpose.

Keywords: ash content, briquette, calorific value, elemental composition, species, volatile matter

Procedia PDF Downloads 376
934 Coral Reef Fishes in the Marine Protected Areas in Southern Cebu, Philippines

Authors: Christine M. Corrales, Gloria G. Delan, Rachel Luz V. Rica, Alfonso S. Piquero

Abstract:

Marine protected areas (MPAs) in the study sites were established 8-13 years ago and are presently operational. This study was conducted to gather baseline information on the diversity, density and biomass of coral reef fishes inside and outside the four marine protected areas (MPAs) of Cawayan, Dalaguete; Daan-Lungsod Guiwang, Alcoy; North Granada, Boljoon and Sta. Cruz, Ronda. Coral reef fishes in the MPAs were identified using Fish Visual Census Method. Results of the t-test showed that the mean diversity (fish species/250m2) of target and non-target reef fish species found inside and outside the MPAs were significantly different. Density (ind./1,000m2) of target species inside and outside the MPAs showed no significant difference. Similarly, density of non-target species inside and outside the MPAs also showed no significant difference. This is an indication that fish density inside and outside the MPAs were more or less of the same condition. The mean biomass (kg/1,000m2) of target species inside and outside the MPAs showed a significant difference in contrast with non-target species inside and outside the MPAs which showed a no significant difference. Higher biomass of target fish species belonging to family Caesonidae (fusiliers) and Scaridae (parrotfishes) were commonly observed inside the MPAs. Results showed that fish species were more diverse with higher density and biomass inside the MPAs than the outside area. However, fish diversity and density were mostly contributed by non-target species. Hence, long term protection and management of MPAs is needed to effectively increase fish diversity, density and biomass specifically on target fish species.

Keywords: biomass, density, diversity, marine protected area, target fish species

Procedia PDF Downloads 360
933 Driving Forces of Net Carbon Emissions in a Tropical Dry Forest, Oaxaca, México

Authors: Rogelio Omar Corona-Núñez, Alma Mendoza-Ponce

Abstract:

The Tropical Dry Forest not only is one of the most important tropical ecosystems in terms of area, but also it is one of the most degraded ecosystems. However, little is known about the degradation impacts on carbon stocks, therefore in carbon emissions. There are different studies which explain its deforestation dynamics, but there is still a lack of understanding of how they correlate to carbon losses. Recently different authors have built current biomass maps for the tropics and Mexico. However, it is not clear how well they predict at the local scale, and how they can be used to estimate carbon emissions. This study quantifies the forest net carbon losses by comparing the potential carbon stocks and the different current biomass maps in the Southern Pacific coast in Oaxaca, Mexico. The results show important differences in the current biomass estimates with not a clear agreement. However, by the aggregation of the information, it is possible to infer the general patterns of biomass distribution and it can identify the driving forces of the carbon emissions. This study estimated that currently ~44% of the potential carbon stock estimated for the region is still present. A total of 6,764 GgC has been emitted due to deforestation and degradation of the forest at a rate of above ground biomass loss of 66.4 Mg ha-1. Which, ~62% of the total carbon emissions can be regarded as being due to forest degradation. Most of carbon losses were identified in places suitable for agriculture, close to rural areas and to roads while the lowest losses were accounted in places with high water stress and within the boundaries of the National Protected Area. Moreover, places not suitable for agriculture, but close to the coast showed carbon losses as a result of urban settlements.

Keywords: above ground biomass, deforestation, degradation, driving forces, tropical deciduous forest

Procedia PDF Downloads 148
932 Potential of Lactic Acid Bacteria for Cadmium Removal from Aqueous Solution

Authors: Ana M. Guzman, Claudia M. Rodriguez, Pedro F. B. Brandao, Elianna Castillo

Abstract:

Cadmium (Cd) is a carcinogenic metal to which humans are exposed mainly due to its presence in the food chain. Lactic acid bacteria have the capability to bind cadmium and thus the potential to be used as probiotics to treat this metal toxicity in the human body. The main objective of this study is to evaluate the potential of native lactic acid bacteria, isolated from Colombian fermented cocoa, to remove cadmium from aqueous solutions. An initial screening was made with the Lactobacillus plantarum JCM 1055 type strain, and Cd was quantified by atomic absorption spectroscopy (AAS). Lb. plantarum JCM 1055 was grown in ½ MRS medium to follow growth kinetics during 32 h at 37 °C, by measuring optical density at 600 nm. Washed cells, grown for 18 h, were adjusted to obtain dry biomass concentrations of 1.5 g/L and 0.5 g/L for removal assays in 10 mL of Cd(NO₃)₂ solution with final concentrations of 10 mg/Kg or 1.0 mg/Kg. The assays were performed at two different pH values (2.0 and 5.0), and results showed better adsorption abilities at higher pH. After incubation for 1 h at 37 °C and 150 rpm, the removal percentages for 10 mg/Kg Cd with 1.5 g/L and 0.5 g/L biomass concentration at pH 5.0 were, respectively, 71% and 50%, while the efficiency was 9.15 and 4.52 mg Cd/g dry biomass, respectively. For the assay with 1.0 mg/Kg Cd at pH 5.0, the removal was 100% and 98%, respectively for the same biomass concentrations, and the efficiency was 1.63 and 0.56 mg Cd/g dry biomass, respectively. These results suggest the efficiency of Lactobacillus strains to remove cadmium and their potential to be used as probiotics to treat cadmium toxicity and reduce its accumulation in the human body.

