Search results for: heat deliver
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3487

Search results for: heat deliver

3367 Transient Modeling of Velocity Profile and Heat Transfer of Electrohydrodynamically Augmented Micro Heat Pipe

Authors: H. Shokouhmand, M. Tajerian

Abstract:

At this paper velocity profile modeling and heat transfer in the micro heat pipes by using electrohydrodynamic (EHD) field at the transient regime have been studied. In the transient flow, one dimensional and two phase fluid flow and heat transfer for micro heat pipes with square cross section, have been studied. At this model Coulomb and dielectrophoretic forces are considered. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by numerical methods. Transient behavior of affecting parameters e.g. substrate temperature, velocity of coolant liquid, radius of curvature and coolant liquid pressure, has been verified. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. So, the time required to reach the steady state regime decreases from 16 seconds to 2.4 seconds after applying EHD field. Another result has been observed implicitly that by increasing the heat input the effect of EHD field became more significant. The numerical results of model predict the experimental results available in the literature successfully, and it has been observed there is a good agreement between them.

Keywords: micro heat pipe, transient modeling, electrohydrodynamics, capillary, meniscus

Procedia PDF Downloads 225
3366 The Convection Heater Numerical Simulation

Authors: Cristian Patrascioiu, Loredana Negoita

Abstract:

This paper is focused on modeling and simulation of the tubular heaters. The paper is structured in four parts: the structure of the tubular convection section, the heat transfer model, the adaptation of the mathematical model and the solving model. The main hypothesis of the heat transfer modeling is that the heat exchanger of the convective tubular heater is a lumped system. In the same time, the model uses the heat balance relations, Newton’s law and criteria relations. The numerical program achieved allows for the estimation of the burn gases outlet temperature and the heated flow outlet temperature.

Keywords: heat exchanger, mathematical modelling, nonlinear equation system, Newton-Raphson algorithm

Procedia PDF Downloads 257
3365 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 351
3364 The Study of Groundcover for Heat Reduction

Authors: Winai Mankhatitham

Abstract:

This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1) Types of groundcover affecting heat reduction, 2) The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane, 3) Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof.

Keywords: green roof, heat reduction, groundcover, energy saving

Procedia PDF Downloads 482
3363 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Authors: Hassan Hajabdollahi

Abstract:

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.

Keywords: shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration

Procedia PDF Downloads 378
3362 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 317
3361 Effect of Number of Baffles on Pressure Drop and Heat Transfer in a Shell and Tube Heat Exchanger

Authors: A. Falavand Jozaei, A. Ghafouri, M. Mosavi Navaei

Abstract:

In this paper for a given heat duty, study of number of baffles on pressure drop and heat transfer is considered in a STHX (Shell and Tube Heat Exchanger) with single segmental baffles. The effect of number of baffles from 9 to 52 baffles (baffle spacing variations from 4 to 24 inches) over OHTC (Overall Heat Hransfer Coefficient) to pressure drop ratio (U/Δp ratio). The results show that U/Δp ratio is low when baffle spacing is minimum (4 inches) because pressure drop is high; however, heat transfer coefficient is very significant. Then, with the increase of baffle spacing, pressure drop rapidly decreases and OHTC also decreases, but the decrease of OHTC is lower than pressure drop, so (U/Δp) ratio increases. After increasing baffles more than 12 inches, variation in pressure drop is gradual and approximately constant and OHTC decreases; Consequently, U/Δp ratio decreases again. If baffle spacing reaches to 24 inches, STHX will have minimum pressure drop, but OHTC decreases, so required heat transfer surface increases and U/Δp ratio decreases. After baffle spacing more than 12 inches, variation of shell side pressure drop is negligible. So optimum baffle spacing is suggested between 8 to 12 inches (43 to 63 percent of inside shell diameter) for a sufficient heat duty and low pressure drop.

