Search results for: fuel consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4523

Search results for: fuel consumption

4253 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T.Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)

Procedia PDF Downloads 468
4252 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 101
4251 Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions

Authors: Junaid Bin Aamir, Ma Fanhua

Abstract:

Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy.

Keywords: alternative fuels, hydrogen, methanol, performance, spark ignition engines

Procedia PDF Downloads 267
4250 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 172
4249 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine

Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.

Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence

Procedia PDF Downloads 241
4248 A Novel CeO2-WOx-TiO2 Catalyst for Oxidative Desulfurization of Model Fuel Oil

Authors: Corazon Virtudazo-Ligaray, Mark Daniel G. de Luna, Meng-Wei Wan, Ming-Chun Lu

Abstract:

A series of ternary compound catalyst with nanocomposites of ceria, tungsten trioxide and titania (CeO2-WOx-TiO2) with different WOx mole fraction (10, 20, 30, 40) have been synthesized by sol-gel method. These nanocomposite catalysts were used for oxidative extractive desulfurization of model fuel oil, which were composed of dibenzothiophene (DBT) dissolved in toluene. The 30% hydrogen peroxide, H2O2 was used as oxidant and acetonitrile as extractant. These catalysts were characterized by SEM-EDS to determine the morphology. Catalytic oxidation results show that the catalysts have high selectivity in refractory fuel oil with organo sulfur contents. The oxidative removal of DBT increases as the HPW content increases. The nanocomposites CeO2-WOx-TiO2 also shows high selectivity for DBT oxidation in the DBT–toluene acetonitrile system. The catalytic oxidative desulfurization ratio of model fuel reached to 100% with nanocomposites CeO2-WOx-TiO2 (35-30-35) mol percent catalyst nanocomposition under 333 K in 30 minutes.

Keywords: ceria, oxidative desulfurization, titania, phosphotungstic acid

Procedia PDF Downloads 380
4247 Comparative Analysis of Local Acceptance of Renewable Energy Facilities and Spent Nuclear Fuel Repositories

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Public deliberation committee on Shin-Gori Nuclear Reactors No. 5 & 6 in South Korea recently suggested policy recommendation in July 2017 including complementary measures for resumption of construction: 1) nuclear power generation reduction, 2) expansion of investment to increase proportion of renewable energy, 3) repositories of spent nuclear fuel. Even when constructing eco-friendly renewable energy facilities such as solar and wind power plants, local residents are opposed to construction of these facilities due to environmental pollution and health impacts. In order to transform eco-friendly energy, it is necessary to convert nuclear energy into renewable energy and to take measures to increase the acceptance of residents through the participation of citizens. Therefore, this study aims to compare the factors of local acceptance of renewable energy facilities and spent nuclear fuel repositories through literature review and in-depth interview. The results show that environmental and economic concerns, risk perceptions, sociality, demographic characteristics and subjective recognition types affect the local acceptance for spent nuclear fuel repository. The factors of local acceptance for renewable energy facilities are partially coincide with those for spent nuclear fuel repository. The results of this study will contribute to improving residents' acceptance and reducing conflicts when determining the location of facilities in the future.

Keywords: local acceptance, renewable energy facility, spent nuclear fuel repository, interview

Procedia PDF Downloads 266
4246 Advanced Simulation of Power Consumption of Electric Vehicles

Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo

Abstract:

Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.

Keywords: electric vehicles, EV, power consumption, power management, simulation

Procedia PDF Downloads 476
4245 The Methods of Immobilization of Laccase for Direct Transfer in an Enzymatic Fuel Cell

Authors: Afshin Farahbakhsh, Hoda Khodadadi

Abstract:

In this paper, we compare five methods of biological fuel cell fabrication by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. As a result of biofuel cell laccase with graphite nanofibers, carbon surface (PAMAN) on the pt/hpg electrode, graphite sheets MWCNT and with (PG) and (MWCNT) showed, respectively. Describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. When the device was fed with transdermal extracts, containing only 30μM of glucose, the average peak power was proportionally lower (0.004mW). The result of biofuel cell with graphite nanofibers showed the enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol and the maximum current density observed for E2electrode was 228.94mAcm.

