Search results for: enzymatic fermentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 769

Search results for: enzymatic fermentation

619 Optimization of Fermentation Conditions for Extracellular Production of the Oncolytic Enzyme, L-Asparaginase, by New Subsp. Streptomyces Rochei Subsp. Chromatogenes NEAE-K Using Response Surface Methodology under Solid State Fermentation

Authors: Noura El-Ahmady El-Naggar

Abstract:

L-asparaginase is an important enzyme as therapeutic agents used in combination therapy with other drugs in the treatment of acute lymphoblastic leukemia in children. L-asparaginase producing actinomycete strain, NEAE-K, was isolated from soil sample and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and sequencing product (1532 bp) was deposited in the GenBank database under accession number KJ200343. The study was conducted to screen parameters affecting the production of L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K on solid state fermentation using Plackett–Burman experimental design. Sixteen different independent variables including incubation time, moisture content, inoculum size, temperature, pH, soybean meal+ wheat bran, dextrose, fructose, L-asparagine, yeast extract, KNO3, K2HPO4, MgSO4.7H2O, NaCl, FeSO4. 7H2O, CaCl2, and three dummy variables were screened in Plackett–Burman experimental design of 20 trials. The most significant independent variables affecting enzyme production (dextrose, L-asparagine and K2HPO4) were further optimized by the central composite design. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K from solid state fermentation: g/L (soybean meal+ wheat bran 15, dextrose 3, fructose 4, L-asparagine 8, yeast extract 2, KNO3 1, K2HPO4 2, MgSO4.7H2O 0.5, NaCl 0.1, FeSO4. 7H2O 0.02, CaCl2 0.01), incubation time 7 days, moisture content 50%, inoculum size 3 mL, temperature 30°C, pH 8.5.

Keywords: streptomyces rochei subsp. chromatogenes neae-k, 16s rrna, identification, solid state fermentation, l-asparaginase production, plackett-burman design, central composite design

Procedia PDF Downloads 368
618 Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals.

Keywords: Bacillus safensis LCX, high valued chemicals, lignocellulosic enzymes, solid state fermentation

Procedia PDF Downloads 252
617 Development of the Manufacturing Process of Low Salt-Fermented Soy Sauce

Authors: Young-Ran Song, Byeong-Uk Lim, Sang-Ho Baik

Abstract:

This study was initiated in order to develop a method for soy sauce fermentation at low salt concentrations without decreasing quality. Soy sauce was fermented with the fermentation starter (meju) and different salt contents (8-14%, w/v) by inoculating two strains or not, in which Torulaspora delbrueckii and Pichia guilliermondii strains having different abilities to induce sterilizing effects or enhance flavor production were used. As the results, there were microbial and biochemical differences among prepared soy sauce. First, Staphylococcus and Enterococcus spp. in addition to Bacillus genus that is the most important bacteria in Korean fermented soy product were detected by salt reduction. However, application of yeast starters can inhibit the undesirable bacterial growth. Moreover, PCA bi-plots of major principal components on various biochemical parameters (final pH, total acidity, soluble sugar, reducing sugar, ethanol and 32 volatile flavor compounds) were drawn to demonstrate the physicochemical differences and similarities among the samples. It was confirmed that the soy sauce samples produced with different salt concentrations were clearly different since salt reduction induced low contents of acids, alcohols and esters with higher acidity. However despite low salt concentration, combining two different yeasts appeared to have similar characteristics to the high salt-fermented soy sauce with elevated concentrations of ethanol, some alcohols, and most ketones, hence resulted in a balance of more complex and richer flavors with a flavor profile pattern identical to that of high-salt.

Keywords: Soy sauce, low salt, fermentation, yeast.

