Search results for: high temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23535

Search results for: high temperature

23265 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City

Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron

Abstract:

Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.

Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density

Procedia PDF Downloads 101
23264 Hot Cracking Susceptibility Evaluation of the Advanced UNS S31035 Austenitic Stainless Steel by Varestraint Weldability Testing

Authors: Mikael M. Johansson, Peter Stenvall, Leif Karlsson, Joel Andersson

Abstract:

Sandvik Sanicro 25, UNS S31035, is an advanced high temperature austenitic stainless steel that potentially can be used in super-heaters and reheaters in the next generation of advanced ultra-super critical power plants. The material possesses both high creep strength and good corrosion resistance at temperatures up to 700°C. Its high temperature properties are positioned between other commercially available high temperature austenitic stainless steels and nickel-based alloys. It is, however, well known that an austenitic solidification mode combined with a fully austenitic microstructure exacerbate susceptibility towards hot cracking. The problem increases even more for thick walled material in multipass welding and could compromise the integrity of the welded component. Varestraint weldability testing is commonly used to evaluate susceptibility towards hot cracking of materials. In this paper, Varestraint test results are evaluated for base material of both UNS S31035 steel and are compared to those of the well-known and well-characterized UNS S31008 grade. The more creep resistant alloy, UNS S31035, is metallurgically more complicated than the UNS S31008 grade and has additions of several alloying elements to improve its high temperature properties. It benefits from both solid solution hardening as well as precipitation hardening. This investigation therefore attempts, based on the Varestraint weldability test, to understand if there are any differences in cracking mechanisms between these two grades due to the additional alloying elements used in UNS S31035. Results from Varestraint testing and crack type investigations will be presented and discussed in some detail. It is shown that hot cracking susceptibility of the UNS S31035 steel is only slightly higher than that of UNS S31008 despite the more complicated metallurgy. Weldability of the two alloys is therefore judged to be comparable making the newer alloy well suited also for critical applications.

Keywords: austenitic stainless steel, hot cracking susceptibility, UNS S31035, UNS S31008, varestraint weldability testing

Procedia PDF Downloads 102
23263 Microstructure and Oxidation Behaviors of Al, Y Modified Silicide Coatings Prepared on an Nb-Si Based Ultrahigh Temperature Alloy

Authors: Xiping Guo, Jing Li

Abstract:

The microstructure of an Si-Al-Y co-deposition coating prepared on an Nb-Si based ultra high temperature alloy by pack cementation process at 1250°C for eight hours was studied. The results showed that the coating was composed of a (Nb,X)Si₂ (X represents Ti, Cr and Hf elements) outer layer, a (Ti,Nb)₅Si₄ middle layer and an Al, Cr-rich inner layer. For comparison, the oxidation behaviors of the coating at 800, 1050 and 1350°C were investigated respectively. Linear oxidation kinetics was found with the parabolic rate constants of 5.29×10⁻², 9×10⁻²and 5.81 mg² cm⁻⁴ h⁻¹, respectively. Catastrophic pesting oxidation has not been found at 800°C even for 100 h. The surface of the scale was covered by compact glassy SiO₂ film. The coating was able to effectively protect the Nb-Si based alloy from oxidation at 1350°C for at least 100 h. The formation process of the scale was testified following an epitaxial growth mechanism. The mechanism responsible for the oxidation behavior of the Si-Al-Y co-deposition coating at 800, 1050 and 1350°C was proposed.

Keywords: Nb-Si based ultra high temperature alloy, oxidation resistance, pack cementation, silicide coating, Al and Y modified

Procedia PDF Downloads 371
23262 Identifying the Influence of Vegetation Type on Multiple Green Roof Functions with a Field Experiment in Zurich

Authors: Lauren M. Cook, Tove A. Larsen

Abstract:

Due to their potential to provide numerous ecosystem services, green roofs have been proposed as a solution to mitigate a growing list of environmental challenges, like urban flooding and urban heat island effect. Because of their cooling effect, green roofs placed below rooftop photovoltaic (PV) panels also have the potential to increase PV panel efficiency. Sedums, a type of succulent plant, are commonly used on green roofs because they are drought and heat tolerant. However, other plant species, such as grasses or plants with reflective properties, have been shown to reduce more runoff and cool the rooftop more than succulent species due to high evapotranspiration (ET) and reflectivity, respectively. The goal of this study is to evaluate whether vegetation with high ET or reflectivity can influence multiple co-benefits of the green roof. Four small scale green roofs in Zurich are used as an experiment to evaluate differences in (1) the timing and amount of runoff discharged from the roof, (2) the air temperature above the green roof, and (3) the temperature and efficiency of solar panels placed above the green roof. One grass species, Silene vulgaris, and one silvery species, Stachys byzantia, are compared to a baseline of Sedum album and black roof. Initial results from August to November 2019 show that the grass species has retained more cumulative runoff and led to a lower canopy temperature than the other species. Although the results are not yet statistically significant, they may suggest that plants with higher ET will have a greater effect on canopy temperature than plants with high reflectivity. Future work will confirm this hypothesis and evaluate whether it holds true for solar panel temperature and efficiency.

