Search results for: genotoxic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 51

Search results for: genotoxic

21 Protective Effect of Cow Urine against Chlorpyrifos Induced-Genotoxicity and Neurotoxicity in Albino Rats

Authors: Shelly Sharma, Pooja Chadha

Abstract:

Humans are exposed to pesticides and insecticides either directly or indirectly. Exposure to these pesticides may lead to acute toxicity to mammals and non-target organisms. Chlorpyrifos (CPF) is a broad spectrum organophosphate pesticide widely used in various countries of the world. The aim of the present study was to assess the toxicity associated with chlorpyrifos exposure and possible mitigating effect of cow urine against genotoxic and toxic effects in rat brain induced by chlorpyrifos. For this purpose LD50 was determined and rats were orally administered with 1/8th of LD50 (19mg/kg b.wt). Brain samples were taken after 24hrs, 48hrs and 72hrs of treatment. A significant increase in the % tail DNA was observed along with the increase in MDA levels of brain tissues in chlorpyrifos treated groups as compared to control. Cow urine treated groups show decrease in DNA damage and MDA levels as compared to CPF treated group. The study indicates that cow urine has ameliorative potential against neurotoxicity and genotoxicity induced by CPF. Cow urine is considered rich in vitamin A, E and volatile fatty acids which provide antioxidant potential to it. Thus, it can be used as a genoprotective agent.

Keywords: comet assay, brain, cow urine, genotoxicity, toxicity

Procedia PDF Downloads 352
20 Acrylamide Induced Chronic Nephrotoxicity in Rats

Authors: Afshin Zahedi, Keivan Jmahidi

Abstract:

Acrylamide (AA) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of acrylamide (ACR) 50 adult male rats (Wistar, approximately 250 g) were randomly assigned in 4 groups; including 3 treatment groups and 1 control group named as A, B, C, and D respectively. Rats in treatment groups were exposed to 0.1, 1, and 10 mg/kg ACR per day×90 days p.o (gavage) respectively. The remaining 10 rats in control group received daily p.o (gavage) of 0.9% saline (3ml/kg). On day 91, two rats were randomly selected, perfused, dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did not show morphologic changes in kidneys of rats belong to groups A, B and D, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, and tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C. This finding, beside neurotoxic, reproductive and carcinogenic effects, indicates for the first time another important aspect of toxic effect of ACR, ie, chronic nephrotoxicity.

Keywords: acrylamide, nephrotoxicity, glomerulonephritis, rats

Procedia PDF Downloads 509
19 Changes in Global DNA Methylation and DNA Damage in Two Tumor Cell Lines Treated with Silver and Gold Nanoparticles

Authors: Marcin Kruszewski, Barbara Sochanowicz, Sylwia Męczyńska-Wielgosz, Maria Wojewódzka, Lucyna Kapka-Skrzypczak

Abstract:

Metallic NPs are widely used in a number of applications in industry, science and medicine. Among metallic NPs foreseen to be widely used in medicine are gold nanoparticles (AuNPs) due to their low toxicity, and silver NPs (AgNPs) due to their strong antimicrobial activity. In this study, we compared an effect of AgNPs and gold NPs (AuNPs) on the formation of DNA damage and global DNA methylation and in A2780 and 4T1 cell lines, widely used models of human ovarian carcinoma and murine mammary carcinoma, respectively. The cells were treated with AgNPs coated with citrate (AgNPs(cit) or PEG (AgNPs(PEG), or AuNPs. A global DNA methylation was investigated with ELISA, whereas the formation of DNA damage was investigated by a comet +/- FPG. AgNPs decreased global DNA methylation and increased the formation of DNA lesions in both cell lines. The effect was dependent on the type of NPs used, it's coating, and cell line used. In conclusion, the epigenetic and genotoxic effects of NPs strongly depends on NP nature and cellular context. Epigenetic changes observed upon the action of AgNPs may play a crucial role in NPs-induced changes in protein expression.

