Search results for: epoxy resin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 578

Search results for: epoxy resin

98 Fluorescing Aptamer-Gold Nanoparticle Complex for the Sensitive Detection of Bisphenol A

Authors: Eunsong Lee, Gae Baik Kim, Young Pil Kim

Abstract:

Bisphenol A (BPA) is one of the endocrine disruptors (EDCs), which have been suspected to be associated with reproductive dysfunction and physiological abnormality in human. Since the BPA has been widely used to make plastics and epoxy resins, the leach of BPA from the lining of plastic products has been of major concern, due to its environmental or human exposure issues. The simple detection of BPA based on the self-assembly of aptamer-mediated gold nanoparticles (AuNPs) has been reported elsewhere, yet the detection sensitivity still remains challenging. Here we demonstrate an improved AuNP-based sensor of BPA by using fluorescence-combined AuNP colorimetry in order to overcome the drawback of traditional AuNP sensors. While the anti-BPA aptamer (full length or truncated ssDNA) triggered the self-assembly of unmodified AuNP (citrate-stabilized AuNP) in the presence of BPA at high salt concentrations, no fluorescence signal was observed by the subsequent addition of SYBR Green, due to a small amount of free anti-BPA aptamer. In contrast, the absence of BPA did not cause the self-assembly of AuNPs (no color change by salt-bridged surface stabilization) and high fluorescence signal by SYBP Green, which was due to a large amount of free anti-BPA aptamer. As a result, the quantitative analysis of BPA was achieved using the combination of absorption of AuNP with fluorescence intensity of SYBR green as a function of BPA concentration, which represented more improved detection sensitivity (as low as 1 ppb) than did in the AuNP colorimetric analysis. This method also enabled to detect high BPA in water-soluble extracts from thermal papers with high specificity against BPS and BPF. We suggest that this approach will be alternative for traditional AuNP colorimetric assays in the field of aptamer-based molecular diagnosis.

Keywords: bisphenol A, colorimetric, fluoroscence, gold-aptamer nanobiosensor

Procedia PDF Downloads 152
97 Preceramic Polymers Formulations for Potential Additive Manufacturing

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.

Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10

Procedia PDF Downloads 93
96 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations

Authors: Ram Mohan, Richard Haney, Ajit Kelkar

Abstract:

Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.

Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance

Procedia PDF Downloads 328
95 Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations

Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan

Abstract:

The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.

Keywords: multi-directionally reinforced composites, 4-D orthogonal preform, course weave, fine weave, fibre bundle spools, unit cell, fibre architecture, fibre volume fraction, fibre distribution

Procedia PDF Downloads 198
94 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites

Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar

Abstract:

In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.

Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method

Procedia PDF Downloads 438
93 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure

Authors: B. Hekner, J. Myalski, P. Wrzesniowski

Abstract:

This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.

Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application

Procedia PDF Downloads 85
92 Effect of Roughness and Microstructure on Tribological Behaviour of 35NCD16 Steel

Authors: A. Jourani, C. Trevisiol, S. Bouvier

Abstract:

The aim of this work is to study the coupled effect of microstructure and surface roughness on friction coefficient, wear resistance and wear mechanisms. Friction tests on 35NCD16 steel are performed under different normal loads (50-110 N) on a pin-on-plane configuration at cyclic sliding with abrasive silicon carbide grains ranging from 35 µm to 200 µm. To vary hardness and microstructure, the specimens are subjected to water quenching and tempering at various temperatures from 200°C to 600°C. The evolution of microstructures and wear mechanisms of worn surfaces are analyzed using scanning electron microscopy (SEM). For a given microstructure and hardness, the friction coefficient decreases with increasing of normal load and decreasing of the abrasive particle size. The wear rate increase with increasing of normal load and abrasive particle size. The results also reveal that there is a critical hardness Hcᵣᵢₜᵢcₐₗ around 430 Hv which maximizes the friction coefficient and wear rate. This corresponds to a microstructure transition from martensite laths to carbides and equiaxed grains, for a tempering around 400°C. Above Hcᵣᵢₜᵢcₐₗ the friction coefficient and the amount of material loss decrease with an increase of hardness and martensite volume fraction. This study also shows that the debris size and the space between the abrasive particles decrease with a reduction in the particle size. The coarsest abrasive grains lost their cutting edges, accompanied by particle damage and empty space due to the particle detachment from the resin matrix. The compact packing nature of finer abrasive papers implicates lower particle detachment and facilitates the clogging and the transition from abrasive to adhesive wear.