Procedia PDF Downloads 350
616 Effect of Local Processing Techniques on the Nutrients and Anti-Nutrients Content of Bitter Cassava (Manihot Esculenta Crantz)

Authors: J. S. Alakali, A. R. Ismaila, T. G. Atume

Abstract:

The effects of local processing techniques on the nutrients and anti-nutrients content of bitter cassava were investigated. Raw bitter cassava tubers were boiled, sundried, roasted, fried to produce Kuese, partially fermented and sun dried to produce Alubo, fermented by submersion to produce Akpu and fermented by solid state to produce yellow and white gari. These locally processed cassava products were subjected to proximate, mineral analysis and anti-nutrient analysis using standard methods. The result of the proximate analysis showed that, raw bitter cassava is composed of 1.85% ash, 20.38% moisture, 4.11% crude fibre, 1.03% crude protein, 0.66% lipids and 71.88% total carbohydrate. For the mineral analysis, the raw bitter cassava tuber contained 32.00% Calcium, 12.55% Magnesium, 1.38% Iron and 80.17% Phosphorous. Even though all processing techniques significantly increased the mineral content, fermentation had higher mineral increment effect. The anti-nutrients analysis showed that the raw tuber contained 98.16mg/100g cyanide, 44.00mg/100g oxalate 304.20mg/100g phytate and 73.00mg/100g saponin. In general all the processing techniques showed a significant reduction of the phytate, oxalate and saponin content of the cassava. However, only fermentation, sun drying and gasification were able to reduce the cyanide content of bitter cassava below the safe level (10mg/100g) recommended by Standard Organization of Nigeria. Yellow gari(with the addition of palm oil) showed low cyanide content (1.10 mg/100g) than white gari (3.51 mg/100g). Processing methods involving fermentation reduce cyanide and other anti-nutrients in the cassava to levels that are safe for consumption and should be widely practiced.

Keywords: bitter cassava, local processing, fermentation, anti-nutrient.

Procedia PDF Downloads 261
615 Proximate Composition and Sensory Properties of Complementary Food from Fermented Acha (Digitaria exilis), Soybean and Orange-Flesh Sweet Potato Blends

Authors: N. C. Okoronkwo, I. E. Mbaeyi-Nwaoha, C. P. Agbata

Abstract:

Childhood malnutrition is one of the most persistent public health problems throughout developing countries, including Nigeria. Demographic and Health survey data from twenty-one developing countries indicated that poor complementary feeding of children aged 6- 23 months contributes to negative growth trends. To reduce malnutrition among children in the society, formulation of complimentary food rich in essential nutrient for optimum growth and development of infants is essential. This study focused on the evaluation of complementary food produced by solid-state fermentation of Acha and Soybean using Rhizopus oligosporus (2710) and Orange-fleshed sweet potatoes (OFSP) using Lactobacillus planterum (B-41621). The raw materials were soaked separately, each in four volumes of 0.9M acetic acid for 16 hours, rinsed with clean water, steam cooked and cooled. Solid-state fermentation (SSF) was carried out by inoculating Acha and Soybean with spore suspension (1x 10⁶spores/ml) of Rhizopus oligosporus (2710) and OFSP with spore suspension (1x 106spores/ml) of Lactobacillus planterum (B-41621). Fermentation which lasted for 72hours was carried out with 24hours sampling. The samples were blended in the following ratios: Acha and soybean 100: 100 (AS), Acha/soybean and OFSP 50: 50(ASO), made into gruel and compared with a commercial infant formula (Cerelac) which served as the control (CTRL). The samples were analyzed for proximate composition using AOAC methods and sensory attributes using a hedonic scale. Results showed that moisture, crude protein, fibre and ash content increased significantly (p<0.05) as fermentation progressed, while carbohydrate and fat content decreased. The protein, moisture, fibre and ash content ranged from 17.10-19.02%, 54.97-56.27%, 7.08-7.60% and2.09-2.38%, respectively, while carbohydrate and fat content ranged from 12.95-10.21% and 5.81-4.52%, respectively. In sensory scores, there were no significant (p>0.05) difference between the average mean scores of colours, texture and consistency of the samples. The sensory score for the overall acceptability ranged from 6.20-7.80. Sample CTRL had the highest score, while sample ASO had the least score. There was no significant (p>0.05) difference between samples CTRL and AS. Solid-state fermentation improved the nutritional content and flavour of the developed complementary food, which is needed for infant growth and development.