Keywords: DNA damage, gold nanoparticles, methylation, silver nanoparticles

Procedia PDF Downloads 98
18 Acrylamide-Induced Acute Nephrotoxicity in Rats

Authors: Keivan Jamshidi, Afshin Zahedi

Abstract:

Acrylamide (ACR) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of Acrylamide (ACR), 50 adult male rats (Wistar, approximately 250 g) housed in polycarbonate boxes as 5 per each, and randomly assigned in 5 groups including 4 exposure groups as A, B, C, and D groups of rats (10 rats per exposure group., total) and were exposed to 0.5, 5, 50, 100 mg/kg ACR per day×11days i.p. respectively. The remaining 10 rats were housed in group (E) as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). On day 12, four rats, were randomly selected, perfused , dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did show no morphologic changes in kidneys of rats belong to groups A, B and E, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C, and D. This finding, beside neurotoxic, reproductive and carcinogenic effects, seems to indicate for the first time another important aspect of toxic effect of ACR, i.e., acute nephrotoxicity.

Keywords: acrylamide, nephrotoxicity, glomerulonephritis, rats

Procedia PDF Downloads 583
17 Assessment of Airborne PM0.5 Mutagenic and Genotoxic Effects in Five Different Italian Cities: The MAPEC_LIFE Project

Authors: T. Schilirò, S. Bonetta, S. Bonetta, E. Ceretti, D. Feretti, I. Zerbini, V. Romanazzi, S. Levorato, T. Salvatori, S. Vannini, M. Verani, C. Pignata, F. Bagordo, G. Gilli, S. Bonizzoni, A. Bonetti, E. Carraro, U. Gelatti

Abstract:

Air pollution is one of the most important worldwide health concern. In the last years, in both the US and Europe, new directives and regulations supporting more restrictive pollution limits were published. However, the early effects of air pollution occur, especially for the urban population. Several epidemiological and toxicological studies have documented the remarkable effect of particulate matter (PM) in increasing morbidity and mortality for cardiovascular disease, lung cancer and natural cause mortality. The finest fractions of PM (PM with aerodynamic diameter <2.5 µm and less) play a major role in causing chronic diseases. The International Agency for Research on Cancer (IARC) has recently classified air pollution and fine PM as carcinogenic to human (1 Group). The structure and composition of PM influence the biological properties of particles. The chemical composition varies with season and region of sampling, photochemical-meteorological conditions and sources of emissions. The aim of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy) study is to evaluate the associations between air pollution and biomarkers of early biological effects in oral mucosa cells of 6-8 year old children recruited from first grade schools. The study was performed in five Italian towns (Brescia, Torino, Lecce, Perugia and Pisa) characterized by different levels of airborne PM (PM10 annual average from 44 µg/m3 measured in Torino to 20 µg/m3 measured in Lecce). Two to five schools for each town were chosen to evaluate the variability of pollution within the same town. Child exposure to urban air pollution was evaluated by collecting ultrafine PM (PM0.5) in the school area, on the same day of biological sampling. PM samples were collected for 72h using a high-volume gravimetric air sampler and glass fiber filters in two different seasons (winter and spring). Gravimetric analysis of the collected filters was performed; PM0.5 organic extracts were chemically analyzed (PAH, Nitro-PAH) and tested on A549 by the Comet assay and Micronucleus test and on Salmonella strains (TA100, TA98, TA98NR and YG1021) by Ames test. Results showed that PM0.5 represents a high variable PM10 percentage (range 19.6-63%). PM10 concentration were generally lower than 50µg/m3 (EU daily limit). All PM0.5 extracts showed a mutagenic effect with TA98 strain (net revertant/m3 range 0.3-1.5) and suggested the presence of indirect mutagens, while lower effect was observed with TA100 strain. The results with the TA98NR and YG1021 strains showed the presence of nitroaromatic compounds as confirmed by the chemical analysis. No genotoxic or oxidative effect of PM0.5 extracts was observed using the comet assay (with/without Fpg enzyme) and micronucleus test except for some sporadic samples. The low biological effect observed could be related to the low level of air pollution observed in this winter sampling associated to a high atmospheric instability. For a greater understanding of the relationship between PM size, composition and biological effects the results obtained in this study suggest to investigate the biological effect of the other PM fractions and in particular of the PM0.5-1 fraction.