Keywords: co-benefit estimation, green cities, green roofs, solar panels

Procedia PDF Downloads 72
23261 Recrystallization Microstructure Studies of Cold-Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Non-Equiatomic Refractory High Entropy Alloy

Authors: Veeresham Mokali

Abstract:

Recrystallization microstructure and grain growth studies of Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ refractory high entropy alloy have been explored in the present work. The as-cast Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ alloy was cold-rolled to 90% in several passes at room temperature and further subjected to annealing treatment for recrystallization at 800°C, 1000°C, 1250°C, and 1400°C temperatures for one hour. However, the characterization of heavily cold-rolled and annealed condition specimens was done using scanning electron microscopy (SEM-EBSD). The cold-rolled specimens showed the development of an inhomogeneous microstructure. Upon annealing, recrystallized microstructures were achieved; in addition to that, the coarsening of microstructure with raising annealing temperature noticed in the range of 800°C – 1400°C annealed temperatures.

Keywords: refractory high entropy alloys, cold-rolling, recrystallization, microstructure

Procedia PDF Downloads 166
23260 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study

Authors: G. Singh, H.Schuster, U. Füssel

Abstract:

The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.

Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode

Procedia PDF Downloads 153
23259 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 54
23258 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite

Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci

Abstract:

Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.

Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure

Procedia PDF Downloads 73
23257 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

Authors: Kwangwon Seo, Haksoo Han

Abstract:

Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.

Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity

Procedia PDF Downloads 491
23256 Kinetic Study of 1-Butene Isomerization over Hydrotalcite Catalyst

Authors: Sirada Sripinun

Abstract:

This work studied the isomerization of 1-butene over hydrotalcite catalyst. The experiments were conducted at various gas hourly space velocity (GHSV), reaction temperature, and feed concentration. No catalyst deactivation was observed over the reaction time of 16 hours. Two major reaction products were trans-2-butene and cis-2-butene. The reaction temperature played an important role on the reaction selectivity. At high operating temperatures, the selectivity of trans-2-butene was higher than the selectivity of cis-2-butene while it was opposite at a lower reaction temperature. In the range of operating conditions, the maximum conversion of 1-butene was found at 74% when T = 673 K and GHSV = 4 m3/h/kg-cat with trans- and cis-2-butene selectivities of 54% and 46% respectively. Finally, the kinetic parameters of the reaction were determined.

Keywords: hydrotalcite, isomerization, kinetic, 1-butene

Procedia PDF Downloads 353
23255 Factors Affecting Air Surface Temperature Variations in the Philippines

Authors: John Christian Lequiron, Gerry Bagtasa, Olivia Cabrera, Leoncio Amadore, Tolentino Moya

Abstract:

Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature.

Keywords: air surface temperature, carbon dioxide, ENSO, galactic cosmic rays, smoothed sunspot number

Procedia PDF Downloads 275
23254 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: heat sources, Lattice Boltzmann method, solid oxide fuel cell, temperature

Procedia PDF Downloads 271
23253 Evaluation of Heating/Cooling Potential of a Passive Building

Authors: M. Jamil Ahmad

Abstract:

In this paper, the heating/cooling potential of a passive building (mosque) of Prof. K. A. Nizami center for Quranic studies at AMU Aligarh, has been evaluated on the basis of energy balance under quasi-steady state condition by incorporating the effect of ventilation. The study has been carried out for composite climate of Aligarh. The performance of the above mentioned building has been presented in this study. It is observed that the premises of the mosque are cooler than the outside ambient temperature by an average of 2°C and 4°C during the month of March and April respectively. Provision of excellent ventilation, high amount of thermal mass, high ceilings and circulation of cool natural air helps in maintaining an optimal thermal comfort temperature in the passive building.

Keywords: heating/cooling potential, passive building, ambient temperatures

Procedia PDF Downloads 356
23252 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.

