Search results for: fire dynamics simulation (FDS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7373

Search results for: fire dynamics simulation (FDS)

7163 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 370
7162 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls

Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama

Abstract:

Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population

Keywords: backward bifurcation, cholera, equilibrium, dynamics, stability

Procedia PDF Downloads 405
7161 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 294
7160 The Potential of Potato and Maize Based Snacks as Fire Accelerants

Authors: E. Duffin, L. Brownlow

Abstract:

Arson is a crime which can provide exceptional problems to forensic specialists. Its destructive nature makes evidence much harder to find, especially when used to cover up another crime. There is a consistent potential threat of arsonists seeking new and easier ways to set fires. Existing research in this field primarily focuses on the use of accelerants such as petrol, with less attention to other more accessible and harder to detect materials. This includes the growing speculation of potato and maize-based snacks being used as fire accelerants. It was hypothesized that all ‘crisp-type’ snacks in foil packaging had the potential to act as accelerants and would burn readily in the various experiments. To test this hypothesis, a series of small lab-based experiments were undertaken, igniting samples of the snacks. Factors such as ingredients, shape, packaging and calorific value were all taken into consideration. The time (in seconds) spent on fire by the individual snacks was recorded. It was found that all of the snacks tested burnt for statistically similar amounts of time with a p-value of 0.0157. This was followed with a large mock real-life scenario using packets of crisps on fire and car seats to investigate as to the possibility of these snacks being verifiable tools to the arsonist. Here, three full packets of crisps were selected based on variations in burning during the lab experiments. They were each lit with a lighter to initiate burning, then placed onto a car seat to be timed and observed with video cameras. In all three cases, the fire was significant and sustained by the 200-second mark. On the basis of this data, it was concluded that potato and maize-based snacks were viable accelerants of fire. They remain an effective method of starting fires whilst being cheap, accessible, non-suspicious and non-detectable. The results produced supported the hypothesis that all ‘crisp-type’ snacks in foil packaging (that had been tested) had the potential to act as accelerants and would burn readily in the various experiments. This study serves to raise awareness and provide a basis for research and prevention of arson regarding maize and potato-based snacks as fire accelerants.

Keywords: arson, crisps, fires, food

Procedia PDF Downloads 96
7159 Molecular Dynamics Studies of Homogeneous Condensation and Thermophysical Properties of HFC-1336mzz(Z)

Authors: Misbah Khan, Jian Wen, Muhammad Asif Shakoori

Abstract:

The Organic Rankine Cycle (ORC) plays an important role in converting low-temperature heat sources into electrical power by using refrigerants as working fluids. The thermophysical properties of working fluids are essential for designing ORC. HFO-1336mzz(Z) (cis-1,1,1,4,4,4-hexafluoro-2-butene) considered as working fluid and have almost 99% low GWP and relatively same thermophysical properties used as a replacement of HFC-245fa (1,1,1,3,3-pentafluoro-propane). The environmental, safety, healthy and thermophysical properties of HFO-1336mzz(Z) are needed to use it in a practical system. In this paper, Molecular dynamics simulations were used to investigate the Homogeneous condensation, thermophysical and structural properties of HFO-1336mzz(Z) and HFC-245fa. The effect of various temperatures and pressures on thermophysical properties and condensation was extensively investigated. The liquid densities and isobaric heat capacities of this refrigerant was simulated at 273.15K to 353.15K temperatures and pressure0.5-4.0MPa. The simulation outcomes were compared with experimental data to validate our simulation method. The mean square displacement for different temperatures was investigated for dynamical analysis. The variations in potential energies and condensation rate were simulated to get insight into the condensation process. The radial distribution function was simulated at the micro level for structural analysis and revealed that the phase transition of HFO-1336mzz(Z) did not affect the intramolecular structure.

Keywords: homogenous condensation, refrigerants, molecular dynamics simulations, organic rankine cycle

Procedia PDF Downloads 115
7158 Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam

Authors: Saeed Khandan Siar, Stefan Tenbohlen, Christian Breuer, Raphael Lebreton

Abstract:

The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model.

