Search results for: fuel lean reburn
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1792

Search results for: fuel lean reburn

1702 Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency

Authors: Amey Kulkarni, Paavan Shetty, Amol Patil, B. Rajiv

Abstract:

Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor.

Keywords: differential fuel flow meter, engine RPM, fuel efficiency, heavy construction compaction machine

Procedia PDF Downloads 259
1701 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 403
1700 Experimental Investigation of the Effect of Temperature on A PEM Fuel Cell Performance

Authors: Remzi Şahin, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated. The efficiency of energy conversion in PEM fuel cells is dependent on the catalytic activities of the catalysts used in the cathode and anode of membrane electrode assemblies. Membrane is considered the heart of PEM fuel cells without which they cannot produce electricity. PEM fuel cell performance increased with coating carbon nanotube (CNT). CNT show a unique combination of stiffness, strength, and tenacity compared to other fiber materials which usually lack one or more of these properties. Two different experiments were performed and the membrane performance has been determined by repeating the two experiments that were done before coating. The purposes of these experiments are the observation of power change due to a temperature change in the same voltage value.

Keywords: carbon nanotube (CNT), proton exchange membrane (PEM), fuel cell, spin method

Procedia PDF Downloads 343
1699 Lean and Six Sigma in the Freight Railway Supplier Base in South Africa: Factors Leading to Their Application

Authors: Hilda Kundai Chikwanda, Lawrence Thabo Mokhadi

Abstract:

The study aimed to review the factors that lead the freight railway suppliers base in South Africa (SA) to apply the Lean and Six Sigma (L&SS) methodologies. A thorough review of the factors that lead organisations, in the different industries, to implement these methodologies was done. L&SS applications were found to be prominent in the automotive industry. In particular, the railway industry in SA and the region were reviewed in terms of challenges in capturing the freight logistics market and growing market share. Qualitative methods have been used to collect primary data and descriptive statistics was used to calculate, describe, and summarize collected research data. The results show that external factors have a greater influence on the implementation of L&SS. The study drew inferences between freight railway supplier base and the application of Lean and Six Sigma (L&SS) methodologies in the SA context. It identified challenges that leads the SA freight railway to lose market share to road freight users. It further observes and recommends that L&SS methodologies are the ideal strategy required to implement a turnaround in the trajectory of freight railways as a competitive freight transport solution.

Keywords: production, methodology, manufacturing, lean, six sigma

Procedia PDF Downloads 8
1698 Technical and Environmental Improvement of LNG Carrier's Propulsion Machinery by Using Jatropha Biao Diesel Fuel

Authors: E. H. Hegazy, M. A. Mosaad, A. A. Tawfik, A. A. Hassan, M. Abbas

Abstract:

The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation.

Keywords: dual fuel diesel engine, natural gas, Jatropha Methyl Easter, volumetric efficiency, emissions, CFD

Procedia PDF Downloads 620
1697 Reducing Lean by Implementing Distance Learning in the Training Programs of Oil and Gas Industries

Authors: Sayed-Mahdi Hashemi-Dehkordi, Ian Baker

Abstract:

This paper investigates the benefits of implementing distance learning in training courses for the oil and gas industries to reduce lean. Due to the remote locations of many oil and gas operations, scheduling and organizing in-person training classes for employees in these sectors is challenging. Furthermore, considering that employees often work in periodic shifts such as day, night, and resting periods, arranging in-class training courses requires significant time and transportation. To explore the effectiveness of distance learning compared to in-class learning, a set of questionnaires was administered to employees of a far on-shore refinery unit in Iran, where both in-class and distance classes were conducted. The survey results revealed that over 72% of the participants agreed that distance learning saved them a significant amount of time by rating it 4 to 5 points out of 5 on a Likert scale. Additionally, nearly 67% of the participants acknowledged that distance learning considerably reduced transportation requirements, while approximately 64% agreed that it helped in resolving scheduling issues. Introducing and encouraging the use of distance learning in the training environments of oil and gas industries can lead to notable time and transportation savings for employees, ultimately reducing lean in a positive manner.