Keywords: shell and tube heat exchanger, single segmental baffle, overall heat transfer coefficient, pressure drop

Procedia PDF Downloads 498
3360 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method

Procedia PDF Downloads 275
3359 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 395
3358 Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle

Authors: M. C. Lin, C. W. Su

Abstract:

The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger.

Keywords: optimization analysis, field synergy, heat exchanger, genetic algorithm

Procedia PDF Downloads 268
3357 Enhancement of Thermal Performance of Latent Heat Solar Storage System

Authors: Rishindra M. Sarviya, Ashish Agrawal

Abstract:

Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.

Keywords: latent heat, numerical study, phase change material, solar energy

Procedia PDF Downloads 272
3356 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, mechanical properties, SCC resistance, heat Treatment

Procedia PDF Downloads 393
3355 Metabolic Regulation of Rhizobacteria for Cool-Season Grass Tolerance to Heat Stress

Authors: Kashif Jaeel, Bingru Huang

Abstract:

Stress-induced accumulation of ethylene exacerbates drought damages in plants, and suppressing stress induction of ethylene may promote plant tolerance to heat stress. The objective of this study was to investigate the effects of endophytic bacteria (Paraburkholderia aspalathi) with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzymes in suppressing ethylene production on plant tolerance to heat stress and underlying physiological mechanisms of P. aspalathi-regulation in creeping bentgrass (Agrostis stolonifera). A novel strain of P. aspalathi, ‘WSF23’, with ACC deaminase activity was used to inoculate the roots of plants (cv. ‘Penncross’) subjected to heat stress in controlled-environment chambers. Inoculation with WSF23 bacteria resulted in improved shoot and root growth during heat stress. The differential changes in metabolite regulation due to the bacterial inoculation could contribute to ACC deamination bacteria-improved heat tolerance in cool-season grass species.

Keywords: rhizobacteria, grass, heat, plant metabolism, soil bacteria

Procedia PDF Downloads 27
3354 Development of a New Method for the Evaluation of Heat Tolerant Wheat Genotypes for Genetic Studies and Wheat Breeding

Authors: Hameed Alsamadany, Nader Aryamanesh, Guijun Yan

Abstract:

Heat is one of the major abiotic stresses limiting wheat production worldwide. To identify heat tolerant genotypes, a newly designed system involving a large plastic box holding many layers of filter papers positioned vertically with wheat seeds sown in between for the ease of screening large number of wheat geno types was developed and used to study heat tolerance. A collection of 499 wheat geno types were screened under heat stress (35ºC) and non-stress (25ºC) conditions using the new method. Compared with those under non-stress conditions, a substantial and very significant reduction in seedling length (SL) under heat stress was observed with an average reduction of 11.7 cm (P<0.01). A damage index (DI) of each geno type based on SL under the two temperatures was calculated and used to rank the genotypes. Three hexaploid geno types of Triticum aestivum [Perenjori (DI= -0.09), Pakistan W 20B (-0.18) and SST16 (-0.28)], all growing better at 35ºC than at 25ºC were identified as extremely heat tolerant (EHT). Two hexaploid genotypes of T. aestivum [Synthetic wheat (0.93) and Stiletto (0.92)] and two tetraploid genotypes of T. turgidum ssp dicoccoides [G3211 (0.98) and G3100 (0.93)] were identified as extremely heat susceptible (EHS). Another 14 geno types were classified as heat tolerant (HT) and 478 as heat susceptible (HS). Extremely heat tolerant and heat susceptible geno types were used to develop re combinant inbreeding line populations for genetic studies. Four major QTLs, HTI4D, HTI3B.1, HTI3B.2 and HTI3A located on wheat chromosomes 4D, 3B (x2) and 3A, explaining up to 34.67 %, 28.93 %, 13.46% % and 11.34% phenotypic variation, respectively, were detected. The four QTLs together accounted for 88.40% of the total phenotypic variation. Random wheat geno types possessing the four heat tolerant alleles performed significantly better under the heat condition than those lacking the heat tolerant alleles indicating the importance of the four QTLs in conferring heat tolerance in wheat. Molecular markers are being developed for marker assisted breeding of heat tolerant wheat.

