Search results for: ethanol yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2811

Search results for: ethanol yield

2541 Yield, Economics and ICBR of Different IPM Modules in Bt Cotton in Maharashtra

Authors: N. K. Bhute, B. B. Bhosle, D. G. More, B. V. Bhede

Abstract:

The field experiments were conducted during kharif season of the year 2007-08 at the experimental farm of the Department of Agricultural Entomology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Studies on evaluation of different IPM modules for Bt cotton in relation to yield economics and ICBR revealed that MAU and CICR IPM modules proved superior. It was, however, on par with chemical control. Considering the ICBR and safety to natural enemies, an inference can be drawn that Bt cotton with IPM module is the most ideal combination. Besides reduction in insecticide use, it is also expected to ensure favourable ecological and economic returns in contrast to the adverse effects due to conventional insecticides. The IPM approach, which takes care of varying pest situation, appears to be essential for gaining higher advantage from Bt cotton.

Keywords: yield, economics, ICBR, IPM Modules, Bt cotton

Procedia PDF Downloads 231
2540 A Forbidden-Minor Characterization for the Class of Co-Graphic Matroids Which Yield the Graphic Element-Splitting Matroids

Authors: Prashant Malavadkar, Santosh Dhotre, Maruti Shikare

Abstract:

The n-point splitting operation on graphs is used to characterize 4-connected graphs with some more operations. Element splitting operation on binary matroids is a natural generalization of the notion of n-point splitting operation on graphs. The element splitting operation on a graphic (cographic) matroid may not yield a graphic (cographic) matroid. Characterization of graphic (cographic) matroids whose element splitting matroids are graphic (cographic) is known. The element splitting operation on a co-graphic matroid, in general may not yield a graphic matroid. In this paper, we give a necessary and sufficient condition for the cographic matroid to yield a graphic matroid under the element splitting operation. In fact, we prove that the element splitting operation, by any pair of elements, on a cographic matroid yields a graphic matroid if and only if it has no minor isomorphic to M(K4); where K4 is the complete graph on 4 vertices.

Keywords: binary matroids, splitting, element splitting, forbidden minor

Procedia PDF Downloads 239
2539 Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production

Authors: Mustafa Ümi̇t Ünal, Nafi̇z Çeli̇ktaş, Aysun Şener, Sara Betül Dolgun, Duygu Keser

Abstract:

The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide.

Keywords: switchgrass, acid pretreatment, enzymatic hydrolysis, base pretreatment, ethanol production

Procedia PDF Downloads 484
2538 The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield

Authors: Oqba Basal, András Szabó

Abstract:

Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (Glycine max (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar 'Boglár'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha-1 of N-fertilizer (35 N) and 105 kg ha-1 of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with Bradyrhizobium japonicum inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N2-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed.

Keywords: drought stress, inoculation, N-fertilizer, soybean physiology, yield

Procedia PDF Downloads 109
2537 Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2

Authors: Ratanaporn Leesing, Thidarat Papone, Mutiyaporn Puangbut

Abstract:

Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production.

Keywords: mixotrophic cultivation, microalgal lipid, Chlorella sp. KKU-S2

Procedia PDF Downloads 305
2536 Water Productivity and Sensitivity Tolerance Stress Indices in Five Soybean Cultivars (Glycine max L.) at Different Levels of Water Deficit

Authors: Hassan Masoumi, Rashed Alavi, Mahmoud Reza Khorshidian

Abstract:

In order to measure the water deficit stress effects on seed yield and water productivity of soybean cultivars, a two field experiments wad conducted out via split plot in a randomized complete block design with four replications in 2011 and 2012. Irrigation treatments were three levels (S1; 50, S2; 62.5 and S3; 150 mm) that applied based on evaporation from the ‘class A’ pan. Cultivars were L17, Clean, T.M.S, Williams×Chippewa and M9, too. The results showed that, only extreme water deficit stresses (S3) was reduced number of pods per plants, dry weight, seed yield and also water productivity and water economic productivity, significantly. Among cultivars and at the first and second levels of irrigation (S1, S2) cultivar of L17 and at the third level (S3) cultivar of Wiiliams*Chippwea had the highest seed yield, water productivity and water economic productivity. There were observed a positive and significant correlation between seed yield with number of pods per plants and plants dry weight, too. Also, despite the reduction in water consumption at level of S2 than S1 and due to the lack of a significant reduction in seed yield, water productivity and water economic productivity was also increased, significantly (P < 0.01). All indices of sensitivity and tolerance (SSI, STI and GMP) investigated in this study showed that at the moderate and extreme water deficit stresses (S2, S3), the cultivars of L17 and Wiiliams * Chippwea had the highest tolerance and lowest sensitivity among the cultivars.