Keywords: martensite, microstructure, friction, wear, surface roughness

Procedia PDF Downloads 131
91 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods

Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François

Abstract:

Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.

Keywords: carbon fibre, corrosion, strength, mechanical testing

Procedia PDF Downloads 418
90 Development and Characterization of Sandwich Bio-Composites Based on Short Alfa Fiber and Jute Fabric

Authors: Amine Rezzoug, Selsabil Rokia Laraba, Mourad Ancer, Said Abdi

Abstract:

Composite materials are taking center stage in different fields thanks to their mechanical characteristics and their ease of preparation. Environmental constraints have led to the development of composite with natural reinforcements. The sandwich structure has the advantage to have good flexural proprieties for low density, which is why it was chosen in this work. The development of these materials is related to an energy saving strategy and environmental protection. The present work refers to the study of the development and characterization of sandwiches composites based on hybrids laminates with natural reinforcements (Alfa and Jute), a metal fabric was introduced into composite in order to have a compromise between weight and properties. We use different configurations of reinforcements (jute, metallic fabric) to develop laminates in order to use them as thin facings for sandwiches materials. While the core was an epoxy matrix reinforced with Alfa short fibers, a chemical treatment sodium hydroxide was cared to improve the adhesion of the Alfa fibers. The mechanical characterization of our materials was made by the tensile and bending test, to highlight the influence of jute and Alfa. After testing, the fracture surfaces are observed by scanning electron microscopy (SEM). Optical microscopy allowed us to calculate the degree of porosity and to observe the morphology of the individual layers. Laminates based on jute fabric have shown better results in tensile test as well as to bending, compared to those of the metallic fabric (100%, 65%). Sandwich Panels were also characterized in terms of bending test. Results we had provide, shows that this composite has sufficient properties for possible replacing conventional composite materials by considering the environmental factors.

Keywords: bending test, bio-composites, sandwiches, tensile test

Procedia PDF Downloads 399
89 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 199
88 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites

Procedia PDF Downloads 249
87 The Effect of Carbon Nanotubes in Copolyamide Nonwovens on the Properties of CFRP Laminates

Authors: Kamil Dydek, Anna Boczkowska, Paulina Latko-Duralek, Rafal Kozera, Michal Salacinski

Abstract:

In recent years there has been increasing interest in many industries, such as the aviation, automotive, and military industries, in Carbon Fibre Reinforced Polymers (CFRP). This is because of the excellent properties of CFRP, which are characterized by very high strength and stiffness in relation to their mass, low density (almost twice as low as aluminum and more than five times as low as steel), and corrosion resistance. However, they do not have sufficient electrical conductivity, which is required in some applications. Therefore, work is underway to improve their electrical conductivity, for example, by incorporating carbon nanotubes (CNTs) into the CFRP structure. CNTs possess excellent properties, such as high electrical conductivity, high aspect ratio, high Young’s modulus, and high tensile strength. An idea developed by our team is a modification of CFRP by the use of thermoplastic nonwovens containing CNTs. Nanocomposite fibers were made from three different masterbatches differing in the content of multi-wall carbon nanotubes, and then nonwovens that differed in areal weight were produced using a thermo-press. The out of autoclave method was used to fabricate the laminates from commercial carbon-epoxy prepreg dedicated to aviation applications - one without the nonwovens (reference) and five containing nonwovens placed between each prepreg layer. The volume of electrical conductivity of the manufactured laminates was measured in three directions. In order to investigate the adhesion between carbon fibers and nonwovens, the microstructure of the produced laminates was observed. The mechanical properties of the CFRP composites were measured in a short-beam shear test. In addition, the influence of thermoplastic nonwovens on the thermos-mechanical properties of laminates was analyzed by Dynamic Mechanical Analysis. The studies were carried out within grant no. DOB-1-3/1/PS/2014 financed by the National Centre for Research and Development in Poland.