Keywords: airborne PM, ames test, comet assay, micronucleus test

Procedia PDF Downloads 291
16 Hepatoprotective Effect of Oleuropein against Cisplatin-Induced Liver Damage in Rat

Authors: Salim Cerig, Fatime Geyikoglu, Murat Bakir, Suat Colak, Merve Sonmez, Kubra Koc

Abstract:

Cisplatin (CIS) is one of the most effective an anticancer drug and also toxic to cells by activating oxidative stress. Oleuropein (OLE) has key role against oxidative stress in mammalian cells, but the role of this antioxidant in the toxicity of CIS remains unknown. The aim of the present study was to investigate the efficacy of OLE on CIS-induced liver damages in male rats. With this aim, male Sprague Dawley rats were randomly assigned to one of eight groups: Control group; the group treated with 7 mg/kg/day CIS; the groups treated with 50, 100 and 200 mg/kg/day OLE (i.p.); and the groups treated with OLE for three days starting at 24 h following CIS injection. After 4 days of injections, serum was provided to assess the blood AST, ALT and LDH values. The liver tissues were removed for histological, biochemical (TAC, TOS and MDA) and genotoxic evaluations. In the CIS treated group, the whole liver tissue showed significant histological changes. Also, CIS significantly increased both the incidence of oxidative stress and the induction of 8-hydroxy-deoxyguanosine (8-OH-dG). Moreover, the rats taking CIS have abnormal results on liver function tests. However, these parameters reached to the normal range after administration of OLE for 3 days. Finally, OLE demonstrated an acceptable high potential and was effective in attenuating CIS-induced liver injury. In this trial, the 200 mg/kg dose of OLE firstly appeared to induce the most optimal protective response.

Keywords: antioxidant response, cisplatin, histology, liver, oleuropein, 8-OhdG

Procedia PDF Downloads 310
15 Correlation of P53 Gene Expression With Serum Alanine Transaminase Levels and Hepatitis B Viral Load in Cirrhosis and Hepatocellular Carcinoma Patients

Authors: Umme Shahera, Saifullah Munshi, Munira Jahan, Afzalun Nessa, Shahinul Alam, Shahina Tabassum

Abstract:

The development of HCC is a multi-stage process. Several extrinsic factors, such as aflatoxin, HBV, nutrition, alcohol, and trace elements are thought to initiate or/and promote the hepatocarcinogenesis. Alteration of p53 status is an important intrinsic factor in this process as p53 is essential for preventing inappropriate cell proliferation and maintaining genome integrity following genotoxic stress. This study was designed to assess the correlation of p53 gene expression with HBV-DNA and serum Alanine transaminase (ALT) in patients with cirrhosis and HCC. The study was conducted among 60 patients. The study population were divided into four groups (15 in each groups)-HBV positive cirrhosis, HBV negative cirrhosis, HBV positive HCC and HBV negative HCC. Expression of p53 gene was observed using real time PCR. P53 gene expressions in the above mentioned groups were correlated with serum ALT level and HBV viral load. p53 gene was significantly higher in HBV-positive patients with HCC than HBV-positive cirrhosis. Similarly, the expression of p53 was significantly higher in HBV-positive HCC than HBV-negative HCC patients. However, the expression of p53 was reduced in HBV-positive cirrhosis in comparison with HBV-negative cirrhosis. P53 gene expression in liver was not correlated with the serum levels of ALT in any of the study groups. HBV- DNA load also did not correlated with p53 gene expression in HBV positive HCC and HBV positive cirrhosis patients. This study shows that there was no significant change with the expression of p53 gene in any of the study groups with ALT level or viral load, though differential expression of p53 gene were observed in cirrhosis and HCC patients.

Keywords: P53, ALT, HBV-DNA, liver cirrhosis, hepatocellular carcinoma

Procedia PDF Downloads 60
14 CAP-Glycine Protein Governs Growth, Differentiation, and the Pathogenicity of Global Meningoencephalitis Fungi

Authors: Kyung-Tae Lee, Li Li Wang, Kwang-Woo Jung, Yong-Sun Bahn

Abstract:

Microtubules are involved in mechanical support, cytoplasmic organization as well as in a number of cellular processes by interacting with diverse microtubule-associated proteins (MAPs), such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A common feature of these proteins is the presence of a cytoskeleton-associated protein-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate functions of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which causes fatal meningoencephalitis globally. In this study, we identified five CAP-Gly proteins encoding genes in C. neoformans. Among these, Cgp1, encoded by CNAG_06352, has a unique domain structure that has not been reported before in other eukaryotes. Supporting the role of Cpg1 in microtubule-related functions, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer, and Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular functions of microtubules, Cgp1 also governs maintenance of membrane stability and genotoxic stress responses. Furthermore, we demonstrate that Cgp1 uniquely regulates sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Our domain analysis reveals that the CAP-Gly domain plays major roles in all the functions of Cgp1. Finally, the cgp1Δ mutant is attenuated in virulence. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation and pathogenicity of C. neoformans.