Keywords: drought, sensitivity indices, yield components, seed

Procedia PDF Downloads 372
2535 Effects of Process Parameters on the Yield of Oil from Coconut Fruit

Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude

Abstract:

Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml.

Keywords: coconut, oil-extraction, optimization, physicochemical, proximate

Procedia PDF Downloads 313
2534 Screening and Evaluation of Plant Growth Promoting Rhizobacteria of Wheat/Faba Bean for Increasing Productivity and Yield

Authors: Yasir Arafat, Asma Shah, Hua Shao

Abstract:

Background and Aims: Legume/cereal intercropping is used worldwide for enhancement in biomass and yield of cereal crops. However, because of intercropping, the belowground biological and chemical interactions and their effect on physiological parameters and yield of crops are limited. Methods: Wheat faba bean (WF) intercropping was designed to understand the underlying changes in the soil's chemical environment, soil microbial communities, and effect on growth and yield parameters. Experimental plots were established as having no root partition (NRP), semi-root partition (SRP), complete root partition (CRP), and their sole cropping (CK). Low molecular weight organic acids (LMWOAs) were determined by GC-MS, and high throughput sequencing of the 16S rRNA gene was carried out to screen microbial structure and composition in different root partitions of the WF intercropping system. Results: We show that intercropping induced a shift in the relative abundance of some genera of plant growth promoting rhizobacteria (PGPR) such as Allorhizobium, Neorhizobium, Pararhizobium, and Rhizobium species and resulted in better growth and yield performance of wheat. Moreover, as the plant's distance of wheat from faba beans decreased, the diversity of microbes increased, and a positive effect was observed on physiological traits and crop yield. Furthermore, an abundance and positive correlations of palmitic acid, arachidic acid, stearic acid, and 9-Octadecenoic with PGPR were recorded in the root zone of WF intercropping, which can play an important role in this facilitative mechanism of enhancing growth and yield of cereals. Conclusion: The two treatments clearly affected soil microbial and chemical composition, which can be reflected in growth and yield enhancement.

Keywords: intercropping, microbial community, LMWOAs, PGPR, soil chemical environment

Procedia PDF Downloads 22
2533 Gamma Irradiated Sodium Alginate and Phosphorus Fertilizer Enhances Seed Trigonelline Content, Biochemical Parameters and Yield Attributes of Fenugreek (Trigonella foenum-graecum L.)

Authors: Tariq Ahmad Dar, Moinuddin, M. Masroor A. Khan

Abstract:

There is considerable need in enhancing the content and yield of active constituents of medicinal plants keeping in view their massive demand worldwide. Different strategies have been employed to enhance the active constituents of medicinal plants and the use of phytohormones has been proved effective in this regard. Gamma-irradiated Sodium alginate (ISA) is known to elicit an array of plant defense responses and biological activities in plants. Considering the medicinal importance, a pot experiment was conducted to explore the effect of ISA and phosphorus on growth, yield and quality of fenugreek (Trigonella foenum-graecum L.). ISA spray treatments (0, 40, 80 and 120 mg L-1) were applied alone and in combination with 40 kg P ha-1 (P40). Crop performance was assessed in terms of plant growth characteristics, physiological attributes, seed yield and the content of seed trigonelline. Of the ten-treatments, P40 + 80 mg L−1 of ISA proved the best. The results showed that foliar spray of ISA alone or in combination with P40 augmented the plant vegetative growth, enzymatic activities, trigonelline content, trigonelline yield and economic yield of fenugreek. Application of 80 mg L−1 of ISA applied with P40 gave the best results for almost all the parameters studied compared to control or to 80 mg L−1 of ISA applied alone. This treatment increased the total content of chlorophyll, carotenoids, leaf -N, -P and -K and trigonelline compared to the control by 24.85 and 27.40%, 15 and 23.52%, 18.70 and 16.84%, 15.88 and 18.92%, 12 and 14.44%, at 60 and 90 DAS respectively. The combined application of 80 mg L−1 of ISA along with P40 resulted in the maximum increase in seed yield, trigonelline content and trigonelline yield by146, 34 and 232.41%, respectively, over the control. Gel permeation chromatography revealed the formation of low molecular weight fractions in ISA samples, containing even less than 20,000 molecular weight oligomers, which might be responsible for plant growth promotion in this study. Trigonelline content was determined by reverse phase high performance liquid chromatography (HPLC) with C-18 column.