Keywords: distance learning, in-class learning, lean, oil and gas, scheduling, time, training programs, transportation

Procedia PDF Downloads 36
1696 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 237
1695 Transition to Hydrogen Cities in Korea and Japan

Authors: Minhee Son, Kyung Nam Kim

Abstract:

This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability.

Keywords: fuel cell, hydrogen city, hydrogen fuel cell vehicle, hydrogen station, hydrogen energy

Procedia PDF Downloads 444
1694 Autoignition Delay Characterstic of Hydrocarbon (n-Pentane) from Lean to Rich Mixtures

Authors: Sunil Verma

Abstract:

This report is concerned with study of autoignition delay characterstics of n-pentane. Experiments are done for different equivalents ratio on Rapid compression machine. Dependence of autoignition delay period is clearly explained from lean to rich mixtures. Equivalence ratio is varied from 0.33 to 0.6.

Keywords: combustion, autoignition, ignition delay, rapid compression machine

Procedia PDF Downloads 314
1693 The Journey from Lean Manufacturing to Industry 4.0: The Rail Manufacturing Process in Mexico

Authors: Diana Flores Galindo, Richard Gil Herrera

Abstract:

Nowadays, Lean Manufacturing and Industry 4.0 are very important in every country. One of the main benefits is continued market presence. It has been identified that there is a need to change existing educational programs, as well as update the knowledge and skills of existing employees. It should be borne in mind that behind each technological improvement, there is a human being. Human talent cannot be neglected. The main objectives of this article are to review the link between Lean Manufacturing, the incorporation of Industry 4.0 and the steps to follow to implement it; analyze the current situation and study the implications and benefits of this new trend, with a particular focus on Mexico. Lean Manufacturing and Industry 4.0 implementation waves must always take care of the most important capital – intellectual capital. The methodology used in this article comprised the following steps: reviewing the reality of the fourth industrial revolution, reviewing employees’ skills on the journey to become world-class, and analyzing the situation in Mexico. Lean Manufacturing and Industry 4.0 were studied not as exclusive concepts, but as complementary ones. The methodological framework used is focused on motivating companies’ collaborators to guarantee common results, innovate, and remain in the market in the face of new requirements from company stakeholders. The key findings were that both trends emphasize the need to improve communication across the entire company and incorporate new technologies into everyday work, from the shop floor to administrative staff, to help improve processes. Taking care of people, activities and processes will bring a company success. In the specific case of Mexico, companies in all sectors need to be aware of and implement technological improvements according to their specific needs. Low-cost labor represents one of the most typical barriers. In conclusion, companies must build a roadmap according to their strategy and needs to achieve their short, medium- and long-term goals.

Keywords: lean management, lean manufacturing, industry 4.0, motivation, SWOT analysis, Hoshin Kanri

Procedia PDF Downloads 112
1692 Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell

Authors: Kwangho Lee, Joongmyeon Bae

Abstract:

Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application.

Keywords: hydrogen, diesel, reforming, ATR, WGS, PROX, membrane, pressure

Procedia PDF Downloads 380
1691 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT

Authors: Imane Khalil, Quinn Pratt

Abstract:

In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.

Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification

Procedia PDF Downloads 185
1690 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi

Abstract:

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Keywords: flaring, fuel gas network, GHG emissions, stream

Procedia PDF Downloads 299
1689 Risk Management Approach for Lean, Agile, Resilient and Green Supply Chain

Authors: Benmoussa Rachid, Deguio Roland, Dubois Sebastien, Rasovska Ivana

Abstract:

Implementation of LARG (Lean, Agile, Resilient, Green) practices in the supply chain management is a complex task mainly because ecological, economical and operational goals are usually in conflict. To implement these LARG practices successfully, companies’ need relevant decision making tools allowing processes performance control and improvement strategies visibility. To contribute to this issue, this work tries to answer the following research question: How to master performance and anticipate problems in supply chain LARG practices implementation? To answer this question, a risk management approach (RMA) is adopted. Indeed, the proposed RMA aims basically to assess the ability of a supply chain, guided by “Lean, Green and Achievement” performance goals, to face “agility and resilience risk” factors. To proof its relevance, a logistics academic case study based on simulation is used to illustrate all its stages. It shows particularly how to build the “LARG risk map” which is the main output of this approach.