Keywords: enzymatic electrode, fuel cell, immobilization, laccase

Procedia PDF Downloads 226
4244 Indoor Air Pollution Effects on Physical Growth of Children under 5 Years from Solid Fuel Combustion

Authors: Nayomi Ranathunga, Priyantha Perera, Sumal Nandasena, Nalini Sathiakumar, Anuradhini Kasthuriratne, Rajitha Wikremasinghe

Abstract:

Solid fuel combustion is an important source of indoor air pollution (IAP) in developing countries that has adverse health impacts particularly in children. This study was conducted to determine the effect of IAP due to solid fuel combustion on physical growth of children under five in a Sri Lankan setting. A prospective study was conducted in a mixed population comprising urban and semi urban residents. The study included 240 children under 5 who were permanent residents of the area. Physical growth was assessed by measuring anthropometric indices based on the World Health Organization (WHO) guidelines and standards. Exposure levels were defined according to the main type of fuel used for cooking at home: children residing in households using biomass fuel or kerosene as the main type of fuel for cooking were classified as the “high exposure” group and children resident in households using liquefied petroleum gas (LPG) or electricity for cooking were classified as the “low exposure” group. Sixty percent of the children were classified as from the “high” exposure group and 40% of the children were classified as from the “low” exposure group; 54% of the children were male. At baseline, the prevalence of wasting was 17.1% and the prevalence of stunting was 10.4%; the mean z-score for weight for height was - 0.85, weight for age was - 0.46 and height for age was -0.38. At baseline, children from the “high” exposure group had a significantly lower mean weight for height z-score (p=0.02) and a mean height for age z-score (p=0.001) as compared to children from the “low” exposure group after adjusting for confounding factors such as father’s education, mother’s education and family income. Poor maternal education was significantly associated with lower height for age z-scores (p=0.04) after adjusting for exposure status. IAP due to combustion of biomass fuel leads to chronic malnutrition.

Keywords: children, growth, indoor air pollution, solid fuel

Procedia PDF Downloads 268
4243 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis

Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack

Abstract:

Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).

Keywords: radiolysis, spent fuel, hydrogen, cyclotron

Procedia PDF Downloads 486
4242 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19

Authors: John Okanda Okwaro

Abstract:

Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.

Keywords: forecasting, greenhouse gas, green energy, hierarchical data format

Procedia PDF Downloads 132
4241 Energy Consumption Models for Electric Vehicles: Survey and Proposal of a More Realistic Model

Authors: I. Sagaama, A. Kechiche, W. Trojet, F. Kamoun

Abstract:

Replacing combustion engine vehicles by electric vehicles (EVs) is a major step in recent years due to their potential benefits. Battery autonomy and charging processes are still a big issue for that kind of vehicles. Therefore, reducing the energy consumption of electric vehicles becomes a necessity. Many researches target introducing recent information and communication technologies in EVs in order to propose reducing energy consumption services. Evaluation of realistic scenarios is a big challenge nowadays. In this paper, we will elaborate a state of the art of different proposed energy consumption models in the literature, then we will present a comparative study of these models, finally, we will extend previous works in order to propose an accurate and realistic energy model for calculating instantaneous power consumption of electric vehicles.

Keywords: electric vehicle, vehicular networks, energy models, traffic simulation

Procedia PDF Downloads 325
4240 Eating Behaviour and the Nature of Food Consumption in a Malaysian Adults Sample

Authors: Madihah Shukri

Abstract:

Research examining whether eating behaviour is related to unhealthy or healthy eating pattern is required to explain the mechanisms underlying obesity, and to inform health intervention aim to prevent and treat obesity. The purpose of this study was to investigate the relationship between eating behaviours and nature of food consumption. Methods: This was a cross-sectional study of 588 adults (males = 231 and females = 357). The Dutch Eating Behaviour Questionnaire (DEBQ) was used to measure restrained, emotional and external eating. Nature of food consumption was assessed by self-reported consumption of fruit and vegetables, sweet food, junk food and snacking. Results: Results revealed that emotional eating was found to be the principal predictor of the consumption of less healthy food (sweet food, junk food and snacking), while external eating predicted sweet food intake. Intake of fruit and vegetable was associated with restrained eating. In light of the significant associations between eating behaviour and nature of food consumption, acknowledging individuals eating styles can have implications for tailoring effective nutritional programs in the context of obesity and chronic disease epidemic.