Keywords: CFRP, thermoplastic nonwovens, carbon nanotubes, electrical conductivity

Procedia PDF Downloads 94
86 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method

Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum

Abstract:

Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.

Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method

Procedia PDF Downloads 58
85 The Activity of Polish Propolis and Cannabidiol Oil Extracts on Glioblastoma Cell Lines

Authors: Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Justyna Moskwa, Krystyna Gromkowska-Kepka, Konrad Mielcarek, Patryk Nowakowski, Katarzyna Socha, Anna Puscion-Jakubik, Maria H. Borawska

Abstract:

Glioblastoma (grade IV WHO) is a rapidly progressive brain tumor with very high morbidity and mortality. The vast malignant gliomas are not curable despite the therapy (surgical, radiotherapy, chemotherapy) and patients seek alternative or complementary treatments. Patients often use cannabidiol (CBD) oil as an alternative therapy of glioblastoma. CBD is one of the cannabinoids, an active component of Cannabis sativa. THC (Δ9-tetrahydrocannabinol) can be addictive, and in many countries CBD oil without THC ( < 0,2%) is available. Propolis produced by bees from the resin collected from trees has antiglioma properties in vitro and can be used as a supplement in complementary therapy of gliomas. The aim of this study was to examine the influence of extract from CBD oil in combination with propolis extract on two glioblastoma cell lines. The MTT (Thiazolyl Blue Tetrazolium Bromide) test was used to determine the influence of CBD oil extract and polish propolis extract (PPE) on the viability of glioblastoma cell lines – U87MG and LN18. The cells were incubated (24, 48 and 72 h) with CBD oil extract and PPE. CBD extract was used in concentration 1, 1.5 and 3 µM and PPE in 30 µg/mL. The data were presented compared to the control. The statistical analysis was performed using Statistica v. 13.0 software. CBD oil extract in concentrations 1, 1.5 and 3 µM did not inhibit the viability of U87MG and LN18 cells (viability more than 90% cells compared to the control). There was no dose-response viability, and IC50 value was not recognized. PPE in the concentration of 30 µg/mL time-dependently inhibited the viability of U87MG and LN18 cell line (after 48 h the viability as a percent of the control was 59,7±6% and 57,8±7%, respectively). In a combination of CBD with PPE, the viability of the treated cells was similar to PPE used alone (58,2±7% and 56,5±9%, respectively). CBD oil extract did not show anti-glioma activity and in combination with PPE did not change the activity of PPE.

Keywords: anticancer, cannabidiol, cell line, glioblastoma

Procedia PDF Downloads 205
84 Bowing of a Pipeline from Longitudinal Compressive Stress Induced by Ground Movement

Authors: Gennaro Marino

Abstract:

This paper concerns a case of a 10.75 inch diameter buried gas transmission line which was exposed to mine subsidence ground movements. The pipeline was buried about 4ft. below the surface with maximum operating pressure of 1440 psi. The mine subsidence movement was the result of long walling ore at a depth of approximately 1600 ft. As ore extraction progressed, the stress in the monitored pipeline worsened and was approaching unacceptable levels. The excessive pipe compression resulted when it was exposed to the compression zone of subsidence basin created by mining. The pipe stress reached a significant compressive level due to the extensive length of the pipe exposed to frictional ground-pipe slip resistance. The backfill ground movement slip resistance depends on normal stress around the pipe, the rate of slip, and the backfill characteristics. Normal stress depends on the burial depth of the backfill density and the lateral subsidence induced stress. The backfill in this site has a soil dry density of approximately 90 PCF. A suite of direct shear tests was conducted a residual friction angle of 36 was determined for the ambient backfill. These tests showed that the residual shearing resistance was reached within a fraction of an inch. The pipe was coated with fusion-bonded epoxy, so friction reduce factory of 0.6 can be considered. To relieve ground movement induced compressive stress, the line was uncovered. As more of the pipeline was exposed, the pipe abruptly bowed in the excavation. An analysis of this pipe formation which was performed is provided in this paper. Also discussed in this paper are ways to mitigate this pipe deformation or upheaval buckling from occurring. Keywords: Pipe Upheaval, Pipe Buckling, Ground subsidence, Buried Pipeline, Pipe Stress Mitigation.