Keywords: borescope, engine, low-wave-infrared, sensor

Procedia PDF Downloads 94
23251 Preparation of Nb Silicide-Based Alloy Powder by Hydrogenation-Dehydrogenation (HDH) Reaction

Authors: Gi-Beom Park, Hyong-Gi Park, Seong-Yong Lee, Jaeho Choi, Seok Hong Min, Tae Kwon Ha

Abstract:

The Nb silicide-based alloy has the excellent high-temperature strength and relatively lower density than the Ni-based superalloy; therefore, it has been receiving a lot of attention for the next generation high-temperature material. To enhance the high temperature creep property and oxidation resistance, Si was added to the Nb-based alloy, resulting in a multi-phase microstructure with metal solid solution and silicide phase. Since the silicide phase has a low machinability due to its brittle nature, it is necessary to fabricate components using the powder metallurgy. However, powder manufacturing techniques for the alloys have not yet been developed. In this study, we tried to fabricate Nb-based alloy powder by the hydrogenation-dehydrogenation reaction. The Nb-based alloy ingot was prepared by vacuum arc melting and it was annealed in the hydrogen atmosphere for the hydrogenation. After annealing, the hydrogen concentration was increased from 0.004wt% to 1.22wt% and Nb metal phase was transformed to Nb hydride phase. The alloy after hydrogenation could be easily pulverized into powder by ball milling due to its brittleness. For dehydrogenation, the alloy powders were annealed in the vacuum atmosphere. After vacuum annealing, the hydrogen concentration was decreased to 0.003wt% and Nb hydride phase was transformed back to Nb metal phase.

Keywords: Nb alloy, Nb metal and silicide composite, powder, hydrogenation-dehydrogenation reaction

Procedia PDF Downloads 212
23250 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 368
23249 Spatiotemporal Analysis of Land Surface Temperature and Urban Heat Island Evaluation of Four Metropolitan Areas of Texas, USA

Authors: Chunhong Zhao

Abstract:

Remotely sensed land surface temperature (LST) is vital to understand the land-atmosphere energy balance, hydrological cycle, and thus is widely used to describe the urban heat island (UHI) phenomenon. However, due to technical constraints, satellite thermal sensors are unable to provide LST measurement with both high spatial and high temporal resolution. Despite different downscaling techniques and algorithms to generate high spatiotemporal resolution LST. Four major metropolitan areas in Texas, USA: Dallas-Fort Worth, Houston, San Antonio, and Austin all demonstrate UHI effects. Different cities are expected to have varying SUHI effect during the urban development trajectory. With the help of the Landsat, ASTER, and MODIS archives, this study focuses on the spatial patterns of UHIs and the seasonal and annual variation of these metropolitan areas. With Gaussian model, and Local Indicators of Spatial Autocorrelations (LISA), as well as data fusion methods, this study identifies the hotspots and the trajectory of the UHI phenomenon of the four cities. By making comparison analysis, the result can help to alleviate the advent effect of UHI and formulate rational urban planning in the long run.

Keywords: spatiotemporal analysis, land surface temperature, urban heat island evaluation, metropolitan areas of Texas, USA

Procedia PDF Downloads 375
23248 Comparative Study of the Earth Land Surface Temperature Signatures over Ota, South-West Nigeria

Authors: Moses E. Emetere, M. L. Akinyemi

Abstract:

Agricultural activities in the South–West Nigeria are mitigated by the global increase in temperature. The unpredictive surface temperature of the area had increased health challenges amongst other social influence. The satellite data of surface temperatures were compared with the ground station Davis weather station. The differential heating of the lower atmosphere were represented mathematically. A numerical predictive model was propounded to forecast future surface temperature.

Keywords: numerical predictive model, surface temperature, satellite date, ground data

Procedia PDF Downloads 434
23247 Thermal Management of Ground Heat Exchangers Applied in High Power LED

Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen

Abstract:

The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.

Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation

Procedia PDF Downloads 548
23246 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve

Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk

Abstract:

The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.

Keywords: electro-hydraulic servo valve, fluid power control system, system stiffness, static and dynamic performance

Procedia PDF Downloads 124
23245 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker

Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee

Abstract:

The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.

