Search results for: geothermal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 131

Search results for: geothermal

101 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 71
100 Recommendations for Environmental Impact Assessment of Geothermal Projects on Mature Oil Fields

Authors: Daria Karasalihovic Sedlar, Lucija Jukic, Ivan Smajla, Marija Macenic

Abstract:

This paper analyses possible geothermal energy production from a mature oil reservoir based on exploitation of underlying aquifer thermal energy for the purpose of heating public buildings. Research was conducted based on the case study of the City of Ivanic-Grad public buildings energy demand and Ivanic oil filed that is situated in the same area. Since the City of Ivanic is one of the few cities in the EU where hydrocarbon exploitation has been taking place for decades almost entirely in urban area, decommissioning of oil wells is inevitable; therefore, the research goal was to investigate how to extend the life-time of the reservoir by exploiting geothermal brine beneath the oil reservoir in an environmental friendly manner. This kind of a project is extremely complex in all segments, from documentation preparation, implementation of technological solutions, and providing ecological measures for environmentally acceptable geothermal energy production and utilization. New mining activities that will be needed for the development of geothermal project at the observed Hydrocarbon Exploitation Field Ivanic will be carried out in order to prepare wells for increasing geothermal brine production. These operations involve the conversion of existing wells (well completion for conversion of the observation wells to production ones) along with workover activities, installation of new heat exchangers, and pipelines. Since the wells are in the urban area of the City of Ivanic-Grad in high density populated area, the inhabitants will be exposed to the different environmental impacts during preparation phase of the project. For the purpose of performing workovers, it will be necessary to secure access to wellheads of existing wells. This paper gives guidelines for describing potential impacts on environment components that could occur during geothermal production preparation on existing mature oil filed, recommends possible protection measures to mitigate these impacts, and gives recommendations for environmental monitoring.

Keywords: geothermal energy production, mature oil filed, environmental impact assessment, underlying aquifer thermal energy

Procedia PDF Downloads 117
99 Geothermal Resources to Ensure Energy Security During Climate Change

Authors: Debasmita Misra, Arthur Nash

Abstract:

Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.

Keywords: exploration, geothermal, renewable energy, sustainable

Procedia PDF Downloads 125
98 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia

Authors: Ikawati Wulandari

Abstract:

Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakage

Keywords: PPM, Geothermal, Fault, Grabag

Procedia PDF Downloads 414
97 Interdisciplinary Approach for Economic Production of Oil and Gas Reserves: Application of Geothermal Energy for Enhanced Oil Recovery

Authors: Dharmit Viroja, Prerakkumar Shah, Rajanikant Gajera, Ruchit Shah

Abstract:

With present scenario of aging oil and gas fields with high water cuts, volatile oil prices and increasing greenhouse gas emission, the need for alleviating such issues has necessitated for oil and gas industry to make the maximum out of available assets, infrastructure and reserves in mother Earth. Study undertaken emphasizes on utilizing Geothermal Energy under specific reservoir conditions for Enhanced oil Recovery (EOR) to boost up production. Allied benefits of this process include mitigation of electricity problem in remote fields and controlled CO-emission. Utilization of this energy for EOR and increasing economic life of field could surely be rewarding. A new way to value oil lands would be considered if geothermal co-production is integrated in the field development program. Temperature profile of co-produced fluid across its journey is a pivotal issue which has been studied. Geo pressured reservoirs resulting from trapped brine under an impermeable bed is also a frontier for exploitation. Hot geothermal fluid is a by-product of large number of oil and gas wells, historically this hot water has been seen as an inconvenience; however, it can be looked at as a useful resource. The production of hot fluids from abandoned and co-production of hot fluids from producing wells has potential to prolong life of oil and gas fields. The study encompasses various factors which are required for use of this technology and application of this process across various phases of oil and gas value chain. Interdisciplinary approach in oil and gas value chain has shown potential for economic production of estimated oil and gas reserves.