Keywords: eating behaviour, food consumption, adult, Malaysia

Procedia PDF Downloads 333
4239 Alternative Fuel Production from Sewage Sludge

Authors: Jaroslav Knapek, Kamila Vavrova, Tomas Kralik, Tereza Humesova

Abstract:

The treatment and disposal of sewage sludge is one of the most important and critical problems of waste water treatment plants. Currently, 180 thousand tonnes of sludge dry matter are produced in the Czech Republic, which corresponds to approximately 17.8 kg of stabilized sludge dry matter / year per inhabitant of the Czech Republic. Due to the fact that sewage sludge contains a large amount of substances that are not beneficial for human health, the conditions for sludge management will be significantly tightened in the Czech Republic since 2023. One of the tested methods of sludge liquidation is the production of alternative fuel from sludge from sewage treatment plants and paper production. The paper presents an analysis of economic efficiency of alternative fuel production from sludge and its use for fluidized bed boiler with nominal consumption of 5 t of fuel per hour. The evaluation methodology includes the entire logistics chain from sludge extraction, through mechanical moisture reduction to about 40%, transport to the pelletizing line, moisture drying for pelleting and pelleting itself. For economic analysis of sludge pellet production, a time horizon of 10 years corresponding to the expected lifetime of the critical components of the pelletizing line is chosen. The economic analysis of pelleting projects is based on a detailed analysis of reference pelleting technologies suitable for sludge pelleting. The analysis of the economic efficiency of pellet is based on the simulation of cash flows associated with the implementation of the project over the life of the project. For the entered value of return on the invested capital, the price of the resulting product (in EUR / GJ or in EUR / t) is searched to ensure that the net present value of the project is zero over the project lifetime. The investor then realizes the return on the investment in the amount of the discount used to calculate the net present value. The calculations take place in a real business environment (taxes, tax depreciation, inflation, etc.) and the inputs work with market prices. At the same time, the opportunity cost principle is respected; waste disposal for alternative fuels includes the saved costs of waste disposal. The methodology also respects the emission allowances saved due to the displacement of coal by alternative (bio) fuel. Preliminary results of testing of pellet production from sludge show that after suitable modifications of the pelletizer it is possible to produce sufficiently high quality pellets from sludge. A mixture of sludge and paper waste has proved to be a more suitable material for pelleting. At the same time, preliminary results of the analysis of the economic efficiency of this sludge disposal method show that, despite the relatively low calorific value of the fuel produced (about 10-11 MJ / kg), this sludge disposal method is economically competitive. This work has been supported by the Czech Technology Agency within the project TN01000048 Biorefining as circulation technology.

Keywords: Alternative fuel, Economic analysis, Pelleting, Sewage sludge

Procedia PDF Downloads 101
4238 Analysis of Resource Consumption Accounting as a New Approach to Management Accounting

Authors: Yousef Rostami Gharainy

Abstract:

This paper presents resource consumption accounting as an imaginative way to deal with management accounting which concentrates on administrators as the essential clients of the data and gives the best information of conventional management accounting. This system underscores that association's asset reasons costs, accordingly in costing frameworks the emphasis ought to be on assets and utilization of them. Resource consumption accounting consolidates two costing methodologies, action based and German cost accounting method known as GPK. This methodology notwithstanding giving a chance to managers to decide, makes task management accounting as operational. The reason for this article is to clarify the idea of resource consumption accounting, its parts and highlights and use of this strategy in associations. In the first place we deliver to presentation of resource consumption accounting, foundation, reasons for its development and the issues that past costing frameworks confronted it. At that point we give standards and presumptions of this technique; at last we depict the execution of this strategy in associations and its preferences over other costing strategies.

Keywords: resource consumption accounting, management accounting, action based method, German cost accounting method

Procedia PDF Downloads 277
4237 Policy Initiatives That Increase Mass-Market Participation of Fuel Cell Electric Vehicles

Authors: Usman Asif, Klaus Schmidt

Abstract:

In recent years, the development of alternate fuel vehicles has helped to reduce carbon emissions worldwide. As the number of vehicles will continue to increase in the future, the energy demand will also increase. Therefore, we must consider automotive technologies that are efficient and less harmful to the environment in the long run. Battery Electric Vehicles (BEVs) have gained popularity in recent years because of their lower maintenance, lower fuel costs, and lower carbon emissions. Nevertheless, BEVs show several disadvantages, such as slow charging times and lower range than traditional combustion-powered vehicles. These factors keep many people from switching to BEVs. The authors of this research believe that these limitations can be overcome by using fuel cell technology. Fuel cell technology converts chemical energy into electrical energy from hydrogen power and therefore serves as fuel to power the motor and thus replacing heavy lithium batteries that are expensive and hard to recycle. Also, in contrast to battery-powered electric vehicle technology, Fuel Cell Electric Vehicles (FCEVs) offer higher ranges and lower fuel-up times and therefore are more competitive with electric vehicles. However, FCEVs have not gained the same popularity as electric vehicles due to stringent legal frameworks, underdeveloped infrastructure, high fuel transport, and storage costs plus the expense of fuel cell technology itself. This research will focus on the legal frameworks for hydrogen-powered vehicles, and how a change in these policies may affect and improve hydrogen fueling infrastructure and lower hydrogen transport and storage costs. These policies may also facilitate reductions in fuel cell technology costs. In order to attain a better framework, a number of countries have developed conceptual roadmaps. These roadmaps have set out a series of objectives to increase the access of FCEVs to their respective markets. This research will specifically focus on policies in Japan, Europe, and the USA in their attempt to shape the automotive industry of the future. The researchers also suggest additional policies that may help to accelerate the advancement of FCEVs to mass-markets. The approach was to provide a solid literature review using resources from around the globe. After a subsequent analysis and synthesis of this review, the authors concluded that in spite of existing legal challenges that have hindered the advancement of fuel-cell technology in the automobile industry in the past, new initiatives that enhance and advance the very same technology in the future are underway.

Keywords: fuel cell electric vehicles, fuel cell technology, legal frameworks, policies and regulations

Procedia PDF Downloads 87
4236 Determinants of Aggregate Electricity Consumption in Ghana: A Multivariate Time Series Analysis

Authors: Renata Konadu

Abstract:

In Ghana, electricity has become the main form of energy which all sectors of the economy rely on for their businesses. Therefore, as the economy grows, the demand and consumption of electricity also grow alongside due to the heavy dependence on it. However, since the supply of electricity has not increased to match the demand, there has been frequent power outages and load shedding affecting business performances. To solve this problem and advance policies to secure electricity in Ghana, it is imperative that those factors that cause consumption to increase be analysed by considering the three classes of consumers; residential, industrial and non-residential. The main argument, however, is that, export of electricity to other neighbouring countries should be included in the electricity consumption model and considered as one of the significant factors which can decrease or increase consumption. The author made use of multivariate time series data from 1980-2010 and econometric models such as Ordinary Least Squares (OLS) and Vector Error Correction Model. Findings show that GDP growth, urban population growth, electricity exports and industry value added to GDP were cointegrated. The results also showed that there is unidirectional causality from electricity export and GDP growth and Industry value added to GDP to electricity consumption in the long run. However, in the short run, there was found to be a directional causality among all the variables and electricity consumption. The results have useful implication for energy policy makers especially with regards to electricity consumption, demand, and supply.

Keywords: electricity consumption, energy policy, GDP growth, vector error correction model

Procedia PDF Downloads 403
4235 Scope of Heavy Oil as a Fuel of the Future

Authors: Kiran P. Chadayamuri, Saransh Bagdi

Abstract:

Increasing imbalance between energy supply and demand has made nations and companies involved in the energy sector to boost up their research and find suitable solutions. With the high rates at which conventional oil and gas resources are depleting, efficient exploration and exploitation of heavy oil could just be the answer. Heavy oil may be defined as crude oil having API gravity value of less than 20⁰. They are highly viscous, have low hydrogen to carbon ratios and are known to produce high carbon residues. They have high contents of asphaltenes, heavy metals, sulphur and nitrogen in them. Due to these properties extraction, transportation and refining of crude oil have its share of challenges. Lack of suitable technology has hindered its production in the past, but now things are going in a more positive direction. The aim of this paper is to study the various advantages of heavy oil, associated limitations and its feasibility as a fuel of the future.

Keywords: energy, heavy oil, fuel, future

Procedia PDF Downloads 257
4234 Nafion Nanofiber Mat in a Single Fuel Cell Test

Authors: Chijioke Okafor, Malik Maaza, Touhami Mokrani

Abstract:

Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively.