Keywords: agile supply chain, lean supply chain, green supply chain, resilient supply chain, risk approach

Procedia PDF Downloads 277
1688 Developing Model for Fuel Consumption Optimization in Aviation Industry

Authors: Somesh Kumar Sharma, Sunanad Gupta

Abstract:

The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.

Keywords: fuel consumption, civil aviation industry, neural networking, optimization

Procedia PDF Downloads 298
1687 Catalytic Study of Natural Gas Based Solid Oxide Fuel Cell

Authors: Nasir Iqbal, Khurram Siraj, Rizwan Raza

Abstract:

Solid oxide fuel cell (SOFC) is the promising technology now days. SOFC can be operated with different types of fuels available. In this work catalytic anode is prepared with metal oxides i.e. Li, Ni, Zn and Sn and tested for catalytic activity with natural gas as a fuel. The operating temperature range is 170-750°C as observed with the help of TGA. Electrical conductivity and fuel cell performance has been observed for four different samples with varying composition of Sn and Zn. It is concluded that the sample having greater concentration of Zn shows better conductivity and power density results. All the results are promising and verified with different characterizations.

Keywords: catalytic activity, solid oxide fuel cell, energy material, natural gas

Procedia PDF Downloads 38
1686 A Mixed Method Design to Studying the Effects of Lean Production on Job Satisfaction and Health Work in a French Context

Authors: Gregor Bouville, Celine Schmidt

Abstract:

This article presents a French case study on lean production drawing on a mixed method design which has received little attention in French management research-especially in French human resources research. The purpose is to show that using a mixed method approach in this particular case overstep the limitations of previous studies in lean production studies. The authors use the embedded design as a special articulation of mixed method to analyse and understand the effects of three organizational practices on job satisfaction and workers’ health. Results show that low scheduled autonomy, quality management, time constraint have deleterious effects on job satisfaction. Furthermore, these three practices have ambivalent effects on health work. Interest in the subjects of mixed method has been growing up among French health researchers and practioners, also recently among French management researchers. This study reinforces and refines how mixed methods may offer interesting perspectives in an integrated framework included human resources, management, and health fields. Finally, potentials benefits and limits for those interdisciplinary researches programs are discussed.

Keywords: lean production, mixed method, work organization practices, job satisfaction

Procedia PDF Downloads 328
1685 Lean Airport Infrastructure Development: A Sustainable Solution for Integration of Remote Regions

Authors: Joeri N. Aulman

Abstract:

In the remote Indian region of Gulbarga a case study of lean airport infrastructure development is getting ‘cast in stone’; In April the first turbo-props will land, and the optimized terminal building will process its first passengers, using minimal square meters in a facility that is based on a complete dress-down of the core operational processes. Yet the solution that resulted from this case study has such elegance in its simplicity that it has emboldened the local administration to invest in its construction and thus secure this remote region’s connectivity to India’s growth story. This paper aims to provide further background to the Gulbarga case study and its relevance to remote region connectivity, covering the demand that was identified, its practical application and its regulatory context and relevance for today’s airport manager and local administrators. This embodies the scope of the paper. In summary, the paper will give airport managers and regional authorities an overview and background to innovative case studies of lean airport infrastructure developments which combine both optimized CAPEX and running costs/OPEX without losing sight of the aspirational nature of up and coming remote regions; a truly sustainable model.