Keywords: pipe upheaval, pipe buckling, ground subsidence, buried pipeline, pipe stress mitigation

Procedia PDF Downloads 129
83 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites

Authors: A. Feliczak Guzik, I. Nowak

Abstract:

Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.

Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis

Procedia PDF Downloads 58
82 Early Age Microstructural Analysis of Cement-Polymer Composite Paste Cured at High Temperature

Authors: Bertilia L. Bartley, Ledjane S. Barreto

Abstract:

As a preliminary investigation on the control of microcracking in composite cement pastes, this study explores and compares the compatibility of Tetraethyl Orthosilicate (TEOS), Ethylene Glycol (EG) and Silicone Resin (SIL) in cement pastes cured at high temperature. Pastes were prepared by incorporating ordinary Portland cement (OPC) into an additive solution, using a solution/cement ratio of 0.45. Specimens were molded for 24h at 21 ± 2°C, then cured in deionized water for another 24h at 74 ± 1°C. TEOS and EG influence on fresh paste properties were similar to the reference OPC paste yet disintegration was observed in EG and SIL specimens after the first 12h of curing. X-Ray Diffraction analysis (XRD) coupled with thermogravimetric analysis (TGA/DTG) verified that SIL addition impedes portlandite formation significantly. Backscatter Scanning Electron Microscopy (SEM) techniques were therefore performed on selected areas of each sample to investigate the morphology of the hydration products detected. Various morphologies of portlandite crystals were observed in pastes with EG and TEOS addition, as well as dense morphologies of calcium silicate hydrate (C-S-H) gel and fibers, and ettringite needles. However, the formation of portlandite aggregate and clusters of C-S-H was highly favored by TEOS addition. Furthermore, the microstructural details of composite pastes were clearly visible at low magnifications i.e. 500x, as compared to the OPC paste. The results demonstrate accelerated hydration within composite pastes, a uniform distribution of hydration products, as well as an adhesive interaction with the products and polymer additive. Overall, TEOS demonstrated the most favorable influence, which indicates the potential of TEOS as a compatible polymer additive within the cement system at high temperature.

Keywords: accelerated curing, cement/polymer composite, hydration, microstructural properties, morphology, portlandite, scanning electron microscopy (sem)

Procedia PDF Downloads 151
81 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 116
80 University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB)

Authors: Patricia Mikchaela D. L. Feliciano, Ciela Kadeshka A. Fuentes, Bea Trixia B. Gales, Ethel Princess A. Gepulango, Martin R. Hernandez, Elina Andrea S. Lantion, Jhoe Cynder P. Legaspi, Peter F. Quilala, Gina C. Castro

Abstract:

Propolis is a resin-like material used by bees to fill large gap holes in the beehive. It has been found to possess anti-inflammatory property, which stimulates hair growth in rats by inducing hair keratinocytes proliferation, causing water retention and preventing damage caused by heat, ultraviolet rays, and other microorganisms without abnormalities in hair follicles. The present study aimed to formulate 10% and 30% Propolis Hair Cream for use in enhancing hair properties. Raw propolis sample was tested for heavy metals using Atomic Absorption Spectroscopy; zinc and chromium were found to be present. Likewise, propolis was extracted in a percolator using 70% ethanol and concentrated under vacuum using a rotary evaporator. The propolis extract was analyzed for total flavonoid content. Compatibility of the propolis extract with excipients was evaluated using Differential Scanning Calorimetry (DSC). No significant changes in organoleptic properties, pH and viscosity of the formulated creams were noted after four weeks of storage at 2-8°C, 30°C, and 40°C. The formulated creams were found to be non-irritating based on the Modified Draize Rabbit Test. In vivo efficacy was evaluated based on thickness and tensile strength of hair grown on previously shaved rat skin. Results show that the formulated 30% propolis-based cream had greater hair enhancing properties than the 10% propolis cream, which had a comparable effect with minoxidil.

Keywords: atomic absorption spectroscopy, differential scanning calorimetry (DSC), modified draize rabbit test, propolis

Procedia PDF Downloads 303
79 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation

Authors: Arezoo Assarian, Reza Javaherdashti

Abstract:

Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.

Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)

Procedia PDF Downloads 136
78 Persistent Organochlorine Pesticides (POPs) in Water, Sediment, Fin Fishes (Schilbes mystus and Hemichromis fasciatus) from River Ogun, Lagos, Nigeria

Authors: Edwin O. Clarke, Akintade O. Adeboyejo

Abstract:

Intensive use of pesticides resulted in dispersal of pollutants throughout the globe. This study was carried out to investigate persistent Organochlorine pesticides (POPs) in water, sediment and fin fishes, Schilbes mystus and Hemichromis fasciatus from two different sampling stations along River Ogun between the month of June 2012 and January 2013. The Organochlorine pesticides analyzed include DDT (pp’1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane), DDD, DDE (pp1,1-dichloro-2, 2-bis-(4-chlorophenyl) ethylene, HCH (gamma 1,2,3,4,5,6-hexachlorocylohexane, HCB hexachlorobenzene),Dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a octahydro- 1,4,5,8 dimethanonaphthalene). The analysis was done using Gas Chromatograph with Electron Capture Detector. In water sample, the result showed that PPDDT, Endrin aldehyde, Endrin ketone concentrations were high in both stations. The mean value of Organochlorine analyzed in water range from Beta BHC (0.50±0.10µg/l) to PP DDT (162.86±0.21µg/l) in Kara sample station and Beta BHC (0.20±0.07µg/l) to Endrin Aldehyde (76.47±0.02µg/l) in Odo-Ogun sample station. The levels of POPs obtained in sediments ranged from 0.40±0.23µg/g (Beta BHC) to 259.90 ± 1.00µg/kg (Endosulfan sulfate) in Kara sample station and 0.64±0.00µg/g (Beta BHC) to 379.77 ±0.15 µg/g (Endosulfan sulfate) in Odo-Ogun sample station. The levels of POPs obtained in fin fish samples ranged from 0.29±0.00µg/g (Delta BHC) to 197.87 ± 0.31µg/g (PP DDT) in Kara sample station and in Odo-Ogun sample station the mean value for fish samples range from 0.29 ± 0.00 µg/g (Delta BHC) to 197.87 ± 0.32 µg/g (PP DDT). The study showed that the accumulation of POPs affect the environment and reduce water quality. The results showed that the concentrations were found to exceed the maximum acceptable concentration of 0.10µg/l value set by the European Union for the protection of freshwater aquatic life and this can be hazardous if the trend is not checked.

Keywords: hazardous, persistent, pesticides, biomes

Procedia PDF Downloads 233
77 Comparison of Catalyst Support for High Pressure Reductive Amination

Authors: Tz-Bang Du, Cheng-Han Hsieh, Li-Ping Ju, Hung-Jie Liou

Abstract:

Polyether amines synthesize by secondary hydroxyl polyether diol play an important role in epoxy hardener. The low molecular weight product is used in low viscosity and high transparent polyamine product for the logo, ground cover, especially for wind turbine blade, while the high molecular weight products are used in advanced agricultures such as a high-speed railway. High-pressure reductive amination process is required for producing these amines. In the condition of higher than 150 atm pressure and 200 degrees Celsius temperature, supercritical ammonia is used as a reactant and also a solvent. It would be a great challenge to select a catalyst support for such high-temperature alkaline circumstance. In this study, we have established a six-autoclave-type (SAT) high-pressure reactor for amination catalyst screening, which six experiment conditions with different temperature and pressure could be examined at the same time. We synthesized copper-nickel catalyst on different shaped alumina catalyst support and evaluated the catalyst activity for high-pressure reductive amination of polypropylene glycol (PPG) by SAT reactor. Ball type gamma alumina, ball type activated alumina and pellet type gamma alumina catalyst supports are evaluated in this study. Gamma alumina supports have shown better activity on PPG reductive amination than activated alumina support. In addition, the catalysts are evaluated in fixed bed reactor. The diamine product was successfully synthesized via this catalyst and the strength of the catalysts is measured. The crush strength of blank supports is about 13.5 lb for both gamma alumina and activated alumina. The strength increases to 20.3 lb after synthesized to be copper-nickel catalyst. After test in the fixed bed high-pressure reductive amination process for 100 hours, the crush strength of the used catalyst is 3.7 lb for activated alumina support, 12.0 lb for gamma alumina support. The gamma alumina is better than activated alumina to use as catalyst support in high-pressure reductive amination process.