Keywords: enhanced oil recovery, geo-pressured reservoirs, geothermal energy, oil and gas value chain

Procedia PDF Downloads 300
96 Physico-Chemical Characteristics and Possibilities of Utilization of Elbasan Thermal Waters

Authors: Elvin Çomo, Edlira Tako, Albana Hasimi, Rrapo Ormeni, Olger Gjuzi, Mirela Ndrita

Abstract:

In Albania, only low enthalpy geothermal springs and wells are known, the temperatures of some of them are almost at the upper limits of low enthalpy, reaching over 60°C. These resources can be used to improve the country's energy balance, as well as for profitable economic purposes. The region of Elbasan has the greatest geothermal energy potential in Albania. This bass is one of the most popular and used in our country. This area is a surface with a number of sources, located in the form of a chain, in the sector between Llixha and Hidraj and constitutes a thermo-mineral basin with stable discharge and high temperature. The sources of Elbasan Springs, with the current average flow of thermo mineral water of 12-18 l/s and its temperature 55-65oC, have specific reserves of 39.6 GJ/m2 and potential power to install 2760 kW. For the assessment of physico-chemical parameters and heavy metals, water samples were taken at 5 monitoring stations throughout the year 2022. The levels of basic parameters were analyzed using ISO, EU and APHA 21-th edition standard methods. This study presents the current state of the physico-chemical parameters of this thermal basin, the evaluation of these parameters for curative activities and for industrial processes, as well as the integrated utilization of geothermal energy. Possibilities for using thermomineral waters for heating homes in the area around them or even further, depending on the flow from the source or geothermal well. Sensitization of Albanian investors, medical research and the community for the high economic and curative effectiveness, for the integral use of geothermal energy in this area and the development of the tourist sector. An analysis of the negative environmental impact from the use of thermal water is also provided.

Keywords: geothermal energy, Llixha, physic-chemical parameters, thermal water

Procedia PDF Downloads 84
95 Spatial Planning Model on Landslide Risk Disaster at West Java Geothermal Field, Indonesia

Authors: Herawanti Kumalasari, Raldi Hendro Koestoer, Hayati Sari Hasibuan

Abstract:

Geographically, Indonesia is located in the arc of volcanoes that cause disaster prone one of them is landslide disaster. One of the causes of the landslide is the conversion of land from forest to agricultural land in upland areas and river border that has a steep slope. The study area is located in the highlands with fertile soil conditions, so most of the land is used as agricultural land and plantations. Land use transfer also occurs around the geothermal field in Pangalengan District, West Java Province which will threaten the sustainability of geothermal energy utilization and the safety of the community. The purpose of this research is to arrange the concept of spatial pattern arrangement in the geothermal area based on disaster mitigation. This research method using superimpose analysis. Superimpose analysis to know the basic physical condition of the planned area through the overlay of disaster risk map with the map of the plan of spatial plan pattern of Bandung Regency Spatial Plan. The results of the analysis will then be analyzed spatially. The results have shown that most of the study areas were at moderate risk level. Planning of spatial pattern of existing study area has not fully considering the spread of disaster risk that there are settlement area and the agricultural area which is in high landslide risk area. The concept of the arrangement of the spatial pattern of the study area will use zoning system which is divided into three zones namely core zone, buffer zone and development zone.

Keywords: spatial planning, geothermal, disaster risk, zoning

Procedia PDF Downloads 240
94 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 39
93 Design of Residential Geothermal Cooling System in Kuwait

Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi

Abstract:

Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.

Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy

Procedia PDF Downloads 47
92 Nanofluid based on Zinc Oxide/Ferric Oxide Nanocomposite as Additive for Geothermal Drilling Fluids

Authors: Anwaar O. Ali, Mahmoud Fathy Mubarak, Mahmoud Ibrahim Abdou, Hector Cano Esteban, Amany A. Aboulrous

Abstract:

Corrosion resistance and lubrication are crucial characteristics required for geothermal drilling fluids. In this study, a ZnO/Fe₂O₃ nanocomposite was fabricated and incorporated into the structure of Cetyltrimethylammonium bromide (CTAB). Several physicochemical techniques were utilized to analyze and describe the synthesized nanomaterials. The surface morphology of the composite was assessed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX). The corrosion inhibition capabilities of these materials were explored across various corrosive environments. The weight loss and electrochemical methods were utilized to determine the corrosion inhibition activity of the prepared nanomaterials. The results demonstrate a high level of protection achieved by the composite. Additionally, the lubricant coefficient and extreme pressure properties were evaluated.