Keywords: gamma-irradiated sodium alginate, phosphorus, gel permeation chromatography, HPLC, trigonelline content, yield

Procedia PDF Downloads 290
2532 Educational Experience, Record Keeping, Genetic Selection and Herd Management Effects on Monthly Milk Yield and Revenues of Dairy Farms in Southern Vietnam

Authors: Ngoc-Hieu Vu

Abstract:

A study was conducted to estimate the record keeping, genetic selection, educational experience, and farm management effect on monthly milk yield per farm, average milk yield per cow, monthly milk revenue per farm, and monthly milk revenue per cow of dairy farms in the Southern region of Vietnam. The dataset contained 5448 monthly record collected from January 2013 to May 2015. Results showed that longer experience increased (P < 0.001) monthly milk yields and revenues. Better educated farmers produced more monthly milk per farm and monthly milk per cow and revenues (P < 0.001) than lower educated farmers. Farm that kept records on individual animals had higher (P < 0.001) for monthly milk yields and revenues than farms that did not. Farms that used hired people produced the highest (p < 0.05) monthly milk yield per farm, milk yield per cow and revenues, followed by farms that used both hire and family members, and lowest values were for farms that used family members only. Farms that used crosses Holstein in herd were higher performance (p < 0.001) for all traits than farms that used purebred Holstein and other breeds. Farms that used genetic information and phenotypes when selecting sires were higher (p < 0.05) for all traits than farms that used only phenotypes and personal option. Farms that received help from Vet, organization staff, or government officials had higher monthly milk yield and revenues than those that decided by owner. These findings suggest that dairy farmers should be training in systematic, must be considered and continuous support to improve farm milk production and revenues, to increase the likelihood of adoption on a sustainable way.

Keywords: dairy farming, education, milk yield, Southern Vietnam

Procedia PDF Downloads 281
2531 Mechanisms Leading to the Protective Behavior of Ethanol Vapour Drying of Probiotics

Authors: Shahnaz Mansouri, Xiao Dong Chen, Meng Wai Woo

Abstract:

A new antisolvent vapour precipitation approach was used to make ultrafine submicron probiotic encapsulates. The approach uses ethanol vapour to precipitate submicron encapsulates within relatively large droplets. Surprisingly, the probiotics (Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus) showed relatively high survival even under destructive ethanolic conditions within the droplet. This unusual behaviour was deduced to be caused by the denaturation and aggregation of the milk protein forming an ethanolic protective matrix for the probiotics. Skim milk droplets which is rich in casein and contains naturally occurring minerals provided higher ethanolic protection when compared whey protein isolate and lactose droplets.

Keywords: whey, skim milk, probiotic, antisolvent, precipitation, encapsulation, denaturation, aggregation

Procedia PDF Downloads 485
2530 Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys

Authors: W. J. Kim

Abstract:

The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.

Keywords: high-ratio differential speed rolling, tensile testing, severe plastic deformation, shape memory alloys

Procedia PDF Downloads 327
2529 The Photocatalytic Approach for the Conversion of Polluted Seawater CO₂ into Renewable Source of Energy

Authors: Yasar N. Kavil, Yasser A. Shaban, Radwan K. Al Farawati, Mohamed I. Orif, Shahed U. M. Khanc

Abstract:

Photocatalytic way of reduction of CO₂ in polluted seawater into chemical fuel, methanol, was successfully gained over Cu/C-co-doped TiO₂ nanoparticles under UV and natural sunlight. A homemade stirred batch annular reactor was used to carry out the photocatalytic reduction experiments. Photocatalysts with various Cu loadings (0, 0.5, 1, 3, 5 and 7 wt.%) were synthesized by the sol-gel procedure and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. The photocatalytic production of methanol was promoted by the co-doping with C and Cu into TiO₂. This improvement was attributed to the modification of bandgap energy and the hindrance of the charges recombination. The polluted seawater showing the yield depended on its background hydrographic parameters. We assessed two types of polluted seawater system, the observed yield was 2910 and 990 µmol g⁻¹ after 5 h of illumination under UV and natural sunlight respectively in system 1 and the corresponding yield in system 2 was 2250 and 910 µmol g⁻¹ after 5 h of illumination. The production of methanol in the case of oxygen-depleted water was low, this is mainly attributed to the competition of methanogenic bacteria over methanol production. The results indicated that the methanol yield produced by Cu-C/TiO₂ was much higher than those of carbon-modified titanium oxide (C/TiO₂) and Degussa (P25-TiO₂). Under the current experimental condition, the optimum loading was achieved by the doping of 3 wt % of Cu. The highest methanol yield was obtained over 1 g L-1 of 3wt% Cu/C-TiO₂.