Keywords: high pressure reductive amination, copper nickel catalyst, polyether amine, alumina

Procedia PDF Downloads 194
76 Damage Mesomodel Based Low-Velocity Impact Damage Analysis of Laminated Composite Structures

Authors: Semayat Fanta, P.M. Mohite, C.S. Upadhyay

Abstract:

Damage meso-model for laminates is one of the most widely applicable approaches for the analysis of damage induced in laminated fiber-reinforced polymeric composites. Damage meso-model for laminates has been developed over the last three decades by many researchers in experimental, theoretical, and analytical methods that have been carried out in micromechanics as well as meso-mechanics analysis approaches. It has been fundamentally developed based on the micromechanical description that aims to predict the damage initiation and evolution until the failure of structure in various loading conditions. The current damage meso-model for laminates aimed to act as a bridge between micromechanics and macro-mechanics of the laminated composite structure. This model considers two meso-constituents for the analysis of damage in ply and interface that imparted from low-velocity impact. The damages considered in this study include fiber breakage, matrix cracking, and diffused damage of the lamina, and delamination of the interface. The damage initiation and evolution in laminae can be modeled in terms of damaged strain energy density using damage parameters and the thermodynamic irreversible forces. Interface damage can be modeled with a new concept of spherical micro-void in the resin-rich zone of interface material. The damage evolution is controlled by the damage parameter (d) and the radius of micro-void (r) from the point of damage nucleation to its saturation. The constitutive martial model for meso-constituents is defined in a user material subroutine VUMAT and implemented in ABAQUS/Explicit finite element modeling tool. The model predicts the damages in the meso-constituents level very accurately and is considered the most effective technique of modeling low-velocity impact simulation for laminated composite structures.

Keywords: mesomodel, laminate, low-energy impact, micromechanics

Procedia PDF Downloads 191
75 Synthesis of Low-Cost Porous Silicon Carbide Foams from Renewable Sources

Authors: M. A. Bayona, E. M. Cordoba, V. R. Guiza

Abstract:

Highly porous carbon-based foams are used in a wide range of industrial applications, which include absorption, catalyst supports, thermal insulation, and biomaterials, among others. Particularly, silicon carbide (SiC) based foams have shown exceptional potential for catalyst support applications, due to their chemical inertness, large frontal area, low resistance to flow, low-pressure drop, as well as high resistance to temperature and corrosion. These properties allow the use of SiC foams in harsh environments with high durability. Commonly, SiC foams are fabricated from polysiloxane, SiC powders and phenolic resins, which can be costly or highly toxic to the environment. In this work, we propose a low-cost method for the fabrication of highly porous, three-dimensional SiC foams via template replica, using recycled polymeric sponges as sacrificial templates. A sucrose-based resin combined with a Si-containing pre-ceramic polymer was used as the precursor. Polymeric templates were impregnated with the precursor solution, followed by thermal treatment at 1500 °C under an inert atmosphere. Several synthesis parameters, such as viscosity and composition of the precursor solution (Si: Sucrose molar ratio), and the porosity of the template, were evaluated in terms of their effect on the morphology, composition and mechanical resistance of the resulting SiC foams. The synthesized composite foams exhibited a highly porous (50-90%) and interconnected structure, containing 30-90% SiC with a mechanical compressive strength between 0.01-0.1 MPa. The methodology employed here allowed the fabrication of foams with a varied concentration of SiC and with morphological and mechanical properties that contribute to the development of materials of high relevance in the industry, while using low-cost, renewable sources such as table sugar, and providing a recycling alternative for polymeric sponges.

