Search results for: expansive soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2939

Search results for: expansive soil

479 Molecular Epidemiology of Anthrax in Georgia

Authors: N. G. Vepkhvadze, T. Enukidze

Abstract:

Anthrax is a fatal disease caused by strains of Bacillus anthracis, a spore-forming gram-positive bacillus that causes the disease anthrax in animals and humans. Anthrax is a zoonotic disease that is also well-recognized as a potential agent of bioterrorism. Infection in humans is extremely rare in the developed world and is generally due to contact with infected animals or contaminated animal products. Testing of this zoonotic disease began in 1907 in Georgia and is still being tested routinely to provide accurate information and efficient testing results at the State Laboratory of Agriculture of Georgia. Each clinical sample is analyzed by RT-PCR and bacteriology methods; this study used Real-Time PCR assays for the detection of B. anthracis that rely on plasmid-encoded targets with a chromosomal marker to correctly differentiate pathogenic strains from non-anthracis Bacillus species. During the period of 2015-2022, the State Laboratory of Agriculture (SLA) tested 250 clinical and environmental (soil) samples from several different regions in Georgia. In total, 61 out of the 250 samples were positive during this period. Based on the results, Anthrax cases are mostly present in Eastern Georgia, with a high density of the population of livestock, specifically in the regions of Kakheti and Kvemo Kartli. All laboratory activities are being performed in accordance with International Quality standards, adhering to biosafety and biosecurity rules by qualified and experienced personnel handling pathogenic agents. Laboratory testing plays the largest role in diagnosing animals with anthrax, which helps pertinent institutions to quickly confirm a diagnosis of anthrax and evaluate the epidemiological situation that generates important data for further responses.

Keywords: animal disease, baccilus anthracis, edp, laboratory molecular diagnostics

Procedia PDF Downloads 55
478 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa

Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly

Abstract:

It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.

Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal

Procedia PDF Downloads 250
477 The Role of Non-Native Plant Species in Enhancing Food Security in Sub-Saharan Africa

Authors: Thabiso Michael Mokotjomela, Jasper Knight

Abstract:

Intensification of agricultural food production in sub-Saharan Africa is of paramount importance as a means of increasing the food security of communities that are already experiencing a range of environmental and socio-economic stresses. However, achieving this aim faces several challenges including ongoing climate change, increased resistance of diseases and pests, extreme environmental degradation partly due to biological invasions, land tenure and management practices, socio-economic developments of rural populations, and national population growth. In particular, non-native plant species tend to display greater adaptation capacity to environmental stress than native species that form important food resource base for human beings, thus suggesting a potential for usage to shift accordingly. Based on review of the historical benefits of non-native plant species in food production in sub-Saharan Africa, we propose that use of non-invasive, non-native plant species and/or the genetic modification of native species might be viable options for future agricultural sustainability in this region. Coupled with strategic foresight planning (e.g. use of biological control agents that suppress plant species’ invasions), the consumptive use of already-introduced non-native species might help in containment and control of possible negative environmental impacts of non-native species on native species, ecosystems and biodiversity, and soil fertility and hydrology. Use of non-native species in food production should be accompanied by low cost agroecology practices (e.g. conservation agriculture and agrobiodiversity) that may promote the gradual recovery of natural capital, ecosystem services, and promote conservation of the natural environment as well as enhance food security.

Keywords: food security, invasive species, agroecology, agrobiodiversity, socio-economic stresses

Procedia PDF Downloads 338
476 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas

Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas

Abstract:

Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.

Keywords: biological breakdown, plastic bags, prototype, desert regions

Procedia PDF Downloads 251
475 Affect of Reservoir Fluctuations on an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China

Authors: Javed Iqbal

Abstract:

Filling of Xiangjiaba Reservoir Lake in Southwest China triggered and re-activated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out in order to identify the landslide with respect to its surroundings and to find out the slip-surface. Boreholes were drilled in order to find out the subsurface lithology and the depth of failure of Dasha landslide. The in-situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain are relatively steep. The landslide area is about 29 × 104 m², and the maximum thickness of the landslide deposits revealed by drilling is about 40 m with the average thickness being about 20 m, and the volume is thus estimated being about 580 × 10⁴ m³. Bedrock in the landslide area is composed of Suining Formation of Jurassic age. The main rock type is silty mudstone with sandstone, and bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.