Keywords: cadmium removal, fermented cocoa, lactic acid bacteria, probiotics

Procedia PDF Downloads 140
931 Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study

Authors: Kulvinder Bajwa, Narsi R. Bishnoi

Abstract:

Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production.

Keywords: biofuel, Oleaginious bacteria, Rhodococcus opacus, FTIR, BBD, free fatty acids

Procedia PDF Downloads 100
930 Biomass and CPUA Estimation and Distribution Pattern of Saurida Tumbil in the Northwest of Persian Gulf

Authors: Negar Ghotbeddin, Izadpanah Zeinab, Tooraj Valinassab, Mohammad Azhir

Abstract:

It is reported on results of a trawls survey in 2011 to assess the amount of biomass and Catch Per Unit of Area (CPUA) and also to determine the distribution pattern of Synodonidae family of demersal fishes (with emphasize on great lizardfish, Saurida tumbil) as one the most important and commercial fish species in the northwest of Persian Gulf. Samples were collected at a total 65 trawl stations selected a stratified random procedure. The study area was stratified to five strata (A to E) covering the depth layers of 10-20, 20-30 and 30-50 m. The catch rates of CPUA and biomass of lizardfishes were estimated to be approximately 316.20 kg/nm2, and 2902.1 tons, respectively. The highest value of biomass of Synodontids was recorded in the east of the study area, Bordkhoon to Dayer (stratum D & E, approximately 1310.6 tonnes) and in depth layer of 30-50 m; and the lowest value was estimated for stratum A (West of Khuzestan Province) and in depth layer of 10-20 m. On the other hand, the highest CPUA was recorded in stratum D and depth layer of 20-30 m; and the lowest value for stratum A and 10-20 m depth. It was concluded that stratum D (namely from Bordkhoon to Dayer) contains the best fishing area from the point of higher density and distribution of Synodontidae in the covering area, and from the point of depth distribution, they are found in depths more than 30 m.

Keywords: Saurida tumbil, CPUA, biomass, distribution, fishing area, Persian gulf

Procedia PDF Downloads 367
929 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process

Authors: Shafiq Alam, Yen Ning Lee

Abstract:

Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.

Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability

Procedia PDF Downloads 346
928 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae

Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade

Abstract:

Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.

Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction

Procedia PDF Downloads 274
927 Thermochemical Conversion: Jatropha Curcus in Fixed Bed Reactor Using Slow Pyrolysis

Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma

Abstract:

Thermo-chemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.

Keywords: Jatropha curcus, thermo-chemical, pyrolysis, product composition, yield

Procedia PDF Downloads 401
926 Energy Analysis and Integration of the H₂ Production from Biomass Fast Pyrolysis and in Line Sorption Enhanced Steam Reforming

Authors: P. Comendador, M. Suarez, L. Olazar, M. Cortazar, M. Artetxe, G. Lopez, M. Olazar

Abstract:

H₂ production from fast biomass pyrolysis and line Steam Reforming (SR) has been extensively studied in the last years. However, Sorption Enhanced Steam Reforming (SESR) is gaining attention as an alternative to the conventional SR since it allows obtaining higher H₂ yields and a purity near 100 % in the product stream. In this work, both alternatives were compared through an energy analysis. The processes were modeled with PRO II v.2021 software. First, general energy balances were carried out in order to identify the total energy requirements in a wide range of operating conditions. At H₂ yield optimum conditions for both processes (steam to biomass ratio of 2 and temperature of 600 ºC), the total energy requirement for the SR alternative is 936 kJ/kgH₂, whereas for the SESR alternative is 1134 kJ/kgH₂. Then, the energy needs were grouped into operation stages, aiming at identifying the energy sinks and sources of the processes. It was determined that the SESR alternative is more energy intensive due to the need for a calcination stage for regenerating the sorbent. Finally, a configuration of the SESR alternative with energy integration was developed in order to compensate for the energy demand.

Keywords: Biomass valorization, CO₂ capture, Energy analysis, H₂ production

Procedia PDF Downloads 60
925 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.

Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic

Procedia PDF Downloads 105
924 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.

Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds

Procedia PDF Downloads 286
923 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 308
922 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 90
921 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)

Authors: Farhad Farahvash, Parya Mobaseri

Abstract:

Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.

Keywords: maize, competition, weed, biomass

Procedia PDF Downloads 327