Keywords: CO₂ photoreduction, copper, Cu/C-co-doped TiO₂, methanol, seawater

Procedia PDF Downloads 247
2528 Effect of Ecologic Fertilizers on Productivity and Yield Quality of Common and Spelt Wheat

Authors: Danutė Jablonskytė-Raščė, Audronė MankevičIenė, Laura Masilionytė

Abstract:

During the period 2009–2015, in Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry, the effect of ecologic fertilizers Ekoplant, bio-activators Biokal 01 and Terra Sorb Foliar and their combinations on the formation of the productivity elements, grain yield and quality of winter wheat, spelt (Triticum spelta L.), and common wheat (Triticum aestivum L.) was analysed in ecological agro-system. The soil under FAO classification – Endocalcari-Endo-hypogleyic-Cambisol. In a clay loam soil, ecological fertilizer produced from sunflower hull ash and this fertilizer in combination with plant extracts and bio-humus exerted an influence on the grain yield of spelt and common wheat and their mixture (increased the grain yield by 10.0%, compared with the unfertilized crops). Spelt grain yield was by on average 16.9% lower than that of common wheat and by 11.7% lower than that of the mixture, but the role of spelt in organic production systems is important because with no mineral fertilization it produced grains with a higher (by 4%) gluten content and exhibited a greater ability to suppress weeds (by on average 61.9% lower weed weight) compared with the grain yield and weed suppressive ability of common wheat and mixture. Spelt cultivation in a mixture with common wheat significantly improved quality indicators of the mixture (its grain contained by 2.0% higher protein content and by 4.0% higher gluten content than common wheat grain), reduced disease incidence (by 2-8%), and weed infestation level (by 34-81%).

Keywords: common and spelt-wheat, ecological fertilizers, bio-activators, productivity elements, yield, quality

Procedia PDF Downloads 256
2527 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 116
2526 Input Energy Requirements and Performance of Different Soil Tillage Systems on Yield of Maize Crop

Authors: Shafique Qadir Memon, Muhammad Safar Mirjat, Abdul Quadir Mughal, Nadeem Amjad

Abstract:

The aims of this study were to determine direct input energy and indirect energy in maize production, to evaluate the inputs energy consumption and outputs energy gained for maize production in Islamabad, Pakistan for spring 2013. Results showed that grain yield was maximum under deep tillage as compared to conventional and zero tillage. Total energy input/output were maximum in deep tillage as compared to conventional tillage while lowest in zero tillage, net energy gain were found maximum under deep tillage.

Keywords: tillage, energy, grain yield, net energy gain

Procedia PDF Downloads 422
2525 Modeling Sediment Yield Using the SWAT Model: A Case Study of Upper Ankara River Basin, Turkey

Authors: Umit Duru

Abstract:

The Soil and Water Assessment Tool (SWAT) was tested for prediction of water balance and sediment yield in the Ankara gauged basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT in this region of Turkey. Thirteen years of monthly stream flow, and suspended sediment, data were used for calibration and validation. This research assessed model performance based on differences between observed and predicted suspended sediment yield during calibration (1987-1996) and validation (1982-1984) periods. Statistical comparisons of suspended sediment produced values for NSE (Nash Sutcliffe efficiency), RE (relative error), and R² (coefficient of determination), of 0.81, -1.55, and 0.93, respectively, during the calibration period, and NSE, RE (%), and R² of 0.77, -2.61, and 0.87, respectively, during the validation period. Based on the analyses, SWAT satisfactorily simulated observed hydrology and sediment yields and can be used as a tool in decision making for water resources planning and management in the basin.

Keywords: calibration, GIS, sediment yield, SWAT, validation

Procedia PDF Downloads 238
2524 Impacts of Climate Change on Food Grain Yield and Its Variability across Seasons and Altitudes in Odisha

Authors: Dibakar Sahoo, Sridevi Gummadi

Abstract:

The focus of the study is to empirically analyse the climatic impacts on foodgrain yield and its variability across seasons and altitudes in Odisha, one of the most vulnerable states in India. The study uses Just-Pope Stochastic Production function by using two-step Feasible Generalized Least Square (FGLS): mean equation estimation and variance equation estimation. The study uses the panel data on foodgrain yield, rainfall and temperature for 13 districts during the period 1984-2013. The study considers four seasons: winter (December-February), summer (March-May), Rainy (June-September) and autumn (October-November). The districts under consideration have been categorized under three altitude regions such as low (< 70 masl), middle (153-305 masl) and high (>305 masl) altitudes. The results show that an increase in the standard deviations of monthly rainfall during rainy and autumn seasons have an adversely significant impact on the mean yield of foodgrains in Odisha. The summer temperature has beneficial effects by significantly increasing mean yield as the summer season is associated with harvesting stage of Rabi crops. The changing pattern of temperature has increasing effect on the yield variability of foodgrains during the summer season, whereas it has a decreasing effect on yield variability of foodgrains during the Rainy season. Moreover, the positive expected signs of trend variable in both mean and variance equation suggests that foodgrain yield and its variability increases with time. On the other hand, a change in mean levels of rainfall and temperature during different seasons has heterogeneous impacts either harmful or beneficial depending on the altitudes. These findings imply that adaptation strategies should be tailor-made to minimize the adverse impacts of climate change and variability for sustainable development across seasons and altitudes in Odisha agriculture.

Keywords: altitude, adaptation strategies, climate change, foodgrain

Procedia PDF Downloads 207
2523 Effects of Cymbopogon citratus, Stapf (CS) or Lemon Grass Ethanol Extract on Antioxidant and Vascular Disorders Parameters in Rat

Authors: Suphaket Saenthaweesuk, Nutiya Somparn, Atcharaporn Thewmore

Abstract:

The present study aims to investigate the effects of Cymbopogon citratus, Stapf (CS) or lemon grass ethanol extract on antioxidant and vascular disorders parameters in rat. The CS ethanol extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with CS at 1,000 mg/kg/day for 30 days. Phytochemical screening of CS extract indicated the presence of tannins, flavonoids and phenolic compounds. The extract contained phenolic compounds 1,400.10 ± 0.47 mg of gallic acid equivalents per gram CS extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 168.77 ± 3.32µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14 µg/mL. In the animals, the protein expression of antioxidant enzymes, γ-glutamylcysteine ligase (γ-GCL) in liver was significantly increased. This was consistent with elevation of serum catalase (CAT) and superoxide dismutase (SOD) activities. However, Protein expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial nitric oxide synthase (eNOS) in heart and aorta were not differenced from normal control. Taken together, the present study provides evidence that CCS water extract exhibits direct antioxidant properties and can induce cytoprotective enzymes in vivo.

Keywords: antioxidant, Cymbopogon citratus Stapf, VCAM-1, γ-glutamylcysteine ligase

Procedia PDF Downloads 278
2522 Performance and Structural Evaluation of the Torrefaction of Bamboo under a High Gravity (Higee) Environment Using a Rotating Packed Bed

Authors: Mark Daniel De Luna, Ma. Katreena Pillejera, Wei-Hsin Chen

Abstract:

The raw bamboo (Phyllostachys mankinoi), with a moisture content of 13.54 % and a higher heating value (HHV) of 17.657 MJ/kg, was subjected to torrefaction under a high gravity (higee) environment using a rotating packed bed. The performance of the higee torrefaction was explored in two parts: (1) effect of rotation and temperature and (2) effect of duration on the solid yield, HHV and energy yield. By statistical analyses, the results indicated that the rotation, temperature and their interaction has a significant effect on the three responses. Same remarks on the effect of duration where when the duration (temperature and rotation) increases, the HHV increases, while the solid yield and energy yield decreases. Graphical interpretations showed that at 300 °C, the rotating speed has no evident effect on the responses. At 30-min holding time, the highest HHV reached (28.389 MJ/kg) was obtained in the most severe torrefaction condition (the rotating speed at 1800 rpm and temperature at 300 °C) with an enhancement factor of HHV corresponding to 1.61 and an energy yield of 63.51%. Upon inspection, the recommended operating condition under a 30-min holding time is at 255 °C-1800 rpm since the enhancement factor of HHV (1.53), HHV (26.988 MJ/kg), and energy yield (65.21%) values are relatively close to that of the aforementioned torrefaction condition. The Van Krevelen diagram of the torrefied biomass showed that the ratios decrease as the torrefaction intensifies, hence improving the hydrophobicity of the product. The spreads of the results of the solid yield, enhancement factor (EF) of HHV, energy yield, and H/C and O/C ratios were in accordance with the trends of the responses. Overall, from the results presented, it can be concluded that the quality of the product from the process is at par to that of coal (i.e. HHV of coal is 21-35 MJ/kg). The Fourier transform infrared (FTIR) spectroscopy results indicated that cellulose and lignin may have been degraded at a lower temperature accompanied with a high rotating speed. The results suggested that torrefaction under higee environment indicates promising process for the utilization of bamboo.