Keywords: Dasha landslide, Xiangjiaba reservoir, strength reduction method, bedding rockslide

Procedia PDF Downloads 133
474 Low Sulfur Diesel-Like Fuel From Quick Remediation Process of Waste Oil Sludge

Authors: Isam A. H. Al Zubaidy

Abstract:

A quick process may be needed to get the benefit the big generated quantity of waste oil sludge (WOS). The process includes the mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixing for 10 minutes using bench type overhead stirrer and followed by filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of waste oil sludge was decreased by about 60% by mass. This means that about 60 % of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black color. The sulfur content was increased also. This requires other processes to reduce the sulfur content of the resulting light fuel. A new desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl₂ activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as an asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.

Keywords: oil sludge, diesel fuel, blending process, filtration process

Procedia PDF Downloads 87
473 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 269
472 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building

Procedia PDF Downloads 341
471 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 119
470 Spatial and Time Variability of Ambient Vibration H/V Frequency Peak

Authors: N. Benkaci, E. Oubaiche, J.-L. Chatelain, R. Bensalem, K. Abbes

Abstract:

The ambient vibration H/V technique is widely used nowadays in microzonation studies, because of its easy field handling and its low cost, compared to other geophysical methods. However, in presence of complex geology or lateral heterogeneity evidenced by more than one peak frequency in the H/V curve, it is difficult to interpret the results, especially when soil information is lacking. In this work, we focus on the construction site of the Baraki 40000=place stadium, located in the north-east side of the Mitidja basin (Algeria), to identify the seismic wave amplification zones. H/V curve analysis leads to the observation of spatial and time variability of the H/V frequency peaks. The spatial variability allows dividing the studied area into three main zones: (1) one with a predominant frequency around 1,5 Hz showing an important amplification level, (2) the second exhibits two peaks at 1,5 Hz and in the 4 Hz – 10 Hz range, and (3) the third zone is characterized by a plateau between 2 Hz and 3 Hz. These H/V curve categories reveal a consequent lateral heterogeneity dividing the stadium site roughly in the middle. Furthermore, a continuous ambient vibration recording during several weeks allows showing that the first peak at 1,5 Hz in the second zone, completely disappears between 2 am and 4 am, and reaching its maximum amplitude around 12 am. Consequently, the anthropogenic noise source generating these important variations could be the Algiers Rocade Sud highway, located in the maximum amplification azimuth direction of the H/V curves. This work points out that the H/V method is an important tool to perform nano-zonation studies prior to geotechnical and geophysical investigations, and that, in some cases, the H/V technique fails to reveal the resonance frequency in the absence of strong anthropogenic source.

Keywords: ambient vibrations, amplification, fundamental frequency, lateral heterogeneity, site effect

Procedia PDF Downloads 215
469 Effects of Climate Change and Land Use, Land Cover Change on Atmospheric Mercury

Authors: Shiliang Wu, Huanxin Zhang

Abstract:

Mercury has been well-known for its negative effects on wildlife, public health as well as the ecosystem. Once emitted into atmosphere, mercury can be transformed into different forms or enter the ecosystem through dry deposition or wet deposition. Some fraction of the mercury will be reemitted back into the atmosphere and be subject to the same cycle. In addition, the relatively long lifetime of elemental mercury in the atmosphere enables it to be transported long distances from source regions to receptor regions. Global change such as climate change and land use/land cover change impose significant challenges for mercury pollution control besides the efforts to regulate mercury anthropogenic emissions. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from changes in climate and land use/land cover on the global budget of mercury as well as its atmospheric transport, chemical transformation, and deposition. We carry out a suite of sensitivity model simulations to separate the impacts on atmospheric mercury associated with changes in climate and land use/land cover. Both climate change and land use/land cover change are found to have significant impacts on global mercury budget but through different pathways. Land use/land cover change primarily increase mercury dry deposition in northern mid-latitudes over continental regions and central Africa. Climate change enhances the mobilization of mercury from soil and ocean reservoir to the atmosphere. Also, dry deposition is enhanced over most continental areas while a change in future precipitation dominates the change in mercury wet deposition. We find that 2000-2050 climate change could increase the global atmospheric burden of mercury by 5% and mercury deposition by up to 40% in some regions. Changes in land use and land cover also increase mercury deposition over some continental regions, by up to 40%. The change in the lifetime of atmospheric mercury has important implications for long-range transport of mercury. Our case study shows that changes in climate and land use and cover could significantly affect the source-receptor relationships for mercury.

Keywords: mercury, toxic pollutant, atmospheric transport, deposition, climate change

Procedia PDF Downloads 449
468 Conservation Importance of Independent Smallholdings in Safeguarding Biodiversity in Oil Palm Plantations

Authors: Arzyana Sunkar, Yanto Santosa

Abstract:

The expansions of independent smallholdings in Indonesia are feared to increase the negative ecological impacts of oil palm plantation on biodiversity. Hence, research is required to identify the conservation importance of independent smallholder oil palm plantations on biodiversity. This paper discussed the role of independent smallholdings in the conservation of biodiversity in oil palm plantations and to compare it with High Conservation Value Forest as a conservation standard of RSPO. The research was conducted from March to April 2016. Data on biodiversity were collected on 16 plantations and 8 private oil palm plantations in the Districts of Kampar, Pelalawan, Kuantan, Singingi and Siak of Riau Province, Indonesia. In addition, data on community environmental perceptions of both smallholder plantation and High Conservation Value (HCV) Forest were also collected. Species that were observed were birds and earthworms. Data on birds were collected using transect method, while identification of earthworm was determine by taking some soil samples and counting the number of individual earthworm found for each worm species. The research used direct interview with oil palm owners and community members, as well as direct observation to examine the environmental conditions of each plantation. In general, field observation and measurement have found that birds species richness was higher in the forested HCV Forest. Nevertheless, if compared to non-forested HCV, bird’s species richness was higher in the independent smallholdings. On the other hand, different results were observed for earthworm, where the density was higher in the independent smallholdings than in the HCV. It can be concluded from this research that managing independent smallholder oil palm plantations and forested HCV forest could enhance biodiversity conservation. The results of this study justified the importance of retaining forested area to safeguard biodiversity in oil palm plantation.

Keywords: biodiversity conservation, high conservation value forest, independent smallholdings, oil palm plantations

Procedia PDF Downloads 187
467 Oil Water Treatment by Nutshell and Dates Pits

Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren

Abstract:

The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.

Keywords: date pits, nutshell, oil water, TSS

Procedia PDF Downloads 130
466 Sensitivity Assessment of Spectral Salinity Indices over Desert Sabkha of Western UAE

Authors: Rubab Ammad, Abdelgadir Abuelgasim

Abstract:

UAE typically lies in one of the aridest regions of the world and is thus home to geologic features common to such climatic conditions including vast open deserts, sand dunes, saline soils, inland Sabkha and coastal Sabkha. Sabkha are characteristic salt flats formed in arid environment due to deposition and precipitation of salt and silt over sand surface because of low laying water table and rates of evaporation exceeding rates of precipitation. The study area, which comprises of western UAE, is heavily concentrated with inland Sabkha. Remote sensing is conventionally used to study the soil salinity of agriculturally degraded lands but not so broadly for Sabkha. The focus of this study was to identify these highly saline Sabkha areas on remotely sensed data, using salinity indices. The existing salinity indices in the literature have been designed for agricultural soils and they have not frequently used the spectral response of short-wave infra-red (SWIR1 and SWIR2) parts of electromagnetic spectrum. Using Landsat 8 OLI data and field ground truthing, this study formulated indices utilizing NIR-SWIR parts of spectrum and compared the results with existing salinity indices. Most indices depict reasonably good relationship between salinity and spectral index up until a certain value of salinity after which the reflectance reaches a saturation point. This saturation point varies with index. However, the study findings suggest a role of incorporating near infra-red and short-wave infra-red in salinity index with a potential of showing a positive relationship between salinity and reflectance up to a higher salinity value, compared to rest.