Keywords: human fungal pathogen, CAP-Glycine protein, microtubule, meningoencephalitis

Procedia PDF Downloads 280
13 Pharmacological Activities and Potential Uses of Cyperus Rotundus: A Review

Authors: Arslan Masood Pirzada, Muhammad Naeem, Hafiz Haider Ali, Muhammad Latif, Aown Sammar Raza, Asad Hussain Bukhari, Muhammad Saqib, Muhammad Ijaz

Abstract:

Cyperus rotundus (Cyperaceae), a medicinal herb, is being traditionally used as a home remedy for the treatment of various clinical conditions like diarrhea, diabetic, pyretic, inflammation, malaria, and for treating stomach and bowel disorders. Its current status is one of the most widespread, troublesome, and economically damaging agronomic weeds, growing wildly in various tropical and sub-tropical regions of the world. Tuber and rhizomes of Cyperus rotundus possess a higher concentration of active ingredients in the form of essential oils, phenolic acids, ascorbic acids and flavonoids, responsible for its remedial properties. Exploitation of any medicinal plant application depends on the crucial and comprehensive information about the therapeutic potential of a plant. Researchers have evaluated and characterized the significance of Cyperus rotundus as an anti-androgenic, anti-bacterial, anti-cancerous, anti-convulsant, anti-diabetic, anti-diarrheal, anti-genotoxic, anti-inflammatory, anti-lipidemic, anti-malarial, anti-mutagenic, anti-obesity, anti-oxidant, anti-uropathogenic, hepato-, cardio-, neuroprotective, and nootropic agent. This paper comprises a broad review to summarize the current state of knowledge about chemical constituents, potential economic uses and therapeutic aspects of Cyperus rotundus that will aid in the development of bioethanol and modern herbal medicine through latest technologies that will promote the ability of this plant in the cure of many clinical disorders.

Keywords: purple nutsedge, chemical composition, economic uses, therapeutic values, future directions

Procedia PDF Downloads 467
12 Pros and Cons of Nanoparticles on Health

Authors: Amber Shahi, Ayesha Tazeen, Abdus Samad, Shama Parveen

Abstract:

Nanoparticles (NPs) are tiny particles. According to the International Organization for Standardization, the size range of NPs is in the nanometer range (1-100 nm). They show distinct properties that are not shown by larger particles of the same material. NPs are currently being used in different fields due to their unique physicochemical nature. NPs are a boon for medical sciences, environmental sciences, electronics, and textile industries. However, there is growing concern about their potential adverse effects on human health. This poster presents a comprehensive review of the current literature on the pros and cons of NPs on human health. The poster will discuss the various types of interactions of NPs with biological systems. There are a number of beneficial uses of NPs in the field of health and environmental welfare. NPs are very useful in disease diagnosis, antimicrobial action, and the treatment of diseases like Alzheimer’s. They can also cross the blood-brain barrier, making them capable of treating brain diseases. Additionally, NPs can target specific tumors and be used for cancer treatment. To treat environmental health, NPs also act as catalytic converters to reduce pollution from the environment. On the other hand, NPs also have some negative impacts on the human body, such as being cytotoxic and genotoxic. They can also affect the reproductive system, such as the testis and ovary, and sexual behavior. The poster will further discuss the routes of exposure of NPs. The poster will conclude with a discussion of the current regulations and guidelines on the use of NPs in various applications. It will highlight the need for further research and the development of standardized toxicity testing methods to ensure the safe use of NPs in various applications. When using NPs in diagnosis and treatment, we should also take into consideration their safe concentration in the body. Overall, this poster aims to provide a comprehensive overview of the pros and cons of NPs on human health and to promote awareness and understanding of the potential risks and benefits associated with their use.