Keywords: Complementary food, malnutrition, proximate composition, solid-state fermentation

Procedia PDF Downloads 122
614 Improving the Quality of Casava Peel-Leaf Mixture through Fermentation with Rhizopus oligosporusas Poultry Ration

Authors: Mirnawati, G. Ciptaan, Ferawati

Abstract:

This study aims to improve the quality of the cassava peel-leaf mixture (CPLM) through fermentation with Rhizopus oligosporusas poultry ration. This research is an experimental study using a completely randomized design (CRD) with four treatments and five replications. The treatments were cassava peel-leaf mixture (CPLM) fermented with Rhizopus oligosporus. The treatments were a combination of cassava peel and leaves with the ratio of; A (9:1), B (8:2), C (7:3), and D (6:4). The observed variables were protease enzyme activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and metabolic energy. The results of the diversity analysis showed that there was a very significant (p < 0.01) effect on protease activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and energy metabolism of fermented CPLM. Based on the results of the study, it can be concluded that CPLM (6:4) fermented with Rhizopus oligosporus gave the best results seen from protease activity 7,25 U/ml, 21.23% crude protein, 19.80% crude fiber, 59.65% nitrogen retention, 62.99% crude fiber digestibility and metabolic energy 2671 Kcal/kg.

Keywords: quality, Casava peel-leaf mixture, fermentation, Rhizopus oligosporus

Procedia PDF Downloads 136
613 The Improved Biofuel Cell for Electrical Power Generation from Wastewaters

Authors: M. S. Kilic, S. Korkut, B. Hazer

Abstract:

Newly synthesized Polypropylene-g-Polyethylene glycol polymer was first time used for a compartment-less enzymatic fuel cell. Working electrodes based on Polypropylene-g-Polyethylene glycol were operated as unmediated and mediated system (with ferrocene and gold/cobalt oxide nanoparticles). Glucose oxidase and bilirubin oxidase was selected as anodic and cathodic enzyme, respectively. Glucose was used as fuel in a single-compartment and membrane-less cell. Maximum power density was obtained as 0.65 nW cm-2, 65 nW cm-2, and 23500 nW cm-2 from the unmediated, ferrocene and gold/cobalt oxide modified polymeric film, respectively. Power density was calculated to be ~16000 nW cm-2 for undiluted wastewater sample with gold/cobalt oxide nanoparticles including system.

Keywords: bilirubin oxidase, enzymatic fuel cell, glucose oxidase, nanoparticles

Procedia PDF Downloads 224
612 Study on the Efficiency of Some Antioxidants on Reduction of Maillard Reaction in Low Lactose Milk

Authors: Farnaz Alaeimoghadam, Farzad Alaeimoghadam

Abstract:

In low-lactose milk, due to lactose hydrolysis and its conversion to monosaccharides like glucose and galactose, the Maillard reaction (non-enzymatic browning) occurs more readily compared to non-hydrolyzed milk. This reaction incurs off-flavor and dark color, as well as a decrease in the nutritional value of milk. The target of this research was to evaluate the effect of natural antioxidants in diminishing the browning in low-lactose milk. In this research, three antioxidants, namely ascorbic acid, gallic acid, and pantothenic acid in the concentration range of 0-1 mM/L, either in combination with each other or separately, were added to low-lactose milk. After heat treatment (120 0C for 3 min.), milk samples incubated at 55 0C for one day and then stored at 4 0C for 9 days. Quality indices, including total phenol content, antioxidant activity, color indices, and sensory characters, were measured during intervals of 0, 2, 5, 7, and 9 days. Results of this research showed that the effect of storage time and adding antioxidants were significant on pH, antioxidant activity, total phenolic compounds either before or after heating, index L*, color change, and sensational characteristics (p < 0.05); however, acidity, a* and b* indices, chroma, and hue angle showed no significant changes (p > 0.05). The findings showed that the simultaneous application of gallic acid and ascorbic in the diminishing of non-enzymatic browning and color change, increasing pH, longevity, and antioxidant activity after heat treatment, and augmenting phenolic compounds before heat treatment was better than that of pantothenic acid.