Keywords: heat transfer, temperature, voice coil, woofer speaker

Procedia PDF Downloads 325
23244 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: apparent temperature, health, safety work, scaffoldings

Procedia PDF Downloads 148
23243 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 48
23242 Gene Expression Analysis for Corals / Zooxanthellae under High Seawater Temperature Stress

Authors: Haruka Ito, Toru Maruyama, Michihiro Ito, Chuya Shinzato, Hiroyuki Fujimura, Yoshikatsu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Clarifying symbiotic relationships is one of the most important theme for understanding the marine eco-system. Coral reef has been regarded as an important environmental resource. Coral holobiont composed by coral, symbiotic microalgae zooxanthellae, and bacteria have complexed relationship. Zooxanthellae mainly supply organic matter to the host corals through their photosynthetic activity. The symbiotic relationship is indispensable for corals but may easily collapses due to the rise of seawater temperature. However, the molecular mechanism how seawater temperature influences their relationships still remain unclear. In this study, the transcriptomic analysis has applied to elucidate the coral-zooxanthellae relationships under high seawater temperature stress. To observe reactions of corals and zooxanthellae against the rise of seawater temperature, meta-gene expression in coral have been analyzed. The branches from six different colonies of a stony coral, Acropora tenuis, were sampled at nine times by 2016 at two locations, Ishikawabaru and South of Sesoko Island, Okinawa, Japan. The mRNAs extracted from the branches including zooxanthellae were sequenced by illumina HiSeq. Gene Set Enrichment Analysis (GSEA) based on hyper geometric distribution was performed. The seawater temperature at 2016 summer was unusually high, which was caused by El Niño event, and the number of zooxanthellae in coral was decreased in August. GSEA derived the several specific genes expressed in A. tenuis under heat stress conditions. The upregulated genes under heat stress highly related with infection immunity. The downregulated genes significantly contained cell cycle related genes. Thu, it is considered that heat stress cause disorder in cell metabolism of A. tenuis, resulting in serious influence to coral holobiont.

Keywords: coral, symbiosis, thermal stress response, transcriptome analysis

Procedia PDF Downloads 241
23241 Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone

Authors: Anıl Dinçer, Dilek Duranoğlu

Abstract:

Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed.

Keywords: dehydrogenation, liquid phase, methyl ethyl ketone, secondary alcohol

Procedia PDF Downloads 259
23240 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire

Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.

Abstract:

Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.

Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection

Procedia PDF Downloads 50
23239 Performance Investigation of Silica Gel Fluidized Bed

Authors: Sih-Li Chen, Chih-Hao Chen, Chi-Tong Chan

Abstract:

Poor ventilation and high carbon dioxide (CO2) concentrations lead to the formation of sick buildings. This problem cannot simply be resolved by introducing fresh air from outdoor environments because this creates extra loads on indoor air-conditioning systems. Desiccants are widely used in air conditioning systems in tropical and subtropical regions with high humidity to reduce the latent heat load from fresh air. Desiccants are usually used as a packed-bed type, which is low cost, to combine with air-conditioning systems. Nevertheless, the pressure drop of a packed bed is too high, and the heat of adsorption caused by the adsorption process lets the temperature of the outlet air increase, bringing about an extra heat load, so the high pressure drop and the increased temperature of the outlet air are energy consumption sources needing to be resolved. For this reason, the gas-solid fluidised beds that have high heat and mass transfer rates, uniform properties and low pressure drops are very suitable for use in air-conditioning systems.This study experimentally investigates the performance of silica gel fluidized bed device which applying to an air conditioning system. In the experiments, commercial silica gel particles were filled in the two beds and to form a fixed packed bed and a fluidized bed. The results indicated that compared to the fixed packed bed device, the total adsorption and desorption by amounts of fluidized bed for 40 minutes increased 20.6% and 19.9% respectively when the bed height was 10 cm and superficial velocity was set to 2 m/s. In addition, under this condition, the pressure drop and outlet air temperature raise were reduced by 36.0% and 30.0%. Given the above results, application of the silica gel fluidized bed to air conditioning systems has great energy-saving potential.

Keywords: fluidized bed, packed bed, silica gel, adsorption, desorption, pressure drop

Procedia PDF Downloads 498
23238 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions

Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet

Abstract:

Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.

Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera

Procedia PDF Downloads 92
23237 Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower

Authors: Usman Abubakar, Xiaoyuan Wang, Sayyed Haleem Shah, Sadiq Ur Rahman, Rabiu Saleh Zakariyya

Abstract:

High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM.

Keywords: airflow network, axial ventilation, high-speed PMSM, thermal network

Procedia PDF Downloads 188
23236 Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation

Authors: William Sidharta, Chin-Tu Lu

Abstract:

Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp.

Keywords: CFX simulation, fluorescent UV lamp, lamp tube reflector, UV light

Procedia PDF Downloads 434