Keywords: Sabkha, salinity index, saline soils, Landsat 8, SWIR1, SWIR2, UAE desert

Procedia PDF Downloads 172
465 Assessment of Heavy Metal Contamination for the Sustainable Management of Vulnerable Mangrove Ecosystem, the Sundarbans

Authors: S. Begum, T. Biswas, M. A. Islam

Abstract:

The present research investigates the distribution and contamination of heavy metals in core sediments collected from three locations of the Sundarbans mangrove forest. In this research, quality of the analysis is evaluated by analyzing certified reference materials IAEA-SL-1 (lake sediment), IAEA-Soil-7, and NIST-1633b (coal fly ash). Total concentrations of 28 heavy metals (Na, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, As, Sb, Cs, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Hf, Ta, Th, and U) have determined in core sediments of the Sundarbans mangrove by neutron activation analysis (NAA) technique. When compared with upper continental crustal (UCC) values, it is observed that mean concentrations of K, Ti, Zn, Cs, La, Ce, Sm, Hf, and Th show elevated values in the research area is high. In this research, the assessments of metal contamination levels using different environmental contamination indices (EF, Igeo, CF) indicate that Ti, Sb, Cs, REEs, and Th have minor enrichment of the sediments of the Sundarbans. The modified degree of contamination (mCd) of studied samples of the Sundarbans ecosystem show low contamination. The pollution load index (PLI) values for the cores suggested that sampling points are moderately polluted. The possible sources of the deterioration of the sediment quality can be attributed to the different chemical carrying cargo accidents, port activities, ship breaking, agricultural and aquaculture run-off of the area. Pearson correlation matrix (PCM) established relationships among elements. The PCM indicates that most of the metal's distributions have been controlled by the same factors such as Fe-oxy-hydroxides and clay minerals, and also they have a similar origin. The poor correlations of Ca with most of the elements in the sediment cores indicate that calcium carbonate has a less significant role in this mangrove sediment. Finally, the data from this research will be used as a benchmark for future research and help to quantify levels of metal pollutions, as well as to manage future ecological risks of the vulnerable mangrove ecosystem, the Sundarbans.

Keywords: contamination, core sediment, trace element, sundarbans, vulnerable

Procedia PDF Downloads 86
464 Effect of Waste Wool Sheep on the Growth and Antioxidant Activity of Lettuce on Boron Toxicity

Authors: Ozge Sahin, Aydin Gunes, Hasan Sabri Ozturk

Abstract:

Boron (B) toxicity an important agricultural problem as a limiting factor on yield, which is especially arid and semi-arid region. Big amounts of waste wool need to use an alternative, which is rich in protein such as collagen, elastin and keratin. Amino acid has a fundamental role on protein, which is an essential element in biological parameters materials and changes in its availability and metabolism. Therefore, this study aimed to study the effect of waste wool sheep hydrolysate to evaluate and compare for its boron toxicity on lettuce (Lactuca sativa L. Semental). Boron was applied at 20 mg B kg-¹ (Boron) from H₃BO₄ and 250 mg N kg-¹ from waste sheep wool hydrolysate (AA) to the soil. Dry weight of lettuce was increased by AA treatment. Boron (B) concentrations of inner leaf was decreased by AA treatment, and similar result was found for outer leaf, and moreover by the Boron+AA treatment, B concentrations was lower than the Boron treatment. Nitrogen concentrations of outer leaf was the highest at the Boron+AA and AA treatments. H²O² content of lettuce was not statistically significant. But superoxide oxidase (SOD, EC 1.15.1.1) activity was higher at the Boron treatment, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) activity of plant was highest at the AA treatment. Similarly, relative chlorophyll was highest AA and then, Boron+AA, control, respectively. Our results indicate that these parameters can be used to evaluate the stress level as well as to develop models that could help prevent the damage inflicted by B toxicity in lettuce plants. When the compare of the Boron and Boron+AA, due to the AA application, plant weight was increased, whereas B concentration was decreased due to the effect of amino acid. Amino acid treatment had positive effect on the boron stress condition, that the antioxidant defense system was supported our results.