Keywords: Maillard, low-lactose milk, non-enzymatic browning, natural antioxidant

Procedia PDF Downloads 100
611 Effect of Lactic Acid Bacteria Inoculant on Fermentation Quality of Sweet Sorghum Silage

Authors: Azizza Mala, Babo Fadlalla, Elnour Mohamed, Siran Wang, Junfeng Li, Tao Shao

Abstract:

Sweet sorghum is considered one of the best plants for silage production and is now a more important feed crop in many countries worldwide. It is simple to ensile because of its high water-soluble carbohydrates (WSC) concentration and low buffer capacity. This study investigated the effect of adding Pediococcus acidilactici AZZ5 and Lactobacillus plantarum AZZ4 isolated from elephant grass on the fermentation quality of sweet sorghum silage. One commercial bacteria Lactobacillus Plantarum, Ecosyl MTD/1(C.B.)), and two strains were used as additives Pediococcus acidilactici (AZZ5), Lactobacillus plantarum subsp. Plantarum (AZZ4) at 6 log colony forming units (cfu)/g of fresh sweet sorghum grass in laboratory silos (1000g). After 15, 30, and 60 days, the silos for each treatment were opened. All of the isolated strains enhanced the silage quality of sweet sorghum silage compared to the control, as evidenced by significantly (P < 0.05) lower ammonia nitrogen (NH3-N) content and undesirable microbial counts, as well as greater lactic acid (L.A.) contents and lactic acid/acetic acid (LA/AA) ratios. In addition, AZZ4 performed better than all other inoculants during ensiling, as evidenced by a significant (P < 0.05) reduction in pH and ammonia-N contents and a significant increase in lactic acid contents.

Keywords: fermentation, lactobacillus plantarum, lactic acid bacteria, pediococcus acidilactic, sweet sorghum

Procedia PDF Downloads 32
610 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 131
609 Effect of Amount of Crude Fiber in Grass or Silage to the Digestibility of Organic Matter in Suckler Cow Feeding Systems

Authors: Scholz Heiko, Kuhne Petra, Heckenberger Gerd

Abstract:

Problems during the calving period (December to May) often result in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significant influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue and the number of infusorians. The use of rations with the high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen.

Keywords: suckler cow, feeding systems, crude fiber, digestibilty of organic matter

Procedia PDF Downloads 94
608 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach

Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi

Abstract:

This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.

Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat

Procedia PDF Downloads 462
607 Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production

Authors: Mustafa Ümi̇t Ünal, Nafi̇z Çeli̇ktaş, Aysun Şener, Sara Betül Dolgun, Duygu Keser

Abstract:

The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide.

Keywords: switchgrass, acid pretreatment, enzymatic hydrolysis, base pretreatment, ethanol production

Procedia PDF Downloads 482
606 Isolation, Purification and Characterisation of Non-Digestible Oligosaccharides Derived from Extracellular Polysaccharide of Antarctic Fungus Thelebolus Sp. IITKGP-BT12

Authors: Abinaya Balasubramanian, Satyabrata Ghosh, Satyahari Dey

Abstract:

Non-Digestible Oligosaccharides(NDOs) are low molecular weight carbohydrates with degree of polymerization (DP) 3-20, that are delivered intact to the large intestine. NDOs are gaining attention as effective prebiotic molecules that facilitate prevention and treatment of several chronic diseases. Recently, NDOs are being obtained by cleaving complex polysaccharides as it results in high yield and also as the former tend to display greater bioactivity. Thelebolus sp. IITKGP BT-12, a recently identified psychrophilic, Ascomycetes fungus has been reported to produce a bioactive extracellular polysaccharide(EPS). The EPS has been proved to possess strong prebiotic activity and anti- proliferative effects. The current study is an attempt to identify and optimise the most suitable method for hydrolysis of the above mentioned novel EPS into NDOs, and further purify and characterise the same. Among physical, chemical and enzymatic methods, enzymatic hydrolysis was identified as the best method and the optimum hydrolysis conditions obtained using response surface methodology were: reaction time of 24h, β-(1,3) endo-glucanase concentration of 0.53U and substrate concentration of 10 mg/ml. The NDOs were purified using gel filtration chromatography and their molecular weights were determined using MALDI-TOF. The major fraction was found to have a DP of 7,8. The monomeric units of the NDOs were confirmed to be glucose using TLC and GCMS-MS analysis. The obtained oligosaccharides proved to be non-digestible when subjected to gastric acidity, salivary and pancreatic amylases and hence could serve as efficient prebiotics.