Keywords: nanofluid, corrosion, geothermal drilling fluids, ZnO/Fe2O3

Procedia PDF Downloads 22
91 Empowering Indigenous Epistemologies in Geothermal Development

Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui

Abstract:

Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.

Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework

Procedia PDF Downloads 151
90 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.

Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization

Procedia PDF Downloads 22
89 Physico-Chemical Quality Study of Geothermal Waters of the Region DjéRid-Tunisia

Authors: Anis Eloud, Mohamed Ben Amor

Abstract:

Tunisia is a semi-arid country on ¾ of its territory. It is characterized by the scarcity of water resources and accentuated by climate variability. The potential water resources are estimated at 4.6 million m3 / year, of which 2.7 million m3 / year represent surface water and 1.9 million m3 / year feed all the layers that make up the renewable groundwater resources. Water available in Tunisia easily exceed health or agricultural salinity standards. Barely 50% of water resources are less than 1.5 g / l divided at 72% of surface water salinity, 20% of deep groundwater and only 8% in groundwater levels. Southern Tunisia has the largest web "of water in the country, these waters are characterized by a relatively high salinity may exceed 4 gl-1. This is the "root of many problems encountered during their operation. In the region of Djérid, Albian wells are numerous. These wells debit a geothermal water with an average flow of 390 L / s. This water is characterized by a relatively high salinity and temperature of which is around 65 ° C at the source. Which promotes the formation of limescale deposits within the water supply pipe and the cooling loss thereby increasing the load in direct relation with enormous expense and circuits to replace these lines when completely plugged. The present work is a study of geothermal water quality of the region Djérid from physico-chemical analyzes.

Keywords: water quality, salinity, geothermal, supply pipe

Procedia PDF Downloads 492
88 Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage

Authors: Emanuele Bonamente, Andrea Aquino

Abstract:

This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems).

Keywords: geothermal heat pump, phase change materials (PCM), energy storage, renewable energies

Procedia PDF Downloads 276
87 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 74
86 Study and GIS Development of Geothermal Potential in South Algeria (Adrar Region)

Authors: A. Benatiallah, D. Benatiallah, F. Abaidi, B. Nasri, A. Harrouz, S. Mansouri

Abstract:

The region of Adrar is located in the south-western Algeria and covers a total area of 443.782 km², occupied by a population of 432,193 inhabitants. The main activity of population is agriculture, mainly based on the date palm cultivation occupies a total area of 23,532 ha. Adrar region climate is a continental desert characterized by a high variation in temperature between months (July, August) it exceeds 48°C and coldest months (December, January) with 16°C. Rainfall is very limited in frequency and volume with an aridity index of 4.6 to 5 which corresponds to a type of arid climate. Geologically Adrar region is located on the edge North West and is characterized by a Precambrian basement cover stolen sedimentary deposit of Phanerozoic age transgressive. The depression is filled by Touat site Paleozoic deposits (Cambrian to Namurian) of a vast sedimentary basin extending secondary age of the Saharan Atlas to the north hamada Tinhirt Tademaït and the plateau of south and Touat Gourara west to Gulf of Gabes in the Northeast. In this work we have study geothermal potential of Adrar region from the borehole data eatable in various sites across the area of 400,000 square kilometres; from these data we developed a GIS (Adrar_GIS) that plots data on the various points and boreholes in the region specifying information on available geothermal potential has variable depths.

Keywords: sig, geothermal, potenteil, temperature

Procedia PDF Downloads 431
85 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data

Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour

Abstract:

Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.

Keywords: geothermal exploration, image enhancement, minerals, spectral mapping

Procedia PDF Downloads 331
84 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy

Authors: Dhara Adhnandya Kumara, Novrizal Novrizal

Abstract:

Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.

Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock

Procedia PDF Downloads 194
83 Analysis of Magnetic Anomaly Data for Identification Structure in Subsurface of Geothermal Manifestation at Candi Umbul Area, Magelang, Central Java Province, Indonesia

Authors: N. A. Kharisa, I. Wulandari, R. Narendratama, M. I. Faisal, K. Kirana, R. Zipora, I. Arfiansah, I. Suyanto

Abstract:

Acquisition of geophysical survey with magnetic method has been done in manifestation of geothermalat Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. This objective research is interpretation to interpret structural geology that control geothermal system in CandiUmbul area. The research has been finished with area size 1,5 km x 2 km and measurement space of 150 m. And each point of line space survey is 150 m using PPM Geometrics model G-856. Data processing was started with IGRF and diurnal variation correction to get total magnetic field anomaly. Then, advance processing was done until reduction to pole, upward continuation, and residual anomaly. That results become next interpretation in qualitative step. It is known that the biggest object position causes low anomaly located in central of area survey that comes from hot spring manifestation and demagnetization zone that indicates the existence of heat source activity. Then, modeling the anomaly map was used for quantitative interpretation step. The result of modeling is rock layers and geological structure model that can inform about the geothermal system. And further information from quantitative interpretations can be interpreted about lithology susceptibility. And lithology susceptibilities are andesiteas heat source has susceptibility value of (k= 0.00014 emu), basaltic as alteration rock (k= 0.0016 emu), volcanic breccia as reservoir rock (k= 0.0026 emu), andesite porfirtic as cap rock (k= 0.004 emu), lava andesite (k= 0.003 emu), and alluvium (k= 0.0007 emu). The hot spring manifestation is controlled by the normal fault which becomes a weak zone, easily passed by hot water which comes from the geothermal reservoir.

Keywords: geological structure, geothermal system, magnetic, susceptibility

Procedia PDF Downloads 350
82 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 288
81 Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures

Authors: Kewen Li

Abstract:

Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal, including geothermal, power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using thermoelectric generator (TEG), however, can directly transform thermal energy into electricity by using Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the big disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C) TEG system. The efficiency of the system was improved significantly, about 20% greater. Laboratory experiments have been conducted to measure the output power, including both open and net power, at different conditions: different modes of connections between TEG modules, different mechanical structures, different temperature differences between hot and cold sides. The cost of the TEG power generator has been reduced further because of the increased efficiency and is lower than that of photovoltaics (PV) in terms of equivalent energy generated. The TEG apparatus has been pilot tested and the data will be presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are co-produced.

Keywords: TEG, direct power generation, efficiency, thermoelectric effect

Procedia PDF Downloads 212
80 Diffuse CO₂ Degassing to Study Blind Geothermal Systems: The Acoculco, Puebla (Mexico) Case Study

Authors: Mirna Guevara, Edgar Santoyo, Daniel Perez-Zarate, Erika Almirudis

Abstract:

The Acoculco caldera located in Puebla (Mexico) has been preliminary identified as a blind hot-dry rock geothermal system. Two drilled wells suggest the existence of high temperatures >300°C and non-conventional tools are been applied to study this system. A comprehensive survey of soil-gas (CO₂) flux measurements (1,500 sites) was carried out during the dry seasons over almost two years (2015 and 2016). Isotopic analyses of δ¹³CCO₂ were performed to discriminate the origin source of the CO2 fluxes. The soil CO2 flux measurements were made in situ by the accumulation chamber method, whereas gas samples for δ13CCO2 were selectively collected from the accumulation chamber with evacuated gas vials via a septum. Two anomalous geothermal zones were identified as a result of these campaigns: Los Azufres (19°55'29.4'' N; 98°08'39.9'' W; 2,839 masl) and Alcaparrosa (19°55'20.6'' N; 98°08'38.3'' W; 2,845 masl). To elucidate the origin of the C in soil CO₂ fluxes, the isotopic signature of δ¹³C was used. Graphical Statistical Analysis (GSA) and a three end-member mixing diagram were used to corroborate the presence of distinctive statistical samples, and trends for the diffuse gas fluxes. Spatial and temporal distributions of the CO₂ fluxes were studied. High CO₂ emission rates up to 38,217 g/m2/d and 33,706 g/m2/d were measured for the Los Azufres and Alcaparrosa respectively; whereas the δ¹³C signatures showed values ranging from -3.4 to -5.5 o/oo for both zones, confirming their magmatic origin. This study has provided a valuable framework to set the direction of further exploration campaigns in the Acoculco caldera. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: accumulation chamber method, carbon dioxide, diffusive degassing, geothermal exploration

Procedia PDF Downloads 227
79 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation

Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne

Abstract:

One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.

Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model

Procedia PDF Downloads 190
78 Comparative Analysis of Costs and Well Drilling Techniques for Water, Geothermal Energy, Oil and Gas Production

Authors: Thales Maluf, Nazem Nascimento

Abstract:

The development of society relies heavily on the total amount of energy obtained and its consumption. Over the years, there has been an advancement on energy attainment, which is directly related to some natural resources and developing systems. Some of these resources should be highlighted for its remarkable presence in world´s energy grid, such as water, petroleum, and gas, while others deserve attention for representing an alternative to diversify the energy grid, like geothermal sources. Therefore, because all these resources can be extracted from the underground, drilling wells is a mandatory activity in terms of exploration, and it involves a previous geological study and an adequate preparation. It also involves a cleaning process and an extraction process that can be executed by different procedures. For that reason, this research aims the enhancement of exploration processes through a comparative analysis of drilling costs and techniques used to produce them. The analysis itself is based on a bibliographical review based on books, scientific papers, schoolwork and mainly explore drilling methods and technologies, equipment used, well measurements, extraction methods, and production costs. Besides techniques and costs regarding the drilling processes, some properties and general characteristics of these sources are also compared. Preliminary studies show that there are some major differences regarding the exploration processes, mostly because these resources are naturally distinct. Water wells, for instance, have hundreds of meters of length because water is stored close to the surface, while oil, gas, and geothermal production wells can reach thousands of meters, which make them more expensive to be drilled. The drilling methods present some general similarities especially regarding the main mechanism of perforation, but since water is a resource stored closer to the surface than the other ones, there is a wider variety of methods. Water wells can be drilled by rotary mechanisms, percussion mechanisms, rotary-percussion mechanisms, and some other simpler methods. Oil and gas production wells, on the other hand, require rotary or rotary-percussion drilling with a proper structure called drill rig and resistant materials for the drill bits and the other components, mostly because they´re stored in sedimentary basins that can be located thousands of meters under the ground. Geothermal production wells also require rotary or rotary-percussion drilling and require the existence of an injection well and an extraction well. The exploration efficiency also depends on the permeability of the soil, and that is why it has been developed the Enhanced Geothermal Systems (EGS). Throughout this review study, it can be verified that the analysis of the extraction processes of energy resources is essential since these resources are responsible for society development. Furthermore, the comparative analysis of costs and well drilling techniques for water, geothermal energy, oil, and gas production, which is the main goal of this research, can enable the growth of energy generation field through the emergence of ideas that improve the efficiency of energy generation processes.

Keywords: drilling, water, oil, Gas, geothermal energy

Procedia PDF Downloads 117
77 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions

Authors: B. L. Avanthi Isaka, P. G. Ranjith

Abstract:

The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.

Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems

Procedia PDF Downloads 106
76 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 306
75 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 142
74 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 184
73 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems

Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour

Abstract:

The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.

Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output

Procedia PDF Downloads 284
72 The Relationship between the Epithermal Mineralization, Thermalism, and Basement Faults in the Region of Guelma: NE of Algeria

Authors: B. Merdas

Abstract:

The Guelma region constitutes a vast geothermal field whose local geothermal gradient is very high. Indeed, various thermal and thermo sources emerging in the region, including some at relatively high temperatures. In the mio Pliocene Hammam N'bails, basin emerges a hot spring that leaves develop a thick series of thermal travertine linked to it. Near the thermal emergences has settled a very special mineralization antimony and zinc and lead. The results of analyses of the thermal waters of the source of Hammam N'bails and the associated travertine, show abnormal values in Pb, Sb, Zn, As, and other metals, demonstrating the genetic link between those waters and mineralization. Hammam N'bails mineralizations by their mineral assembling represented and their association with the hot springs, are very similar to epithermal deposits with precious metals (gold and silver) like Senator mine in Turkey or ‘Carlin-type’ in Nevada (USA).

Keywords: hot springs, mineralization; basement faults, Guelma, NE Algeria

Procedia PDF Downloads 399