Keywords: fuel cell, nafion, nanofiber, permeability

Procedia PDF Downloads 449
4233 Government Final Consumption Expenditure Financial Deepening and Household Consumption Expenditure NPISHs in Nigeria

Authors: Usman A. Usman

Abstract:

Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.

Keywords: household, government expenditures, vector error correction model, johansen test

Procedia PDF Downloads 22
4232 Colombia Fossil Fuel Policies and Their Impact on Urban Air Quality

Authors: Ruth Catacolí, Hector Garcia

Abstract:

Colombia Urban Areas shows a decreasing of their air quality, no matter the actions developed by the Government facing the mitigation of pressure factors related with air pollution. Examples of these actions were the fossil fuel quality improvement policies (FFQI). This study evaluated the impact of three FFQI in the air quality of Bogotá during the period 1990 - 2006: The phase-out of lead in the gasoline; the sulfur reduction in diesel oil consumed in Bogotá and the oxygenation of gasoline through the addition of ethanol. The results indicate that only the policy of phase-out of lead in gasoline has been effective, showing dropping of lead oxides concentration in the air. Some stakeholders believe that the FFQI evaluated in the study are environmental policies, but no one of these policies has been supported by an environmental impact assessment that shows specific benefits in air quality. The research includes some fuel policy elements to achieve positive impact on the air quality in the urban centers of Colombia.

Keywords: policy assessment, fuel quality, urban air quality, air quality management

Procedia PDF Downloads 292
4231 Assessment of Energy Consumption in Cluster Redevelopment: A Case Study of Bhendi Bazar in Mumbai

Authors: Insiya Kapasi, Roshni Udyavar Yehuda

Abstract:

Cluster Redevelopment is a new concept in the city of Mumbai. Its regulations were laid down by the government in 2009. The concept of cluster redevelopment encompasses a group of buildings defined by a boundary as specified by the municipal authority (in this case, Mumbai), which may be dilapidated or approved for redevelopment. The study analyses the effect of cluster redevelopment in the form of renewal of old group of buildings as compared to refurbishment or restoration - on energy consumption. The methodology includes methods of assessment to determine increase or decrease in energy consumption in cluster redevelopment based on different criteria such as carpet area of the units, building envelope and its architectural elements. Results show that as the area and number of units increase the Energy consumption increases and the EPI (energy performance index) decreases as compared to the base case. The energy consumption per unit area declines by 29% in the proposed cluster redevelopment as compared to the original settlement. It is recommended that although the development is spacious and provides more light and ventilation, aspects such as glass type, traditional architectural features and consumer behavior are critical in the reduction of energy consumption.

Keywords: Cluster Redevelopment, Energy Consumption, Energy Efficiency, Typologies

Procedia PDF Downloads 114
4230 Fuelwood Rsources Utilisation and Its Impact on Sustainable Environment: A Rural Perception

Authors: Abubakar Abdullahi

Abstract:

Large amount of human energy are spent gathering and collecting fuel wood in many parts of the world, most especially in rural areas. In Nigeria fuel wood serves million houses in both rural and urban centers for various energy needs. It’s a common scene in many places while passing by roads to see bunch of woods being sold by the road sides. Even though the resource serves millions of peoples energy needs it has serious consequences on our environment, thus sustainable environment. Majority of the rural areas who rely heavily on the firewood as a means of energy are not aware of the dangers associated with the uses of the products. The aim of this work is to look into the utilization of fuel wood among rural dwellers and their perception about the dangers associated with it and how to sustain our environment. The methodology used involves a structured questionnaire designed with the question about the utilization and perception. The questionnaire is administered to the people of Kashere, a rural area in Gombe state. The result clearly shows there is a high level of ignorance among rural dwellers on the dangers of using fuel wood and how it constitute the depletion of the immediate environment. However, what is surprising in the research is the people’s readiness for alternative energy sources. The research recommend that proper orientation and sensitization is required to create education and awareness to the rural dwellers as well as provide alternative energy that is available, environment friendly and accessible to address the problems.