Keywords: disease diagnosis, human health, nanoparticles, toxicity testing

Procedia PDF Downloads 48
11 Genotoxic and Cytotoxic Effects of Salvia officinals Extracts on Rat Bone Marrow

Authors: Mohammed A. Alshehri

Abstract:

Salvia officinalis is an aromatic plant member of the mint (Labiatae) family. It is popular kitchen herb. Not surprise to find that the name of this herb related to cure, in Latin language Salvia means to cure where officinalis means medicinal which answer why the sage has a top place in the list of medicinal plants. The aim of the present study was to assess the genetic damage and cytological changes caused by exposure of the test organism (Rattusrattus) to Salvia officinals. For this purpose, adult female rats, weighing 200–250 g, were used as donors. A total of 36 adult Wister male rats were randomly assigned to five groups: the experimental groups (rats were intraperitonealy injected with Salvia officinalis pure extract at (0.1, 0.2, 0.5, 0.1mg/kg body weight, the same dose was administered once a day. Control group (rats were injected intraperitonealy physiological saline. And positive control were injected with Cyclophosphamide. On the 21st days following Salvia officinalis pure extract exposure, rats were sacrificed, and samples of bone marrow were collected. Following that, we performed a micronuclei (MN) test using MNNCE (Micro-nucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index), and cytological parameters using NDCI (nuclear division cytotoxicity index), necrotic, and apoptotic cells in rat's bone marrow samples. Results showed that there was a no significant increase in the frequency of micro-nucleatedas well as in cytological parameters in bone marrow cells. In light of these results, if Salvia officinalis pure extract may considered to be safe from the stand point of genotoxicity and cytotoxicity effects.

Keywords: Salvia officinalis, micronucleus, NDI, NDCI, toxicity, chromosomal aberrations

Procedia PDF Downloads 315
10 Genetic Instabilities in Marine Bivalve Following Benzo(α)pyrene Exposure: Utilization of Combined Random Amplified Polymorphic DNA and Comet Assay

Authors: Mengjie Qu, Yi Wang, Jiawei Ding, Siyu Chen, Yanan Di

Abstract:

Marine ecosystem is facing intensified multiple stresses caused by environmental contaminants from human activities. Xenobiotics, such as benzo(α)pyrene (BaP) have been discharged into marine environment and cause hazardous impacts on both marine organisms and human beings. As a filter-feeder, marine mussels, Mytilus spp., has been extensively used to monitor the marine environment. However, their genomic alterations induced by such xenobiotics are still kept unknown. In the present study, gills, as the first defense barrier in mussels, were selected to evaluate the genetic instability alterations induced by the exposure to BaP both in vivo and in vitro. Both random amplified polymorphic DNA (RAPD) assay and comet assay were applied as the rapid tools to assess the environmental stresses due to their low money- and time-consumption. All mussels were identified to be the single species of Mytilus coruscus before used in BaP exposure at the concentration of 56 μg/l for 1 & 3 days (in vivo exposure) or 1 & 3 hours (in vitro). Both RAPD and comet assay results were showed significantly increased genomic instability with time-specific altering pattern. After the recovery period in 'in vivo' exposure, the genomic status was as same as control condition. However, the relative higher genomic instabilities were still observed in gill cells after the recovery from in vitro exposure condition. Different repair mechanisms or signaling pathway might be involved in the isolated gill cells in the comparison with intact tissues. The study provides the robust and rapid techniques to exam the genomic stability in marine organisms in response to marine environmental changes and provide basic information for further mechanism research in stress responses in marine organisms.