Keywords: catalyst support, polymer replica technique, reticulated porous ceramics, silicon carbide

Procedia PDF Downloads 94
74 Microfabrication of Three-Dimensional SU-8 Structures Using Positive SPR Photoresist as a Sacrificial Layer for Integration of Microfluidic Components on Biosensors

Authors: Su Yin Chiam, Qing Xin Zhang, Jaehoon Chung

Abstract:

Complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) have obtained increased attention in the biosensor community because CMOS technology provides cost-effective and high-performance signal processing at a mass-production level. In order to supply biological samples and reagents effectively to the sensing elements, there are increasing demands for seamless integration of microfluidic components on the fabricated CMOS wafers by post-processing. Although the PDMS microfluidic channels replicated from separately prepared silicon mold can be typically aligned and bonded onto the CMOS wafers, it remains challenging owing the inherently limited aligning accuracy ( > ± 10 μm) between the two layers. Here we present a new post-processing method to create three-dimensional microfluidic components using two different polarities of photoresists, an epoxy-based negative SU-8 photoresist and positive SPR220-7 photoresist. The positive photoresist serves as a sacrificial layer and the negative photoresist was utilized as a structural material to generate three-dimensional structures. Because both photoresists are patterned using a standard photolithography technology, the dimensions of the structures can be effectively controlled as well as the alignment accuracy, moreover, is dramatically improved (< ± 2 μm) and appropriately can be adopted as an alternative post-processing method. To validate the proposed processing method, we applied this technique to build cell-trapping structures. The SU8 photoresist was mainly used to generate structures and the SPR photoresist was used as a sacrificial layer to generate sub-channel in the SU8, allowing fluid to pass through. The sub-channel generated by etching the sacrificial layer works as a cell-capturing site. The well-controlled dimensions enabled single-cell capturing on each site and high-accuracy alignment made cells trapped exactly on the sensing units of CMOS biosensors.

Keywords: SU-8, microfluidic, MEMS, microfabrication

Procedia PDF Downloads 484
73 Total Synthesis of Natural Cyclic Depsi Peptides by Convergent SPPS and Macrolactonization Strategy for Anti-Tb Activity

Authors: Katharigatta N. Venugopala, Fernando Albericio, Bander E. Al-Dhubiab, T. Govender

Abstract:

Recent years have witnessed a renaissance in the field of peptides that are obtained from various natural sources such as many bacteria, fungi, plants, seaweeds, vertebrates, invertebrates and have been reported for various pharmacological properties such as anti-TB, anticancer, antimalarial, anti-inflammatory, anti-HIV, antibacterial, antifungal, and antidiabetic, activities. In view of the pharmacological significance of natural peptides, serious research efforts of many scientific groups and pharmaceutical companies have consequently focused on them to explore the possibility of developing their potential analogues as therapeutic agents. Solid phase and solution phase peptide synthesis are the two methodologies currently available for the synthesis of natural or synthetic linear or cyclic depsi-peptides. From a synthetic point of view, there is no doubt that the solid-phase methodology gained added advantages over solution phase methodology in terms of simplicity, purity of the compound and the speed with which peptides can be synthesised. In the present study total synthesis, purification and structural elucidation of analogues of natural anti-TB cyclic depsi-peptides such as depsidomycin, massetolides and viscosin has been attempted by solid phase method using standard Fmoc protocols and finally off resin cyclization in solution phase method. In case of depsidomycin, synthesis of linear peptide on solid phase could not be achieved because of two turn inducing amino acids in the peptide sequence, but total synthesis was achieved by convergent solid phase peptide synthesis followed by cyclization in solution phase method. The title compounds obtained were in good yields and characterized by NMR and HRMS. Anti-TB results revealed that the potential title compound exhibited promising activity at 4 µg/mL against H37Rv and 16 µg/mL against MDR strains of tuberculosis.

Keywords: total synthesis, cyclic depsi-peptides, anti-TB activity, tuberculosis

Procedia PDF Downloads 588
72 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum

Authors: Krasimira Georgieva, Yordan Denev

Abstract:

Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.

Keywords: urea formaldehyde resins, gas-filled thermostes, phosphogypsum, mechanical properties

Procedia PDF Downloads 76
71 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity

Authors: Shivdayal Patel, Suhail Ahmad

Abstract:

Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.

Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling

Procedia PDF Downloads 247
70 Preparation and Properties of Chloroacetated Natural Rubber Rubber Foam Using Corn Starch as Curing Agent

Authors: Ploenpit Boochathum, Pitchayanad Kaolim, Phimjutha Srisangkaew

Abstract:

In general, rubber foam is produced based on the sulfur curing system. However, the remaining sulfur in the rubber product waste is burned to sulfur dioxide gas causing the environment pollution. To avoid using sulfur as curing agent in the rubber foam products, this research work proposes non-sulfur curing system by using corn starch as a curing agent. The ether crosslinks were proposed to be produced via the functional bonding between hydroxyl groups of the starch molecules and chloroacetate groups added on the natural rubber molecules. The chloroacetated natural rubber (CNR) latex was prepared via the epoxidation reaction of the concentrated natural rubber latex, subsequently, epoxy rings were attacked by chloroacetic acid to produce hydroxyl groups and chloroacetate groups on the rubber molecules. Foaming agent namely NaHCO3 was selected to add in the CNR latex due to the low decomposition temperature at about 50°C. The appropriate curing temperature was assigned to be 90°C that is above gelatinization temperature; 60-70°C, of starch. The effect of weight ratio of starch, i.e., 0 phr, 3 phr and 5 phr, on the physical properties of CNR rubber foam was investigated. It was found that density reduced from 0.81 g/cm3 for 0 phr to 0.75 g/cm3 for 3 phr and 0.79 g/cm3 for 5 phr. The ability to return to its original thickness after prolonged compressive stresses of CNR rubber foam cured with starch loading of 5 phr was found to be considerably better than that of CNR rubber foam cured with starch 3 phr and CNR rubber foam without addition of starch according to the compression set that was determined to decrease from 66.67% to 40% and 26.67% with the increase loading of starch. The mechanical properties including tensile strength and modulus of CNR rubber foams cured using starch were determined to increase except that the elongation at break was found to decrease. In addition, all mechanical properties of CNR rubber foams cured with the starch 3 phr and 5 phr were found to be slightly different and drastically higher than those of CNR rubber foam without the addition of starch. This research work indicates that starch can be applicable as a curing agent for CNR rubber. This is confirmed by the increase of the elastic modulus (G') of CNR rubber foams that was cured with the starch over the CNR rubber foam without curing agent. This type of rubber foam is believed to be one of the biodegradable and environment-friendly product that can be cured at low temperature of 90°C.

Keywords: chloroacetated natural rubber, corn starch, non-sulfur curing system, rubber foam

Procedia PDF Downloads 267
69 The Numerical and Experimental Analysis of Compressed Composite Plate in Asymmetrical Arrangement of Layers

Authors: Katarzyna Falkowicz

Abstract:

The work focused on the original concept of a thin-walled plate element with a cut-out, for use as a spring or load-bearing element. The subject of the study were rectangular plates with a cut-out with variable geometrical parameters and with a variable angle of fiber arrangement, made of a carbon-epoxy composite with high strength properties in an asymmetrical arrangement, subjected to uniform compression. The influence of geometrical parameters of the cut-out and the angle of fiber arrangement on the value of critical load of the structure and buckling form was investigated. Uniform thin plates are relatively cheap to manufacture, however due to their low bending stiffness; they can carry relatively small loads. The lowest form of loss of plate stability, which is the bending form, leads to its rapid destruction due to high deflection increases, with a slight increase in compressive load - low rigidity of the structure. However, the stiffness characteristics of the structure change significantly when the work of plate is forcing according to the higher flexural-torsional form of buckling. The plate is able to carry a much higher compressive load while maintaining much stiffer work characteristics in the post-critical range. The calculations carried out earlier show that plates with forced higher form of buckling are characterized by stable, progressive paths of post-critical equilibrium, enabling their use as elastic elements. The characteristics of such elements can be designed in a wide range by changing the geometrical parameters of the cut-out, i.e. height and width as well as by changing the angle of fiber arrangement The commercial ABAQUS program using the finite element method was used to develop the discrete model and perform numerical calculations. The obtained results are of significant practical importance in the design of structures with elastic elements, allowing to achieve the required maintenance characteristics of the device.

Keywords: buckling mode, numerical method, unsymmetrical laminates, thin-walled elastic elements

Procedia PDF Downloads 78