Keywords: waste seep wool hydrolysate, boron, lettuce, antioxidant enzyme activity

Procedia PDF Downloads 31
463 Filled Polymer Composite

Authors: Adishirin Mammadov

Abstract:

Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.

Keywords: polyethylene, polymer, composites, filler, reology

Procedia PDF Downloads 26
462 The Comparison of Safety Factor in Dry and Rainy Condition at Coal Bearing Formation. Case Study: Lahat Area South Sumatera Province, Indonesia

Authors: Teguh Nurhidayat, Nurhamid, Dicky Muslim, Zufialdi Zakaria, Irvan Sophian

Abstract:

This paper presents the role of climate change as the factor that induces landslide. Case study is located at Lahat Regency, South Sumatera Province, Indonesia. Study area has high economic value of coal reserves (mostly subbituminous – bituminous), which is developable for open pit coal mining in the future. Seams are found in Muara Enim Formation. This formation is at south Sumatera basin which is formed at Tertiary as a result of collision between the indian plate and eurasian plate. South Sumatera basin which is a basin located in back arc basin. This study aims to unravel the relationship between slope stability with different season condition in tropical climate. Undisturbed soil samples were obtained in the field along with other geological data. Laboratory works were carried out to obtain physical and mechanical properties of soils. Methodology to analyze slope stability is bishop method. Bishop methods are used to identify safety factor of slope. Result shows that slopes in rainy season conditions are more prone to landslides than in dry season. In the dry seasons with moisture content is 22.65%, safety factor is 1.28 the slope in stable condition. If rain is approaching with moisture content increasing to 97.8%, the slope began to be critical. On wet condition groundwater levels is increased, followed by γ (unit weight), c (cohesion), and φ (angle of friction) at 18.04, 5,88 kN/m2, and 28,04°, respectively, which ultimately determines the security factor FS to be 1.01 (slope in unstable conditions).

Keywords: rainfall, moisture content, slope analysis, landslide prone

Procedia PDF Downloads 285
461 Identification of Groundwater Potential Zones Using Geographic Information System and Multi-Criteria Decision Analysis: A Case Study in Bagmati River Basin

Authors: Hritik Bhattarai, Vivek Dumre, Ananya Neupane, Poonam Koirala, Anjali Singh

Abstract:

The availability of clean and reliable groundwater is essential for the sustainment of human and environmental health. Groundwater is a crucial resource that contributes significantly to the total annual supply. However, over-exploitation has depleted groundwater availability considerably and led to some land subsidence. Determining the potential zone of groundwater is vital for protecting water quality and managing groundwater systems. Groundwater potential zones are marked with the assistance of Geographic Information System techniques. During the study, a standard methodology was proposed to determine groundwater potential using an integration of GIS and AHP techniques. When choosing the prospective groundwater zone, accurate information was generated to get parameters such as geology, slope, soil, temperature, rainfall, drainage density, and lineament density. However, identifying and mapping potential groundwater zones remains challenging due to aquifer systems' complex and dynamic nature. Then, ArcGIS was incorporated with a weighted overlay, and appropriate ranks were assigned to each parameter group. Through data analysis, MCDA was applied to weigh and prioritize the different parameters based on their relative impact on groundwater potential. There were three probable groundwater zones: low potential, moderate potential, and high potential. Our analysis showed that the central and lower parts of the Bagmati River Basin have the highest potential, i.e., 7.20% of the total area. In contrast, the northern and eastern parts have lower potential. The identified potential zones can be used to guide future groundwater exploration and management strategies in the region.