Keywords: characterisation, enzymatic hydrolysis, non-digestible oligosaccharides, response surface methodology

Procedia PDF Downloads 84
605 New Kinetic Approach to the Enzymatic Hydrolysis of Proteins: A Case of Thermolysin-Catalyzed Albumin

Authors: Anna Trusek-Holownia, Andrzej Noworyta

Abstract:

Using an enzyme of known specificity the hydrolysis of protein was carried out in a controlled manner. The aim was to obtain oligopeptides being the so-called active peptides or their direct precursors. An original way of expression of the protein hydrolysis kinetics was introduced. Peptide bonds contained in the protein were recognized as a diverse-quality substrate for hydrolysis by the applied protease. This assumption was positively verified taking as an example the hydrolysis of albumin by thermolysin. Peptide linkages for this system should be divided into at least four groups. One of them is a group of bonds non-hydrolyzable by this enzyme. These that are broken are hydrolyzed at a rate that differs even by tens of thousands of times. Designated kinetic constants were k'F = 10991.4 L/g.h, k'M = 14.83L/g.h, k'S about 10-1 L/g.h for fast, medium and slow bonds, respectively. Moreover, a procedure for unfolding of the protein, conducive to the improved susceptibility to enzymatic hydrolysis (approximately three-fold increase in the rate) was proposed.

Keywords: peptide bond hydrolysis, kinetics, enzyme specificity, biologically active peptides

Procedia PDF Downloads 402
604 Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues

Authors: Sánchez Acuña, Juan Camilo, Granados Gómez, Mildred Magaly, Navarrete Rodríguez, Luisa Fernanda

Abstract:

Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.

Keywords: bioethanol, biofuels, banana waste, hydrolysis

Procedia PDF Downloads 386
603 Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate.

Keywords: biomass pretreatment, mechanical fragmentation, biomass, methane fermentation

Procedia PDF Downloads 538
602 The Effect of Enzymatic Keratin Hydrolysate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition

Authors: Y. H. Tshela Ntumba, A. Przepiórkowska, M. Prochoń

Abstract:

Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching. The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats.

Keywords: agricultural mat, biodecomposition, biodegradation, carboxylated butadiene-styrene latex, cellulosic-elastomeric material, keratin hydrolyzate, mulching, protein hydrolyzate

Procedia PDF Downloads 368
601 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential

Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh

Abstract:

Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.

Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties

Procedia PDF Downloads 317
600 Establishing a Microbial Co-Culture for Production of Cellulases Using Banana (Musa Paradisiaca) Pseudostem

Authors: Mulanga Luscious Mulaudzi, Ignatious Ncube

Abstract:

In nature, enzymatic degradation of lignocellulose is more efficient compared to in vivo bioprocessing. Thus, a co-culture should enable production of more efficient enzyme preparations that would mimic the natural decomposition of lignocellulose. The aim of the study was to establish a microbial co-culture for the production of highly active cellulase preparations. The objectives were to determine the use of a variety of culture media to isolate cellulose degrading microorganisms from decomposing banana pseudo stem and to optimize production of cellulase by co-cultures of microorganisms producing high levels of cellulose. Screening of fungal isolates was done on carboxylmethylcellulose agar plates which were stained with Congo red to show hydrolytic activity of the isolates. Co-culture and mixed culture of these microorganisms were cultured using Mendel salts with Avicel as the carbon source. Cultures were incubated at 30 °C with shaking at 200 rpm for 240 hrs. Enzyme activity assays were performed to determine endoglycosidase and β-glucosidase. Mixed culture of fungi-dead bacterial cells showed to be the best co-culture/ mixed culture to produce higher levels of cellulase activity in submerged fermentations (SmF) using Avicel™ as a carbon source. The study concludes use microorganism 5A in co-cultures is highly recommended in order to produce high amounts of β-glucosidases, no matter the combination used.