Keywords: heat transfer, high gravity environment, FTIR, rotation, rotating speed, torrefaction

Procedia PDF Downloads 238
2521 Evaluating the Effects of Weather and Climate Change to Risks in Crop Production

Authors: Marcus Bellett-Travers

Abstract:

Different modelling approaches have been used to determine or predict yield of crops in different geographies. Central to the methodologies are the presumption that it is the absolute yield of the crop in a given location that is of the highest priority to those requiring information on crop productivity. Most individuals, companies and organisations within the agri-food sector need to be able to balance the supply of crops with the demand for them. Different modelling approaches have been used to determine and predict crop yield. The growing need to ensure certainty of supply and stability of prices requires an approach that describes the risk in producing a crop. A review of current methodologies to evaluate the risk to food production from changes in the weather and climate is presented.

Keywords: crop production, risk, climate, modelling

Procedia PDF Downloads 347
2520 Stability of Total Phenolic Concentration and Antioxidant Capacity of Extracts from Pomegranate Co-Products Subjected to In vitro Digestion

Authors: Olaniyi Fawole, Umezuruike Opara

Abstract:

Co-products obtained from pomegranate juice processing contain high levels of polyphenols with potential high added values. From value-addition viewpoint, the aim of this study was to evaluate the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assess the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS˙+ assays during simulated in vitro digestion. Pomegranate juice, marc and peel were extracted in water, 50% ethanol (50%EtOH) and absolute ethanol (100%EtOH) and analysed for total phenolic concentration (TPC), total flavonoids concentration (TFC) and total antioxidant capacity in DPPH˙, ABST˙+ and FRAP assays before and after in vitro digestion. Total phenolic concentration (TPC) and total flavonoid concentration (TFC) were in the order of peel > marc > juice throughout the in vitro digestion irrespective of the extraction solvents used. However, 50% ethanol extracted 1.1 to 12-fold more polyphenols than water and ethanol solvents depending on co-products. TPC and TFC increased significantly in gastric digests. In contrast, after the duodenal, polyphenolic concentrations decreased significantly (p < 0.05) compared to those obtained in gastric digests. Undigested samples and gastric digests showed strong and positive relationships between polyphenols and the antioxidant activities measured in DPPH, ABTS and FRAP assays, with correlation coefficients (r2) ranging between 0.930 – 0.990 whereas, the correlation between polyphenols (TPC and TFC) and radical cation scavenging activity (in ABTS) were moderately positive in duodenal digests. Findings from this study also showed that the concentration of pomegranate polyphenols and antioxidant thereof during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration. Thus, this study highlights the need to provide biologically relevant information on antioxidants by providing data reflecting their stability and activity after in vitro digestion.

Keywords: by-product, DPPH, polyphenols, value addition

Procedia PDF Downloads 275
2519 Evaluation of Commercial Herbicides for Weed Control and Yield under Direct Dry Seeded Rice Cultivation System in Pakistan

Authors: Sanaullah Jalil, Abid Majeed, Syed Haider Abbas

Abstract:

Direct dry seeded rice cultivation system is an emerging production technology in Pakistan. Weeds are a major constraint to the success of direct dry seeded rice (DDSR). Studies were carried out for two years during 2015 and 2016 to evaluate the performance of applications of pre-emergence herbicides (Top Max @ 2.25 lit/ha, Click @1.5 lit/ha and Pendimethaline @ 1.25 lit/ha) and post-emergence herbicides (Clover @ 200 g/ha, Pyranex Gold @ 250 g/ha, Basagran @ 2.50 lit/ha, Sunstar Gold @ 50 g/ha and Wardan @ 1.25 lit/ha) at rice research field area of National Agriculture Research Center (NARC), Islamabad. The experiments were laid out in Randomized Complete Block Design (RCBD) with three replications. All evaluated herbicides reduced weed density and biomass by a significant amount. The net plot size was 2.5 x 5 m with 10 rows. Basmati-385 was used as test variety of rice. Data indicated that Top Max and Click provided best weed control efficiency but suppressed the germination of rice seed which causes the lowest grain yield production (680.6 kg/ha and 314.5 kg/ha respectively). A weedy check plot contributed 524.7 kg/ha paddy yield with highest weed density. Pyranex Gold provided better weed control efficiency and contributed to significantly higher paddy yield 5116.6 kg/ha than that of all other herbicide applications followed by the Clover which give paddy yield 4241.7 kg/ha. The results of our study suggest that pre-emergence herbicides provided best weed control but not fit for direct dry seeded rice (DDSR) cultivation system, and therefore post-emergence herbicides (Pyranex Gold and Clover) can be suggested for weed control and higher yield.