Keywords: energy, rural dwellers, environment, fuel wood, resources

Procedia PDF Downloads 460
4229 Short-Long Term between Gross Domestic Product and Consumption in Indonesia

Authors: Teguh Sugiarto, Ahmad Subagyo, Ludiro Madu, Amir Mohammadian Amiri

Abstract:

Recently, the significant fluctuations accosiated with Indonesian economy justifies the need for paying more attention to this issue. In this regard, the main objective of this study is to investigate the relationship between two issues related to the macro Indonesia economy called consumption and GDP during the period of 1967 to 2014. This research method exploits short term and long term relationships using Granger and subsequently, models them by the causality method . However, using analysis of Granger with Johansen shows that there is not only a long term, but also a short-long relationship between GDP and consumption using lags the interval 5.

Keywords: cointegration, Granger causality, GDP, consumption

Procedia PDF Downloads 322
4228 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell

Authors: Sujit Kumar Guchhait, Subir Paul

Abstract:

One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.

Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM

Procedia PDF Downloads 268
4227 Photovoltaic System: An Alternative to Energy Efficiency in a Residence

Authors: Arsenio Jose Mindu

Abstract:

The concern to carry out a study related to Energy Efficiency arose based on the various debates in international television networks and not only, but also in several forums of national debates. The concept of Energy Efficiency is not yet widely disseminated and /or taken into account in terms of energy consumption, not only at the domestic level but also at the industrial level in Mozambique. In the context of the energy audit, the time during which each of the appliances is connected to the voltage source, the time during which they are in standby mode was recorded on a spreadsheet basis. Based on these data, daily and monthly consumption was calculated. In order to have more accurate information on the daily levels of daily consumption, the electricity consumption was read every hour of the day (from 5:00 am to 11:00 pm), since after 23:00 the energy consumption remains constant. For ten days. Based on the daily energy consumption and the maximum consumption power, the design of the photovoltaic system for the residence was made. With the implementation of the photovoltaic system in order to guarantee energy efficiency, there was a significant reduction in the use of electricity from the public grid, increasing from approximately 17 kwh per day to around 11 kwh, thus achieving an energy efficiency of 67.4 %. That is to say, there was a reduction not only in terms of the amount of energy consumed but also of the monthly expenses with electricity, having increased from around 2,500,00Mt (2,500 meticais) to around 800Mt per month.

Keywords: energy efficiency, photovoltaic system, residential sector, Mozambique

Procedia PDF Downloads 172
4226 Divulging Discursive Constructions On Alcohol Consumption Among Filipino Men Who Are Recovering From Alcoholism: A Foucauldian Approach

Authors: Quervin Zacary M. Roldan, Gwyneth Gabrielle M. Fajardo, Carmela M. Maciar

Abstract:

Alcohol in the Philippines is regarded as a part of their culture however, it is also stigmatized, as alcohol addiction is prevalent among Filipino Males leading them to develop Alcohol Use Disorder. With this, Discourses of alcohol consumption from Individuals recovering from AUD from different rehabilitation centers in the Philippines were analyzed in the study to explore how they ‘talk’ about their alcohol consumption. By utilizing the Foucauldian Discourse Analysis following the six steps by Carla Willig, four (4) major discourses were major construed by the recovering individuals of AUD which are: (1) Being alcohol-free was a dream, (2) Drinking alcohol turns you into a demon that will destroy your life, (3) Drinking alcohol as ‘doing’ drugs and (4) Alcohol is a temporary solution. These discourses construct alcohol consumption as something that is being referred to as a 'bad' substance which is both normalized and stigmatized in Philippine society.

Keywords: alcohol, alcohol consumption, alcohol-based beverages, psychological effects, discourse, alcohol use disorder, stigma

Procedia PDF Downloads 105
4225 The Influence of Demographic on Tea Consumption in China

Authors: Xiguan Jiangfan Yang

Abstract:

This study investigates the tea consumption based on the Double-Hurdle model. The results of a CHNS survey of 12,745 samples in China offer two preliminary insights: First, we can’t apply the conclusions we get by using all samples to the men or women subgroups. Second, men and women are impacted by different demographic not only on the intention to drink tea, but also on the quantities of tea consumed. These two findings suggest that appropriate and corresponding marketing strategies should be developed to targeting on the different groups of tea consumers.

Keywords: Chinese, CHNS, Double-Hurdle model, tea consumption

Procedia PDF Downloads 380
4224 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle

Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh

Abstract:

Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.

Keywords: aerodynamics, CFD, fuel efficiency, golf ball

Procedia PDF Downloads 307