Keywords: airport, CAPEX, lean, sustainable, air connectivity, remote regions

Procedia PDF Downloads 289
1684 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: aluminum, die casting, fuel cap, motorcycle

Procedia PDF Downloads 335
1683 Study of Dual Fuel Engine as Environmentally Friendly Engine

Authors: Nilam S. Octaviani, Semin

Abstract:

The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine.  However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.

Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics

Procedia PDF Downloads 267
1682 Exploratory Analysis and Development of Sustainable Lean Six Sigma Methodologies Integration for Effective Operation and Risk Mitigation in Manufacturing Sectors

Authors: Chukwumeka Daniel Ezeliora

Abstract:

The Nigerian manufacturing sector plays a pivotal role in the country's economic growth and development. However, it faces numerous challenges, including operational inefficiencies and inherent risks that hinder its sustainable growth. This research aims to address these challenges by exploring the integration of Lean and Six Sigma methodologies into the manufacturing processes, ultimately enhancing operational effectiveness and risk mitigation. The core of this research involves the development of a sustainable Lean Six Sigma framework tailored to the specific needs and challenges of Nigeria's manufacturing environment. This framework aims to streamline processes, reduce waste, improve product quality, and enhance overall operational efficiency. It incorporates principles of sustainability to ensure that the proposed methodologies align with environmental and social responsibility goals. To validate the effectiveness of the integrated Lean Six Sigma approach, case studies and real-world applications within select manufacturing companies in Nigeria will be conducted. Data were collected to measure the impact of the integration on key performance indicators, such as production efficiency, defect reduction, and risk mitigation. The findings from this research provide valuable insights and practical recommendations for selected manufacturing companies in South East Nigeria. By adopting sustainable Lean Six Sigma methodologies, these organizations can optimize their operations, reduce operational risks, improve product quality, and enhance their competitiveness in the global market. In conclusion, this research aims to bridge the gap between theory and practice by developing a comprehensive framework for the integration of Lean and Six Sigma methodologies in Nigeria's manufacturing sector. This integration is envisioned to contribute significantly to the sector's sustainable growth, improved operational efficiency, and effective risk mitigation strategies, ultimately benefiting the Nigerian economy as a whole.

Keywords: lean six sigma, manufacturing, risk mitigation, sustainability, operational efficiency

Procedia PDF Downloads 157
1681 Scientific Production on Lean Supply Chains Published in Journals Indexed by SCOPUS and Web of Science Databases: A Bibliometric Study

Authors: T. Botelho de Sousa, F. Raphael Cabral Furtado, O. Eduardo da Silva Ferri, A. Batista, W. Augusto Varella, C. Eduardo Pinto, J. Mimar Santa Cruz Yabarrena, S. Gibran Ruwer, F. Müller Guerrini, L. Adalberto Philippsen Júnior

Abstract:

Lean Supply Chain Management (LSCM) is an emerging research field in Operations Management (OM). As a strategic model that focuses on reduced cost and waste with fulfilling the needs of customers, LSCM attracts great interest among researchers and practitioners. The purpose of this paper is to present an overview of Lean Supply Chains literature, based on bibliometric analysis through 57 papers published in indexed journals by SCOPUS and/or Web of Science databases. The results indicate that the last three years (2015, 2016, and 2017) were the most productive on LSCM discussion, especially in Supply Chain Management and International Journal of Lean Six Sigma journals. India, USA, and UK are the most productive countries; nevertheless, cross-country studies by collaboration among researchers were detected, by social network analysis, as a research practice, appearing to play a more important role on LSCM studies. Despite existing limitation, such as limited indexed journal database, bibliometric analysis helps to enlighten ongoing efforts on LSCM researches, including most used technical procedures and collaboration network, showing important research gaps, especially, for development countries researchers.

Keywords: Lean Supply Chains, Bibliometric Study, SCOPUS, Web of Science

Procedia PDF Downloads 306
1680 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure

Authors: Kai Zhang, Xi Jiang

Abstract:

Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.

Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification

Procedia PDF Downloads 244
1679 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines

Authors: Charalampos Saridakis, Stelios Tsafarakis

Abstract:

Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.