Keywords: pyranex gold, clover, direct dry seeded rice (DDSR), yield

Procedia PDF Downloads 213
2518 Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System

Authors: O. A. Babalola, A. F Adekunle, F. Oladeji, A. T. Osungbade, O. A. Akinlaja

Abstract:

Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1.

Keywords: compost, microbial activities, microbial contribution, tomato growth and yield

Procedia PDF Downloads 221
2517 Transesterification of Jojoba Oil Wax Using Microwave Technique

Authors: Moataz Elsawy, Hala F. Naguib, Hilda A. Aziz, Eid A. Ismail, Labiba I. Hussein, Maher Z. Elsabee

Abstract:

Jojoba oil-wax is extracted from the seeds of the jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi-desert areas in Egypt and in some parts of the world. The main uses of jojoba oil wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the jojoba oil wax to biodiesel by transesterification with ethanol and a series of aliphatic alcohols using a more economic and energy saving method in a domestic microwave. The effect of time and power of the microwave on the extent of the transesterification using ethanol and other aliphatic alcohols has been studied. The separation of the alkyl esters from the fatty alcohols rich fraction has been done in a single crystallization step at low temperature (−18°C) from low boiling point petroleum ether. Gas chromatography has been used to follow up the transesterification process. All products have been characterized by spectral analysis.

Keywords: jojoba oil, transesterification, microwave, gas chromatography jojoba esters, jojoba alcohol

Procedia PDF Downloads 424
2516 Combined Application of Rice-Straw Biochar and Poultry Manure Promotes Nutrient Uptake and Yield of Capsicum Frutescens

Authors: Fawibe O. O., Mustafa A. A., Oyelakin A. S., Dada O. A., Ojo E. S.

Abstract:

Field experiment was carried out during the cropping season of 2021 to examine the influence of the sole or combined application of rice-straw biochar and poultry manure on yield, nutrient uptake, and physiological attributes of Capsicum frutescens. The experiment was a randomized complete block design with five replicates. Treatments were 10 t/ha biochar (BC), 5 t/ha biochar + 5 t/ha poultry manure (BC+PM), 10 t/ha poultry manure (PM), and no amendment as the control (NA ). Parameters determined were fruit yield, aboveground biomass, macro and micro nutrients in leaves, antinutrients content, and pigments (chlorophyll a, chlorophyll b, and carotenoids) concentration. Data were analysed with one-way analysis of variance, while means were separated using Duncan’s Multiple Range Test at p<0.05. Soil amended with PM increased the nitrogen content of C. frutescens leaves by 40.9%, while polyphenol and phytic acid were reduced by 20.5% and 29.2%, respectively, compared with NA. Moreover, PM increased chlorophyll a and chlorophyll b by 91.9% and 16.4%, whereas proline was reduced by 31.3% compared with NA. However, PM and BC+PM had comparable influence on pigments, nutrients and antinutrients contents of C. frutescens. BC+PM significantly increased yield and aboveground biomass of C. frutescens by 52.9% and 99.2%, respectively, compared with NA. BC had no significant influence on the yield and nutrient uptake of C. frutescens compared with NA. In conclusion, sole application of poultry manure or combined with rice-straw biochar increased yield and nutrients availability in the leaves of C. frutescens.

Keywords: capsicum frutescens, biochar, nutrient uptake, poultry manure, organic amendment

Procedia PDF Downloads 50
2515 Effect of Drought Stress on Yield and Yield Components of Maize Cultivars in Golestan Province

Authors: Mojtaba Esmaeilzad Limoudehi, Ebrahim Amiri

Abstract:

Water scarcity is now one of the leading challenges for human societies. In this regard, recognizing the relationship between soil, water, plant growth, and plant response to stress is very significant. In this paper, considering the importance of drought stress and the role of choosing suitable cultivars in resistance against drought, a split-plot experiment using early, intermediate, and late-maturing cultivars was carried out in Katul filed, Golestan province during two cultivation years of 2015 and 2016. The main factor was irrigation intervals at four levels, including 7 days, 14 days, 21 days, and 28 days. The subfactor was the subplot of six maize cultivars (two early maturing cultivars, two medium maturing cultivars, and two late-maturing cultivars). The results of variance analysis have revealed that irrigation interval and cultivars treatment have significant effects on the number of grain in each corn, number of rows in each corn, number of grain per row, the weight of 1000 grains, grain yield, and biomass yield. Although, the interaction of these two factors on the mentioned attributes was meaningful. The best grain yield was achieved at 7 days irrigation interval and late maturing maize cultivars treatment, which was equal to 12301 kg/ha.