Keywords: bread wheat, heat tolerance, screening, RILs, QTL mapping, association analysis

Procedia PDF Downloads 510
3353 Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage

Authors: Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate.

Keywords: ignition time, mass loss rate, heat blockage, fire characteristic

Procedia PDF Downloads 245
3352 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 163
3351 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids

Authors: N. Targui, H. Kahalerras

Abstract:

The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy-Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.

Keywords: double pipe heat exchanger, nanofluids, nanoparticles, porous baffles

Procedia PDF Downloads 203
3350 Natural Convection of a Nanofluid in a Conical Container

Authors: Brahim Mahfoud, Ali Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 328
3349 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas

Authors: Vijayakumar Kunche

Abstract:

Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.

Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery

Procedia PDF Downloads 205
3348 Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor

Authors: Ik–Tae Im, H. M. Abdelmotalib, M. A. Youssef, S. B. Young

Abstract:

In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer.

Keywords: computational fluid dynamics, heat transfer coefficient, hydrodynamics, renewable energy

Procedia PDF Downloads 367
3347 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production

Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng

Abstract:

This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.

Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency

Procedia PDF Downloads 429
3346 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field

Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Zhaloyi

Abstract:

This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.

Keywords: copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles

Procedia PDF Downloads 324
3345 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow

Procedia PDF Downloads 350
3344 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle

Procedia PDF Downloads 412
3343 Numerical Studies on the Performance of the Finned-Tube Heat Exchanger

Authors: S. P. Praveen Kumar, Bong-Su Sin, Kwon-Hee Lee

Abstract:

Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc. Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper, numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables, maximizing the temperature difference and minimizing the pressure drop was suggested by applying DOE. In this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using Analysis of Variance (ANOVA) to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition.

Keywords: heat exchanger, fluid analysis, heat transfer, design of experiment, analysis of variance

Procedia PDF Downloads 400
3342 Mathematical Modeling of Skin Condensers for Domestic Refrigerator

Authors: Nitin Ghule, S. G. Taji

Abstract:

A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.

Keywords: condenser, domestic refrigerator, heat transfer, mathematical model

Procedia PDF Downloads 425
3341 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.

Keywords: nano fluids, heat transfer, flattend tube, transport phenomena

Procedia PDF Downloads 391
3340 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant

Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan

Abstract:

Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.

Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis

Procedia PDF Downloads 329
3339 Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube

Authors: Mirza Popovac

Abstract:

This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps.

Keywords: heat pump, vortex tube, CFD, natural refrigerant

Procedia PDF Downloads 105
3338 Heat Treatment on Malaysian Hardwood Timbers: The Effect of Heat Exposure at Different Levels of Temperature on Bending Strength Properties

Authors: Nur Ilya Farhana Md Noh, Zakiah Ahmad

Abstract:

Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers; Pauh Kijang and Kapur in green condition were heat treated at 150°C, 170°C, 190°C and 210°C in a specially design electronic furnace in one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated Pauh Kijang and Kapur in term of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature levels applied. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Pauh Kijang were increased when subjected to the specified temperature levels except at 210°C. The values were dropped compared to the control sample and sample treated at 190°C. Heat treated Kapur shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels used and the values dropped at 210°C. However, differ to Pauh Kijang, even though there were decrement occurred at 210°C but the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber. As the good strength of Malaysian timbers used as structural material is limited in numbers and expensive, heat treating timber with low strength properties is an alternative way to overcome this issue. Heat treatment is an alternative method need to be explored and made available in Malaysia as this country is still practicing chemical preservative treatment on the timbers.

Keywords: bending strength, hardwood timber, heat treatment, modulus of elasticity (MOE), modulus of rupture (MOR)

Procedia PDF Downloads 229