Keywords: avicel, co-culture, submerged fermentation, pseudostem

Procedia PDF Downloads 90
599 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Waste Water: A Study of Techno-Economics, Energy Use, and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates are interesting substitutes for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization

Procedia PDF Downloads 409
598 FTIR Spectroscopy for in vitro Screening in Microbial Biotechnology

Authors: V. Shapaval, N. K. Afseth, D. Tzimorotas, A. Kohler

Abstract:

Globally there is a dramatic increase in the demand for food, energy, materials and clean water since natural resources are limited. As a result, industries are looking for ways to reduce rest materials and to improve resource efficiency. Microorganisms have a high potential to be used as bio factories for the production of primary and secondary metabolites that represent high-value bio-products (enzymes, polyunsaturated fatty acids, bio-plastics, glucans, etc.). In order to find good microbial producers, to design suitable substrates from food rest materials and to optimize fermentation conditions, rapid analytical techniques for quantifying target bio products in microbial cells are needed. In the EU project FUST (R4SME, Fp7), we have developed a fully automated high-throughput FUST system based on micro-cultivation and FTIR spectroscopy that facilitates the screening of microorganisms, substrates and fermentation conditions for the optimization of the production of different high-value metabolites (single cell oils, bio plastics). The automated system allows the preparation of 100 samples per hour. Currently, The FUST system is in use for screening of filamentous fungi in order to find oleaginous strains with the ability to produce polyunsaturated fatty acids, and the optimization of cheap substrates, derived from food rest materials, and the optimization of fermentation conditions for the high yield of single cell oil.

Keywords: FTIR spectroscopy, FUST system, screening, biotechnology

Procedia PDF Downloads 404
597 Investigation of Influence of Maize Stover Components and Urea Treatment on Dry Matter Digestibility and Fermentation Kinetics Using in vitro Gas Techniques

Authors: Anon Paserakung, Chaloemphon Muangyen, Suban Foiklang, Yanin Opatpatanakit

Abstract:

Improving nutritive values and digestibility of maize stover is an alternative way to increase their utilization in ruminant and reduce air pollution from open burning of maize stover in the northern Thailand. The present study, 2x3 factorial arrangements in completely randomized design was conducted to investigate the effect of maize stover components (whole and upper stover; cut above 5th node). Urea treatment at levels 0, 3, and 6% DM on dry matter digestibility and fermentation kinetics of maize stover using in vitro gas production. After 21 days of urea treatment, results illustrated that there was no interaction between maize stover components and urea treatment on 48h in vitro dry matter digestibility (IVDMD). IVDMD was unaffected by maize stover components (P > 0.05), average IVDMD was 55%. However, using whole maize stover gave higher cumulative gas and gas kinetic parameters than those of upper stover (P<0.05). Treating maize stover by ensiling with urea resulted in a significant linear increase in IVDMD (P<0.05). IVDMD increased from 42.6% to 53.9% when increased urea concentration from 0 to 3% and maximum IVDMD (65.1%) was observed when maize stover was ensiled with 6% urea. Maize stover treated with urea at levels of 0, 3, and 6% linearly increased cumulative gas production at 96h (31.1 vs 50.5 and 59.1 ml, respectively) and all gas kinetic parameters excepted the gas production from the immediately soluble fraction (P<0.50). The results indicate that maize stover treated with 6% urea enhance in vitro dry matter digestibility and fermentation kinetics. This study provides a practical approach to increasing utilization of maize stover in feeding ruminant animals.

Keywords: maize stover, urea treatment, ruminant feed, gas production

Procedia PDF Downloads 180
596 In Vitro Fermentation Of Rich In B-glucan Pleurotus Eryngii Mushroom: Impact On Faecal Bacterial Populations And Intestinal Barrier In Autistic Children

Authors: Georgia Saxami, Evangelia N. Kerezoudi, Evdokia K. Mitsou, Marigoula Vlassopoulou, Georgios Zervakis, Adamantini Kyriacou

Abstract:

Autism Spectrum Disorder (ASD) is a complex group of developmental disorders of the brain, characterized by social and communication dysfunctions, stereotypes and repetitive behaviors. The potential interaction between gut microbiota (GM) and autism has not been fully elucidated. Children with autism often suffer gastrointestinal dysfunctions, while alterations or dysbiosis of GM have also been observed. Treatment with dietary components has been postulated to regulate GM and improve gastrointestinal symptoms, but there is a lack of evidence for such approaches in autism, especially for prebiotics. This study assessed the effects of Pleurotus eryngii mushroom (candidate prebiotic) and inulin (known prebiotic compound) on gut microbial composition, using faecal samples from autistic children in an in vitro batch culture fermentation system. Selected members of GM were enumerated at baseline (0 h) and after 24 h fermentation by quantitative PCR. After 24 h fermentation, inulin and P. eryngii mushroom induced a significant increase in total bacteria and Faecalibacterium prausnitzii compared to the negative control (gut microbiota of each autistic donor with no carbohydrate source), whereas both treatments induced a significant increase in levels of total bacteria, Bifidobacterium spp. and Prevotella spp. compared to baseline (t=0h) (p for all <0.05). Furthermore, this study evaluated the impact of fermentation supernatants (FSs), derived from P. eryngii mushroom or inulin, on the expression levels of tight junctions’ genes (zonulin-1, occludin and claudin-1) in Caco-2 cells stimulated by bacterial lipopolysaccharides (LPS). Pre-incubation of Caco-2 cells with FS from P. eryngii mushroom led to a significant increase in the expression levels of zonulin-1, occludin and claudin-1 genes compared to the untreated cells, the cells that were subjected to LPS and the cells that were challenged with FS from negative control (p for all <0.05). In addition, incubation with FS from P. eryngii mushroom led to the highest mean expression values for zonulin-1 and claudin-1 genes, which differed significantly compared to inulin (p for all <0.05). Overall, this research highlighted the beneficial in vitro effects of P. eryngii mushroom on the composition of GM of autistic children after 24 h of fermentation. Also, our data highlighted the potential preventive effect of P. eryngii FSs against dysregulation of the intestinal barrier, through upregulation of tight junctions’ genes associated with the integrity and function of the intestinal barrier. This research has been financed by "Supporting Researchers with Emphasis on Young Researchers - Round B", Operational Program "Human Resource Development, Education and Lifelong Learning."

Keywords: gut microbiota, intestinal barrier, autism spectrum disorders, Pleurotus Eryngii

Procedia PDF Downloads 126
595 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases

Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher

Abstract:

Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.

Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases

Procedia PDF Downloads 202
594 Production of Novel Antibiotics by Importing eryK and eryG Genes in Streptomyces fradiae

Authors: Neda Gegar Goshe, Hossein Rassi

Abstract:

The antibacterial properties of macrolide antibiotics (such as erythromycin and tylosin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as erythromycin) have two sugar substituents. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors-malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA-used by modular PKS, and is a host that is amenable to genetic manipulation. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the erythromycin producer Saccharopolyspora erythraea. The biotransformation of erythromycin-D into the desired major component erythromycin-A involves two final enzymatic reactions, EryK-catalyzed hydroxylation at the C-12 position of the aglycone and EryG-catalyzed O methylation at the C-3 position of macrose .This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.

Keywords: Streptomyces fradiae, eryK and eryG genes, tylosin, antibiotics

Procedia PDF Downloads 294
593 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process

Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun

Abstract:

This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventional

Keywords: manure composting, odor removal, parameter control, waste recycling

Procedia PDF Downloads 270
592 Production of Novel Antibiotics of Tylosin by Importing eryK and eryG Genes in Streptomyces fradiae

Authors: Neda Gegar Goshe, M. Moradi, Hossein Rassi

Abstract:

The antibacterial properties of macrolide antibiotics (such as erythromycin and tylosin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as erythromycin) have two sugar substituents. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors-malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA-used by modular PKS, and is a host that is amenable to genetic manipulation. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the erythromycin producer Saccharopolyspora erythraea. The bio transformation of erythromycin-D into the desired major component erythromycin-A involves two final enzymatic reactions, EryK-catalyzed hydroxylation at the C-12 position of the aglycone and EryG-catalyzed O methylation at the C-3 position of macrose. This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.