Keywords: corn, growth period, optimization, stress

Procedia PDF Downloads 100
2514 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh

Abstract:

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Keywords: chickpea, drought stress, growth stage, tolerance

Procedia PDF Downloads 224
2513 The Effect of Annual Weather and Sowing Date on Different Genotype of Maize (Zea mays L.) in Germination and Yield

Authors: Ákos Tótin

Abstract:

In crop production the most modern hybrids are available for us, therefore the yield and yield stability is determined by the agro-technology. The purpose of the experiment is to adapt the modern agrotechnology to the new type of hybrids. The long-term experiment was set up in 2015-2016 on chernozem soil in the Hajdúság (eastern Hungary). The plots were set up in 75 thousand ha-1 plant density. We examined some mainly use hybrids of Hungary. The conducted studies are: germination dynamic, growing dynamic and the effect of annual weather for the yield. We use three different sowing date as early, average and late, and measure how many plant germinated during the germination process. In the experiment, we observed the germination dynamics in 6 hybrid in 4 replication. In each replication, we counted the germinated plants in 2m long 2 row wide area. Data will be shown in the average of the 6 hybrid and 4 replication. Growing dynamics were measured from the 10cm (4-6 leaf) plant highness. We measured 10 plants’ height in two weeks replication. The yield was measured buy a special plot harvester - the Sampo Rosenlew 2010 – what measured the weight of the harvested plot and also took a sample from it. We determined the water content of the samples for the water release dynamics. After it, we calculated the yield (t/ha) of each plot at 14% of moisture content to compare them. We evaluated the data using Microsoft Excel 2015. The annual weather in each crop year define the maize germination dynamics because the amount of heat is determinative for the plants. In cooler crop year the weather is prolonged the germination. At the 2015 crop year the weather was cold in the beginning what prolonged the first sowing germination. But the second and third sowing germinated faster. In the 2016 crop year the weather was much favorable for plants so the first sowing germinated faster than in the previous year. After it the weather cooled down, therefore the second and third sowing germinated slower than the last year. The statistical data analysis program determined that there is a significant difference between the early and late sowing date growing dynamics. In 2015 the first sowing date had the highest amount of yield. The second biggest yield was in the average sowing time. The late sowing date has lowest amount of yield.

Keywords: germination, maize, sowing date, yield

Procedia PDF Downloads 195
2512 An Inquiry on Imaging of Soft Tissues in Micro-Computed Tomography

Authors: Matej Patzelt, Jana Mrzilkova, Jan Dudak, Frantisek Krejci, Jan Zemlicka, Zdenek Wurst, Petr Zach, Vladimir Musil

Abstract:

Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to elaborate methodology for soft tissue samples imaging in micro-CT. Methodology: We used organs of rats and mice. We either did a preparation of the organs and fixation in contrast solution or we did cannulation of blood vessels and their injection for imaging of the vascular system. First, we scanned native specimens, then we created corrosive specimens by resins. In the next step, we injected vascular system either by Aurovist contrast agent or by Exitron. In the next step, we focused on soft tissues contrast increase. We scanned samples fixated in Lugol solution, samples fixated in pure ethanol and in formaldehyde solution. All used methods were afterwards compared. Results: Native specimens did not provide sufficient contrast of the tissues in any of organs. Corrosive samples of the blood stream provided great contrast and details; on the other hand, it was necessary to destroy the organ. Further examined possibility was injection of the AuroVist contrast that leads to the great bloodstream contrast. Injection of Exitron contrast agent comparing to Aurovist did not provide such a great contrast. The soft tissues (kidney, heart, lungs, brain, and liver) were best visualized after fixation in ethanol. This type of fixation showed best results in all studied tissues. Lugol solution had great results in muscle tissue. Fixation by formaldehyde solution showed similar quality of contrast in the tissues like ethanol. Conclusion: Before imaging, we need to, first, determinate which structures of the soft tissues we want to visualize. In the case of the bloodstream, the best was AuroVist and corrosive specimens. Muscle tissue is best visualized by Lugol solution. In the case of the organs containing cavities, like kidneys or brain, the best way was ethanol fixation.

Keywords: experimental imaging, fixation, micro-CT, soft tissues

Procedia PDF Downloads 284