Keywords: genotoxic impacts, in vivo/vitro exposure, marine mussels, RAPD and comet assay

Procedia PDF Downloads 248
9 Photoprotective and Antigenotoxic Effects of a Mixture of Posoqueria latifolia Flower Extract and Kaempferol Against Ultraviolet B Radiation

Authors: Silvia Ximena Barrios, Diego Armando Villamizar Mantilla, Raquel Elvira Ocazionez, , Elena E. Stashenko, María Pilar Vinardell, Jorge Luis Fuentes

Abstract:

Introduction: Skin overexposure to solar radiation has been a serious public health concern, because of its potential carcinogenicity. Therefore, preventive protection strategies using photoprotective agents are critical to counteract the harmful effect of solar radiation. Plants may be a source of photoprotective compounds that inhibit cellular mutations involved in skin cancer initiation. This work evaluated the photoprotective and antigenotoxic effects against ultraviolet B (UVB) radiation of a mixture of Posoqueria latifolia flower extract and Kaempferol (MixPoKa). Methods: The photoprotective efficacy of MixPoka (Posoqueria latifolia flower extract 250 μg/ml and Kaempferol 349.5 μM) was evaluated using in vitro indices such as sun protection factor SPFᵢₙ ᵥᵢₜᵣₒ and critical wavelength (λc). The MixPoKa photostability (Eff) at human minimal erythema doses (MED), according to the Fitzpatrick skin scale, was also estimated. Cytotoxicity and genotoxicity/antigenotoxicity were studied in MRC5 human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Kinetics of the genetic damage repair post irradiation in the presence and absence of the MixPoka, was also evaluated. Results: The MixPoka -UV absorbance spectrum was high across the spectral bands between 200 and 400 nm. The UVB photoprotection efficacy of MixPoka was high (SPFᵢₙ ᵥᵢₜᵣₒ = 25.70 ± 0.06), showed wide photoprotection spectrum (λc = 380 ± 0), and resulted photostable (Eff = 92.3–100.0%). The MixPoka was neither cytotoxic nor genotoxic in MRC5 human fibroblasts; but presented significant antigenotoxic effect against UVB radiation. Additionally, MixPoka stimulate DNA repair post-irradiation. The potential of this phytochemical mixture as sunscreen ingredients was discussed. Conclusion: MixPoka showed a significant antigenotoxic effect against UVB radiation and stimulated DNA repair after irradiation. MixPoka could be used as an ingredient in a sunscreen cream.

Keywords: flower extract, photoprotection, antigenotoxicity, cytotoxicity, genotoxicit

Procedia PDF Downloads 39
8 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans

Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn

Abstract:

Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.

Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor

Procedia PDF Downloads 192
7 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla Catla

Authors: Jagruti Barot

Abstract:

The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, colour photography, pharmaceuticals and medicine, cosmetic, hair colourings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of RR 120 on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg/L) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. of interval. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood cells and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.

Keywords: micronuclei, genotoxicity, RR 120, Catla catla

Procedia PDF Downloads 180
6 Indirect Genotoxicity of Diesel Engine Emission: An in vivo Study Under Controlled Conditions

Authors: Y. Landkocz, P. Gosset, A. Héliot, C. Corbière, C. Vendeville, V. Keravec, S. Billet, A. Verdin, C. Monteil, D. Préterre, J-P. Morin, F. Sichel, T. Douki, P. J. Martin

Abstract:

Air Pollution produced by automobile traffic is one of the main sources of pollutants in urban atmosphere and is largely due to exhausts of the diesel engine powered vehicles. The International Agency for Research on Cancer, which is part of the World Health Organization, classified in 2012 diesel engine exhaust as carcinogenic to humans (Group 1), based on sufficient evidence that exposure is associated with an increased risk for lung cancer. Amongst the strategies aimed at limiting exhausts in order to take into consideration the health impact of automobile pollution, filtration of the emissions and use of biofuels are developed, but their toxicological impact is largely unknown. Diesel exhausts are indeed complex mixtures of toxic substances difficult to study from a toxicological point of view, due to both the necessary characterization of the pollutants, sampling difficulties, potential synergy between the compounds and the wide variety of biological effects. Here, we studied the potential indirect genotoxicity of emission of Diesel engines through on-line exposure of rats in inhalation chambers to a subchronic high but realistic dose. Following exposure to standard gasoil +/- rapeseed methyl ester either upstream or downstream of a particle filter or control treatment, rats have been sacrificed and their lungs collected. The following indirect genotoxic parameters have been measured: (i) telomerase activity and telomeres length associated with rTERT and rTERC gene expression by RT-qPCR on frozen lungs, (ii) γH2AX quantification, representing double-strand DNA breaks, by immunohistochemistry on formalin fixed-paraffin embedded (FFPE) lung samples. These preliminary results will be then associated with global cellular response analyzed by pan-genomic microarrays, monitoring of oxidative stress and the quantification of primary DNA lesions in order to identify biological markers associated with a potential pro-carcinogenic response of diesel or biodiesel, with or without filters, in a relevant system of in vivo exposition.