Keywords: CFD, conjugated heat transfer, power transformers, temperature distribution

Procedia PDF Downloads 382
7157 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation

Procedia PDF Downloads 52
7156 A Case Study of Assessment of Fire Affected Concrete Structure by NDT

Authors: Nikhil Gopalkrishnan, Praveen Bhaskaran, Aditya Bhargava, Gyandeep Bhumarkar

Abstract:

The present paper is an attempt to perform various Non-Destructive Tests on concrete structure as NDT is gaining a wide importance in the branch of civil engineering these days. Various tests that are performed under NDT not only enable us to determine the strength of concrete structure, but also provide us in-hand information regarding the durability, in-situ properties of the concrete structure. Keeping these points in our mind, we have focused our views on performing a case study to show the comparison between the NDT test results performed on a particular concrete structure and another structure at the same site which is subjected to a continuous fire of say 48-72 hours. The mix design and concrete grade of both the structures were same before the one was affected by fire. The variations in the compressive strength, concrete quality and in-situ properties of the two structures have been discussed in this paper. NDT tests namely Ultrasonic Pulse Velocity Test, Rebound Hammer Test, Core-Cutter Test was performed at both the sites. The main objective of this research is to analyze the variations in the strength and quality of the concrete structure which is subjected to a high temperature fire and the one which isn’t exposed to it.

Keywords: core-cutter test, non-destructive test, rebound hammer test, ultrasonic pulse velocity test

Procedia PDF Downloads 315
7155 Two-Phase Flow Study of Airborne Transmission Control in Dental Practices

Authors: Mojtaba Zabihi, Stephen Munro, Jonathan Little, Ri Li, Joshua Brinkerhoff, Sina Kheirkhah

Abstract:

Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets.

Keywords: aerosols, computational fluid dynamics, COVID-19, dental, discrete phase model, droplets, two-phase flow

Procedia PDF Downloads 227
7154 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers

Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari

Abstract:

Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.

Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete

Procedia PDF Downloads 135
7153 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity

Procedia PDF Downloads 347
7152 Multiscale Simulation of Ink Seepage into Fibrous Structures through a Mesoscopic Variational Model

Authors: Athmane Bakhta, Sebastien Leclaire, David Vidal, Francois Bertrand, Mohamed Cheriet

Abstract:

This work presents a new three-dimensional variational model proposed for the simulation of ink seepage into paper sheets at the fiber level. The model, inspired by the Hising model, takes into account a finite volume of ink and describes the system state through gravity, cohesion, and adhesion force interactions. At the mesoscopic scale, the paper substrate is modeled using a discretized fiber structure generated using a numerical deposition procedure. A modified Monte Carlo method is introduced for the simulation of the ink dynamics. Besides, a multiphase lattice Boltzmann method is suggested to fine-tune the mesoscopic variational model parameters, and it is shown that the ink seepage behaviors predicted by the proposed model can resemble those predicted by a method relying on first principles.

Keywords: fibrous media, lattice Boltzmann, modelling and simulation, Monte Carlo, variational model

Procedia PDF Downloads 118
7151 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method

Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong

Abstract:

The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.

Keywords: moving wall, adaptive grid methods, CFD, moving mesh method

Procedia PDF Downloads 107
7150 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank

Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park

Abstract:

When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.

Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)

Procedia PDF Downloads 654
7149 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm

Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot

Abstract:

The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.

Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump

Procedia PDF Downloads 117
7148 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire

Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.

Abstract:

Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.

Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection

Procedia PDF Downloads 48
7147 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study

Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani

Abstract:

Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.

Keywords: CspA, homology modelling, mutation, molecular dynamics simulation

Procedia PDF Downloads 341
7146 Long Distance Aspirating Smoke Detection for Large Radioactive Areas

Authors: Michael Dole, Pierre Ninin, Denis Raffourt

Abstract:

Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.

Keywords: air sampling, fire detection, long distance, radioactive areas

Procedia PDF Downloads 122
7145 The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study

Authors: Ashish Kumar Agrahari, Amit Kumar

Abstract:

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype.

Keywords: homology modeling, molecular dynamics simulation, missense mutations PNH, MCAHS2, PIGA

Procedia PDF Downloads 116
7144 Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes

Authors: F. M. Mohamed, A. Y. Abdelaziz

Abstract:

The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects.

Keywords: crude oil, fire, floating roof tank, lightning protection system

Procedia PDF Downloads 250
7143 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 93
7142 Simulation of Red Blood Cells in Complex Micro-Tubes

Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi

Abstract:

In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.

Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics

Procedia PDF Downloads 136
7141 Impact of Fire on Bird Diversity in Oil Palm Plantation: Case Study in South Sumatra Province

Authors: Yanto Santosa, Windi Sugiharti

Abstract:

Fires occur annually in oil palm plantations. The objective of the study was to identify the impact of fire on bird diversity in oil palm plantations. Data of bird diversity were collected using the line transect method. Data were collected from February to March 2017. To estimate species richness, we used the Margalef index, to determine the evenness of species richness between site, we used an Evenness index, and to estimate the similarity of bird communities between different habitat, we used the Sørensen index. The result showed that the number of bird species and species richness in the post burned area was higher than those in unburned area. Different results were found for the Evenness Index, where the value was higher in unburned area that was in post burned area. These results indicate that fires did not decrease bird diversity as alleged by many parties whom stated that fires caused species extinction. Fire trigger the emerging of belowground plant and population of insects as a sources of food for the bird community. This result is consistent with several research findings in the United States and Australia that used controlled fires as one of regional management tools.

Keywords: bird, fire, index of similarity, oil palm, species diversity

Procedia PDF Downloads 205
7140 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade

Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača

Abstract:

This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.

Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools

Procedia PDF Downloads 196
7139 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R. Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (CI) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work, the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: evaporating diesel sprays, penetration rates, hot bomb conditions

Procedia PDF Downloads 324
7138 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories

Authors: Mustafa Arda, Metin Aydogdu

Abstract:

Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.

Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain

Procedia PDF Downloads 355
7137 Study the Sloshing Phenomenon in the Tank Filled Partially with Liquid Using Computational Fluid Dynamics (CFD) Simulation

Authors: Amit Kumar, Jaikumar V, Pradeep AG, Shivakumar Bhavi

Abstract:

Reducing sloshing is one of the major challenges in industries where transporting of liquid involved. The present study investigates the sloshing effect for different liquid levels 25%, 50%, and 75% of the tank capacity. CFD simulation for three different liquid levels has been carried out using a time-based multiphase Volume of fluid (VOF) scheme. Baffles were introduced to examine the sloshing effect inside the tank. Results were compared against the baseline case to assess the effectiveness of baffles. Maximum liquid height over the period of the simulation was considered as the parameter for measuring the sloshing effect inside the tank. It was found that the addition of baffles reduced the sloshing effect inside the tank as compared to the baseline model.

Keywords: sloshing, CFD, VOF, baffles

Procedia PDF Downloads 211
7136 A Design of Beam-Steerable Antenna Array for Use in Future Mobile Handsets

Authors: Naser Ojaroudi Parchin, Atta Ullah, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

A design of beam-steerable antenna array for the future cellular communication (5G) is presented. The proposed design contains eight elements of compact end-fire antennas arranged on the top edge of smartphone printed circuit board (PCB). Configuration of the antenna element consists of the conductive patterns on the top and bottom copper foil layers and a substrate layer with a via-hole. The simulated results including input-impedance and also fundamental radiation properties have been presented and discussed. The impedance bandwidth (S11 ≤ -10 dB) of the antenna spans from 17.5 to 21 GHz (more than 3 GHz bandwidth) with a resonance at 19 GHz. The antenna exhibits end-fire (directional) radiation beams with wide-angle scanning property and could be used for the future 5G beam-forming. Furthermore, the characteristics of the array design in the vicinity of user-hand are studied.

Keywords: beam-steering, end-fire radiation mode, mobile-phone antenna, phased array

Procedia PDF Downloads 118
7135 Firesetting in a Male Prison; An Investigation into the Personality Differences in Firesetters and Non-firesetters

Authors: Elinor Bull, Faye Horsley

Abstract:

Abstract Objective: The current study investigated if there was a difference in personality factors in prisoners who had a recorded history of firesetting and who had no recorded history of firesetting. Participants: Participants were 64 male prisoners in a Category B male prison. Participants who had set a fire were identified through the prisons data base, and prisoners who had not set a fire were selected at random. Method: The study used the International Personality Item Pool-50 to measure personality factors, and prisoners who had set a fire were identified through a range of sources accessible to the prison. Analytical evaluation was done by the Multivariate Kruskal Wallis and Mann-Whitney tests. Findings: There was a significant difference between the the firesetting and non-firesetting group in the scores of the personality factor of Contentiousness. Contentiousness was significantly lower in the firesetting sample compared to the non-firesetting sample. Conclusions: Implications for clinical practice and future research are discussed.

Keywords: firesetting, personality, arson, prison, prisoners

Procedia PDF Downloads 47
7134 Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)

Authors: Ahmed Al-Saadi, Ali Hassanpour, Tariq Mahmud

Abstract:

The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient.

Keywords: aerodynamics, RANS, sport utility vehicle, turbulent flow

Procedia PDF Downloads 275