Keywords: clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution

Procedia PDF Downloads 235
1678 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell

Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal

Abstract:

In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.

Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC

Procedia PDF Downloads 48
1677 Lean Implementation in a Nurse Practitioner Led Pediatric Primary Care Clinic: A Case Study

Authors: Lily Farris, Chantel E. Canessa, Rena Heathcote, Susan Shumay, Suzanna V. McRae, Alissa Collingridge, Minna K. Miller

Abstract:

Objective: To describe how the Lean approach can be applied to improve access, quality and safety of care in an ambulatory pediatric primary care setting. Background: Lean was originally developed by Toyota manufacturing in Japan, and subsequently adapted for use in the healthcare sector. Lean is a systematic approach, focused on identifying and reducing waste within organizational processes, improving patient-centered care and efficiency. Limited literature is available on the implementation of the Lean methodologies in a pediatric ambulatory care setting. Methods: A strategic continuous improvement event or Rapid Process Improvement Workshop (RPIW) was launched with the aim evaluating and structurally supporting clinic workflow, capacity building, sustainability, and ultimately improving access to care and enhancing the patient experience. The Lean process consists of five specific activities: Current state/process assessment (value stream map); development of a future state map (value stream map after waste reduction); identification, quantification and prioritization of the process improvement opportunities; implementation and evaluation of process changes; and audits to sustain the gains. Staff engagement is a critical component of the Lean process. Results: Through the implementation of the RPIW and shifting workload among the administrative team, four hours of wasted time moving between desks and doing work was eliminated from the Administrative Clerks role. To streamline clinic flow, the Nursing Assistants completed patient measurements and vitals for Nurse Practitioners, reducing patient wait times and adding value to the patients visit with the Nurse Practitioners. Additionally, through the Nurse Practitioners engagement in the Lean processes a need was recognized to articulate clinic vision, mission and the alignment of NP role and scope of practice with the agency and Ministry of Health strategic plan. Conclusions: Continuous improvement work in the Pediatric Primary Care NP Clinic has provided a unique opportunity to improve the quality of care delivered and has facilitated further alignment of the daily continuous improvement work with the strategic priorities of the Ministry of Health.

Keywords: ambulatory care, lean, pediatric primary care, system efficiency

Procedia PDF Downloads 272
1676 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 582
1675 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 237
1674 Implementation of Lean Tools (Value Stream Mapping and ECRS) in an Oil Refinery

Authors: Ronita Singh, Yaman Pattanaik, Soham Lalwala

Abstract:

In today’s highly competitive business environment, every organization is striving towards lean manufacturing systems to achieve lower Production Lead Times, lower costs, less inventory and overall improvement in supply chains efficiency. Based on the similar idea, this paper presents the practical application of Value Stream Mapping (VSM) tool and ECRS (Eliminate, Combine, Reduce, and Simplify) technique in the receipt section of the material management center of an oil refinery. A value stream is an assortment of all actions (value added as well as non-value added) that are required to bring a product through the essential flows, starting with raw material and ending with the customer. For drawing current state value stream mapping, all relevant data of the receipt cycle has been collected and analyzed. Then analysis of current state map has been done for determining the type and quantum of waste at every stage which helped in ascertaining as to how far the warehouse is from the concept of lean manufacturing. From the results achieved by current VSM, it was observed that the two processes- Preparation of GRN (Goods Receipt Number) and Preparation of UD (Usage Decision) are both bottle neck operations and have higher cycle time. This root cause analysis of various types of waste helped in designing a strategy for step-wise implementation of lean tools. The future state thus created a lean flow of materials at the warehouse center, reducing the lead time of the receipt cycle from 11 days to 7 days and increasing overall efficiency by 27.27%.

Keywords: current VSM, ECRS, future VSM, receipt cycle, supply chain, VSM

Procedia PDF Downloads 259
1673 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle

Authors: P. Kacejko, M. Wendeker

Abstract:

The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.

Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption

Procedia PDF Downloads 91