Keywords: diesel exhaust exposed rats, γH2AX, indirect genotoxicity, lung carcinogenicity, telomerase activity, telomeres length

Procedia PDF Downloads 364
5 Monitoring the Pollution Status of the Goan Coast Using Genotoxicity Biomarkers in the Bivalve, Meretrix ovum

Authors: Avelyno D'Costa, S. K. Shyama, M. K. Praveen Kumar

Abstract:

The coast of Goa, India receives constant anthropogenic stress through its major rivers which carry mining rejects of iron and manganese ores from upstream mining sites and petroleum hydrocarbons from shipping and harbor-related activities which put the aquatic fauna such as bivalves at risk. The present study reports the pollution status of the Goan coast by the above xenobiotics employing genotoxicity studies. This is further supplemented by the quantification of total petroleum hydrocarbons (TPHs) and various trace metals (iron, manganese, copper, cadmium, and lead) in gills of the estuarine clam, Meretrix ovum as well as from the surrounding water and sediment, over a two-year sampling period, from January 2013 to December 2014. Bivalves were collected from a probable unpolluted site at Palolem and a probable polluted site at Vasco, based upon the anthropogenic activities at these sites. Genotoxicity was assessed in the gill cells using the comet assay and micronucleus test. The quantity of TPHs and trace metals present in gill tissue, water and sediments were analyzed using spectrofluorometry and atomic absorption spectrophotometry (AAS), respectively. The statistical significance of data was analyzed employing Student’s t-test. The relationship between DNA damage and pollutant concentrations was evaluated using multiple regression analysis. Significant DNA damage was observed in the bivalves collected from Vasco which is a region of high industrial activity. Concentrations of TPHs and trace metals (iron, manganese, and cadmium) were also found to be significantly high in gills of the bivalves collected from Vasco compared to those collected from Palolem. Further, the concentrations of these pollutants were also found to be significantly high in the water and sediments at Vasco compared to that of Palolem. This may be due to the lack of industrial activity at Palolem. A high positive correlation was observed between the pollutant levels and DNA damage in the bivalves collected from Vasco suggesting the genotoxic nature of these pollutants. Further, M. ovum can be used as a bioindicator species for monitoring the level of pollution of the estuarine/coastal regions by TPHs and trace metals.

Keywords: comet assay, metals, micronucleus test, total petroleum Hydrocarbons

Procedia PDF Downloads 204
4 A 1H NMR-Linked PCR Modelling Strategy for Tracking the Fatty Acid Sources of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Simulated Shallow-Frying Episodes

Authors: Martin Grootveld, Benita Percival, Sarah Moumtaz, Kerry L. Grootveld

Abstract:

Objectives/Hypotheses: The adverse health effect potential of dietary lipid oxidation products (LOPs) has evoked much clinical interest. Therefore, we employed a 1H NMR-linked Principal Component Regression (PCR) chemometrics modelling strategy to explore relationships between data matrices comprising (1) aldehydic LOP concentrations generated in culinary oils/fats when exposed to laboratory-simulated shallow frying practices, and (2) the prior saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents of such frying media (FM), together with their heating time-points at a standard frying temperature (180 oC). Methods: Corn, sunflower, extra virgin olive, rapeseed, linseed, canola, coconut and MUFA-rich algae frying oils, together with butter and lard, were heated according to laboratory-simulated shallow-frying episodes at 180 oC, and FM samples were collected at time-points of 0, 5, 10, 20, 30, 60, and 90 min. (n = 6 replicates per sample). Aldehydes were determined by 1H NMR analysis (Bruker AV 400 MHz spectrometer). The first (dependent output variable) PCR data matrix comprised aldehyde concentration scores vectors (PC1* and PC2*), whilst the second (predictor) one incorporated those from the fatty acid content/heating time variables (PC1-PC4) and their first-order interactions. Results: Structurally complex trans,trans- and cis,trans-alka-2,4-dienals, 4,5-epxy-trans-2-alkenals and 4-hydroxy-/4-hydroperoxy-trans-2-alkenals (group I aldehydes predominantly arising from PUFA peroxidation) strongly and positively loaded on PC1*, whereas n-alkanals and trans-2-alkenals (group II aldehydes derived from both MUFA and PUFA hydroperoxides) strongly and positively loaded on PC2*. PCR analysis of these scores vectors (SVs) demonstrated that PCs 1 (positively-loaded linoleoylglycerols and [linoleoylglycerol]:[SFA] content ratio), 2 (positively-loaded oleoylglycerols and negatively-loaded SFAs), 3 (positively-loaded linolenoylglycerols and [PUFA]:[SFA] content ratios), and 4 (exclusively orthogonal sampling time-points) all powerfully contributed to aldehydic PC1* SVs (p 10-3 to < 10-9), as did all PC1-3 x PC4 interaction ones (p 10-5 to < 10-9). PC2* was also markedly dependent on all the above PC SVs (PC2 > PC1 and PC3), and the interactions of PC1 and PC2 with PC4 (p < 10-9 in each case), but not the PC3 x PC4 contribution. Conclusions: NMR-linked PCR analysis is a valuable strategy for (1) modelling the generation of aldehydic LOPs in heated cooking oils and other FM, and (2) tracking their unsaturated fatty acid (UFA) triacylglycerol sources therein.