Keywords: groundwater, geographic information system, analytic hierarchy processes, multi-criteria decision analysis, Bagmati

Procedia PDF Downloads 68
460 Maintaining Experimental Consistency in Geomechanical Studies of Methane Hydrate Bearing Soils

Authors: Lior Rake, Shmulik Pinkert

Abstract:

Methane hydrate has been found in significant quantities in soils offshore within continental margins and in permafrost within arctic regions where low temperature and high pressure are present. The mechanical parameters for geotechnical engineering are commonly evaluated in geomechanical laboratories adapted to simulate the environmental conditions of methane hydrate-bearing sediments (MHBS). Due to the complexity and high cost of natural MHBS sampling, most laboratory investigations are conducted on artificially formed samples. MHBS artificial samples can be formed using different hydrate formation methods in the laboratory, where methane gas and water are supplied into the soil pore space under the methane hydrate phase conditions. The most commonly used formation method is the excess gas method which is considered a relatively simple, time-saving, and repeatable testing method. However, there are several differences in the procedures and techniques used to produce the hydrate using the excess gas method. As a result of the difference between the test facilities and the experimental approaches that were carried out in previous studies, different measurement criteria and analyses were proposed for MHBS geomechanics. The lack of uniformity among the various experimental investigations may adversely impact the reliability of integrating different data sets for unified mechanical model development. In this work, we address some fundamental aspects relevant to reliable MHBS geomechanical investigations, such as hydrate homogeneity in the sample, the hydrate formation duration criterion, the hydrate-saturation evaluation method, and the effect of temperature measurement accuracy. Finally, a set of recommendations for repeatable and reliable MHBS formation will be suggested for future standardization of MHBS geomechanical investigation.

Keywords: experimental study, laboratory investigation, excess gas, hydrate formation, standardization, methane hydrate-bearing sediment

Procedia PDF Downloads 15
459 Exposure Assessment to Airborne Particulate Matter in Agriculture

Authors: K. Rumchev, S. Gilbey

Abstract:

Airborne particulate matter is a known hazard to human health, with a considerable body of evidence linking agricultural dust exposures to adverse human health effects in exposed populations. It is also known that agricultural workers are exposed to high levels of soil dust and other types of airborne particulate matter within the farming environment. The aim of this study was to examine exposure to agricultural dust among farm workers during the seeding season. Twenty-one wheat-belt farms consented to participate in the study with 30 workers being monitored for dust exposure whilst seeding or undertaking seeding associated tasks. Each farm was visited once and farmers’ were asked to wear a personal air sampler for a 4-hour sampling period. Simultaneous, real-time, tractor cabin air quality monitoring was also undertaken. Data for this study was collected using real-time aerosol dust monitors to determine in-tractor cabin PM exposure to five size fractions (total, PM10, respirable, PM2.5 and PM1), and personal sampling was undertaken to establish individual exposure to inhalable and respirable dust concentrations. The study established a significant difference between personal exposures and simultaneous real-time in-cabin exposures for both inhalable and respirable fractions. No significant difference was shown between in-cabin and personal inhalable dust concentrations during seeding and spraying tasks, although both in-cabin and personal concentrations were two times greater for seeding than spraying. Future research should focus on educating and providing farm owners and workers with more information on adopting safe work practices to minimise harmful exposures to agricultural dust.

Keywords: agriculture, air quality, Australia, particulate matter

Procedia PDF Downloads 190
458 Hydraulic Performance of Three Types of Imported Drip Emitters Used in Gezira Clay Soils, Sudan

Authors: Hisham Mousa Mohammed Ahmed, Ahmed Wali Mohamed Salad, Yousif Hamed Dldom Gomaa

Abstract:

A drip or Trickle irrigation system is designed to apply a precise amount of water near the plant with a certain degree of uniformity. This study was conducted at the Experimental Farm of the Faculty of Agricultural Sciences, University of Gezira, in March 2018. The study aimed to design and evaluate the hydraulic performance of three drip emitter types using: average discharge (Qavg), discharge variation (Qvar %), coefficient of uniformity (CU %), coefficient of manufacturer variation (CV %), distribution uniformity (DU %), statistical uniformity (Us %), clogging (%) wetted diameter (cm) and wetted depth (cm). The emitter types used are regular gauges (RG), high compensating pressure (HCP) and low compensating pressure (LCP). The treatments were laid out in a randomized complete block design (RCBD) with four replications. Results showed that there were significant differences (P≤0.05) in all tested parameters except clogging, wetted diameter and wetted depth. Discharge variation (Qvar %) values were 12.71, 15.57 and 19.17 for RG, LCP, and HCP, respectively. The variation is quite good and within the acceptable range. Results of coefficient of manufacture variation (CV %) were 10.9, 27.8 and 52.7 for RG, LCP and HCP, respectively. It is considered within the unacceptable range except for RG type, which is excellent. Statistical uniformity (Us %) values were 89.1, 72.2 and 45.7 for RG, LCP and HCP, respectively. It is considered good, acceptable and unacceptable, respectively. Results of the coefficient of uniformity (CU %) were 91.3, 77.7 and 56.7 for RG, LCP and HCP, respectively. It is considered excellent, fair and unacceptable, respectively. Distribution uniformity (DU %) was 90.2, 67.9 and 36.5 for RG, LCP and HCP, respectively. It is considered excellent, poor and poor, respectively. The study recommended regular gauges (RG) type emitters under the heavy clay soil conditions of the Gezira State, Sudan.

Keywords: drip irrigation, uniformity, clogging, coefficient, performance

Procedia PDF Downloads 67
457 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics

Authors: Siddique Ullah Baig, Alisha Manzoor

Abstract:

The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.

Keywords: Broghil National Park, natural resources, environmental degradation, land cover

Procedia PDF Downloads 34
456 Climate Adaptations to Traditional Milpa Farming Practices in Mayan Communities of Southern Belize: A Socio-Ecological Systems Approach

Authors: Kristin Drexler

Abstract:

Climate change has exacerbated food and livelihood insecurity for Mayan milpa farmers in Central America. For centuries, milpa farming has been sustainable for subsistence; however, in the last 50 years, milpas have become less reliable due to accelerating climate change, resource degradation, declining markets, poverty, and other factors. Using interviews with extension leaders and milpa farmers in Belize, this qualitative study examines the capacity for increasing climate-smart agriculture (CSA) aspects of existing traditional milpa practices, specifically no-burn mulching, soil enrichment, and the use of cover plants. Applying community capitals and socio-ecological systems frameworks, this study finds four key capitals were perceived by farmers and agriculture extension leaders as barriers for increasing CSA practices: (1) human-capacity, (2) financial, (3) infrastructure, and (4) governance-justice capitals. The key barriers include a lack of CSA technology and pest management knowledge-sharing (human-capacity), unreliable roads and utility services (infrastructure), the closure of small markets and crop-buying programs in Belize (financial), and constraints on extension services and exacerbating a sense of marginalization in Maya communities (governance-justice). Recommendations are presented for government action to reduce barriers and facilitate an increase in milpa crop productivity, promote food and livelihood security, and enable climate resilience of Mayan milpa communities in Belize.

Keywords: socio-ecological systems, community capitals, climate-smart agriculture, food security, milpa, Belize

Procedia PDF Downloads 62
455 Remediation Activities in Bagnoli Superfund Site: An Italian Case of Study

Authors: S. Bellagamba, S. Malinconico, P. De Simone, F. Paglietti

Abstract:

Until the 1990s, Italy was among the world’s leading producers of raw asbestos fibres and Asbestos Containing Materials (ACM) and one of the most contaminated Countries in Europe. To reduce asbestos-related health effects, Italy has adopted many laws and regulations regarding exposure thresholds, limits, and remediation tools. The Italian Environmental Ministry (MASE) has identified 42 Italian Superfund sites, 11 of which are mainly contaminated by Asbestos. The highest levels of exposure occur during remediation activities in the 42 superfund-sites and during the management of asbestos containing waste in landfills, which requires specific procedures. INAIL-DIT play a role as MASE scientific consultant on issues concerning pollution, remediation, and Asbestos Containing Waste (ACW) management. The aim is to identify the best Emergency Safety Measures, to suggest specific best pratics for remediation through occupational on site monitorings and laboratory analysis. Moreover, the aim of INAIL research is testing the available technologies for working activities and analytical methodologies. This paper describes the remediation of Bagnoli industrial facility (Naples), an Eternit factory which produced asbestos cement products. The remediation has been analyzed, considering a first phase focused on the demolition of structures and plants and a second phase regarding the characterization, screening, removal, and disposal of polluted soils. The project planned the complete removal of all the asbestos dispersed in the soil and subsoil and the recovery of the clean fraction. This work highlights the remediation techniques used and the prevention measures provide for workers and daily life areas protection. This study, considering the high number of asbestos cement factories in the world, can to serve as an important reference for similar situation at European or international scale.

Keywords: safety, asbestos, workers, contaminated sites, hazardous waste

Procedia PDF Downloads 50
454 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat

Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar

Abstract:

One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.

Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency

Procedia PDF Downloads 206
453 Process Development for the Conversion of Organic Waste into Valuable Products

Authors: Ife O. Bolaji

Abstract:

Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.

Keywords: cellulose, hydrolysis, mixed culture, organic waste

Procedia PDF Downloads 333
452 Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Uses: Sources Evaluation Perspective

Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise

Abstract:

Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly as a result of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. Though with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson correlation coefficient (PCC) and cluster analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped as endocrine disruption substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along kinetically and thermodyanamically-favoured and those derived directly from plants product through biologically mediated processes used in source signature is about the predominance PAHs are likely to be. Therefore the observed PAHs in the studied stations have trace quantities of the vast majority of the sixteen un-substituted PAHs which may ultimately inhabit the actual source signature authentication. Type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as: salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.

Keywords: comparative correlation, kinetically and thermodynamically-favored PAHs, pearson correlation coefficient, cluster analysis, sources evaluation

Procedia PDF Downloads 386
451 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria

Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui

Abstract:

The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.

Keywords: atmospheric pollution, cement, dust, environment

Procedia PDF Downloads 303
450 Coconut Based Sustainable Agri-Silvicultural System: Success Story from Sri Lanka

Authors: Thavananthan Sivananthawerl

Abstract:

Coconut palm is existing for more than 2000 years in Sri Lanka. However, cultivation on a large scale (plantation) began only in the 19th century. Due to different light perceptions during the growth stages of palm, there is a huge potential to grow crops in-between rows of coconut plants which are grown with wider, fixed spacing. Intercropping under coconut will have multiple benefits such as increasing soil fertility, increasing sunlight utilization, increasing total crop productivity, increasing income & profit, maximum use of resources, reducing the risk, and increasing food security. Growing potential annual, agricultural intercrops could be classified as ‘agri-silvicultural’ system. This is the best agri-silvicultural system that can be named under any perennial crop system in Sri Lanka. In the late 1970’s cassava, pepper and cacao are the major intercrops under the coconut plantations. At the early ages of the palm (<5 years) light-loving crops such as pineapple, passion, papaya, and cassava are recommended and preferred by the cultivators. In between 5-20 years of age, the availability of light is very low, and therefore shade tolerant/loving crops (pasture, yam, ginger) could be used as the intercrops. However, after 20 years of age (>20 years) canopy is getting small, and the light availability on the ground increases. So, light demanding crops such as pepper, banana, pineapple, betel, cassava, and seasonal crops could be grown successfully. Even though this is a sustainable system in several aspects, there are potential challenges ahead to the system. The major ones are land fragmentation and infrastructure development. The other factors are drought, lack of financial support, price instability of the intercrops, availability of improved planting materials, and development of dwarf varieties which reduces the light.

Keywords: coconut cultivation, agri-silviculture, intercrop, sunlight, annuals, sustainability

Procedia PDF Downloads 81