Keywords: tylosin, eryK and eryG genes, streptomyces fradiae

Procedia PDF Downloads 318
591 Effects of Enzymatic Liquefaction on the Physicochemical Properties and Antioxidant Activity of Zn-Amaranth (Amaranthus viridis) Puree

Authors: M. A. Siti Faridah, K. Muhammad, H. M. Ghazali, Y. A. Yusof

Abstract:

This study was conducted to investigate the effects of three variables namely types of cell wall degrading enzymes (Viscozyme L, Pectinex Ultra SP-L, Rapidase PAC, Rohament CL and Rohapect PTE) at varying concentrations (0.25-3% v/w) and times (30 min-24 h) on the zinc (Zn-) amaranth purees. Liquefaction treatment of the Zn-amaranth purees with Viscozyme (1% v/w at pH 5 and 45ºC for 3 h) was found to be the best procedure, which produced Zn-amaranth puree with low viscosity (8.60 mPas). Zn-amaranth purees were also found to have the highest metallo-chlorophyll derivative contents (0.16 mg/g), free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values (12.49 mM (TE)/g fresh weight) and ferric reducing antioxidant power (FRAP) values (4.57 mM (TE)/g fresh weight) within 3 h of liquefaction. Other physicochemical properties of the enzyme-liquefied Zn-amaranth purees indicated that lightness (L*) (12.54), greenness a*/b* (-0.30), reducing sugar (103.88 mg/mL) and soluble dietary fibre (5.94%) of the purees were higher compared to that of nonenzyme-liquefied amaranth purees.

Keywords: amaranth, antioxidant, chlorophyll derivative, enzymatic liquefaction

Procedia PDF Downloads 112
590 Nutritional Evaluation of Sea Buckthorn “Hippophae rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice

Authors: Sobhy A. El-Sohaimy, Mohamed G. Shehata, Ashwani Mathur, Amira G. Darwish, Nourhan M. Abd El-Aziz, Pammi Gauba, Pooja Upadhyay

Abstract:

Sea buckthorn is a temperate bush plant native to Asian and European countries, explored across the world in traditional medicine to treat various diseases due to the presence of an exceptionally high content of phenolics, flavonoids and antioxidants. In addition to the evaluation of nutrients and active compounds, the focus of the present work was to assess the optimal levels for L. plantarum RM1 growth by applying response surface methodology (RSM), and to determine the impact of juice fermentation on antioxidant, anti-hypertension and anticancer activity, as well as on organoleptic properties. Sea buckthorn berries were shown to contain good fiber content (6.55%, 25 DV%), high quality of protein (3.12%, 6.24 DV%) containing: histidine, valine, threonine, leucine and lysine (with AAS 24.32, 23.66, 23.09, 23.05 and 21.71%, respectively), and 4.45% sugar that pro- vides only 79 calories. Potassium was shown to be the abundant mineral content (793.43%, 22.66 DV), followed by copper and phosphorus (21.81 and 11.07 DV%, respectively). Sea buckthorn juice exhibited a rich phenolic, flavonoid and carotenoid content (283.58, 118.42 and 6.5 mg/g, respec- tively), in addition to a high content of vitamin C (322.33 mg/g). The HPLC profile indicated that benzoic acid is the dominant phenolic compound in sea buckthorn berries (3825.90 mg/kg). Antiox- idant potentials (DPPH and ABTS) of sea buckthorn showed higher inhibition than ascorbic acid. Antimicrobial potentials were most pronounced against Escherichia coli BA12296 (17.46 mm). The probiotic growth was 8.5 log cfu/mL, with juice concentration, inoculum size and temperature as the main contributors to probiotic growth with a 95% confidence level. Fermentation of sea buck- thorn juice with L. plantarum RM1 enhanced the functional phenolic and flavonoid content, as well as antioxidant and antimicrobial activities. The fermentation with L. plantarum RM1 enhanced the anti-hypertension and anticancer properties of the sea buckthorn juice and gained consumers’ sensorial overall acceptance.

Keywords: sea buckthorn juice, L. plantarum RM1, fermentation, antioxidant, antimicrobial, angiotensin converting enzyme inhibition

Procedia PDF Downloads 42