Keywords: frying oils, lipid oxidation products, frying episodes, chemometrics, principal component regression, NMR Analysis, cytotoxic/genotoxic aldehydes

Procedia PDF Downloads 136
3 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications

Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar

Abstract:

Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.

Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications

Procedia PDF Downloads 189
2 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer

Authors: Rahaba Marima, Clement Penny

Abstract:

The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.

Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer

Procedia PDF Downloads 117
1 Evaluation of Airborne Particulate Matter Early Biological Effects in Children with Micronucleus Cytome Assay: The MAPEC_LIFE Project

Authors: E. Carraro, Sa. Bonetta, Si. Bonetta, E. Ceretti, G. C. V. Viola, C. Pignata, S. Levorato, T. Salvatori, S. Vannini, V. Romanazzi, A. Carducci, G. Donzelli, T. Schilirò, A. De Donno, T. Grassi, S. Bonizzoni, A. Bonetti, G. Gilli, U. Gelatti

Abstract:

In 2013, air pollution and particulate matter were classified as carcinogenic to human by the IARC. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2015. A percentage between 17-30 of the EU urban population lives in areas where the EU air quality 24-hour limit value for PM10 is exceeded. Many studies have found a consistent association between exposure to PM and the incidence and mortality for some chronic diseases (i.e. lung cancer, cardiovascular diseases). Among the mechanisms responsible for these adverse effects, genotoxic damage is of particular concern. Children are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme (LIFE12 ENV/IT/000614) which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. This work is focused on the micronuclei frequency in child buccal cells in association with airborne PM levels taking into account the influence of other factors associated with the lifestyle of children. The micronucleus test was performed in exfoliated buccal cells of 6–8 years old children from 5 Italian towns with different air pollution levels. Data on air quality during the study period were obtained from the Regional Agency for Environmental Protection. A questionnaire administered to children’s parents was used to obtain details on family socio-economic status, children health condition, exposures to other indoor and outdoor pollutants (i.e. passive smoke) and life-style, with particular reference to eating habits. During the first sampling campaign (winter 2014-15) 1315 children were recruited and sampled for Micronuclei test in buccal cells. In the sampling period the levels of the main pollutants and PM10 were, as expected, higher in the North of Italy (PM10 mean values 62 μg/m3 in Torino and 40 μg/m3 in Brescia) than in the other towns (Pisa, Perugia, Lecce). A higher Micronucleus frequency in buccal cells of children was found in Brescia (0.6/1000 cells) than in the other towns (range 0.3-0.5/1000 cells). The statistical analysis underlines a relation of the micronuclei frequency with PM concentrations, traffic level near child residence, and level of education of parents. The results suggest that, in addition to air pollution exposure, some other factors, related to lifestyle or further exposures, may influence micronucleus frequency and cellular response to air pollutants.

Keywords: air pollution, buccal cells, children, micronucleus cytome assay

Procedia PDF Downloads 220