Search results for: electron emission fluctuation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3815

Search results for: electron emission fluctuation

3635 Sol-Gel Derived ZnO Nanostructures: Optical Properties

Authors: Sheo K. Mishra, Rajneesh K. Srivastava, R. K. Shukla

Abstract:

In the present work, we report on the optical properties including UV-vis absorption and photoluminescence (PL) of ZnO nanostructures synthesized by sol-gel method. Structural and morphological investigations have been performed by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The XRD result confirms the formation of hexagonal wurtzite phase of ZnO nanostructures. The presence of various diffraction peaks suggests polycrystalline nature. The XRD pattern exhibits no additional peak due to by-products such as Zn(OH)2. The average crystallite size of prepared ZnO sample corresponding to the maximum intensity peaks is to be ~38.22 nm. The SEM micrograph shows different nanostructures of pure ZnO. Photoluminescence (PL) spectrum shows several emission peaks around 353 nm, 382 nm, 419 nm, 441 nm, 483 nm and 522 nm. The obtained results suggest that the prepared phosphors are quite suitable for optoelectronic applications.

Keywords: ZnO, sol-gel, XRD, PL

Procedia PDF Downloads 347
3634 Luminescent Enhancement with Morphology Controlled Gd2O3:Eu Phosphors

Authors: Ruby Priya, Om Parkash Pandey

Abstract:

Eu doped Gd₂O₃ phosphors are synthesized via co-precipitation method using ammonia as a precipitating agent. The concentration of the Eu was set as 4 mol% for all the samples. The effect of the surfactants (CTAB, PEG, and SDS) on the structural, morphological and luminescent properties has been studied in details. The as-synthesized phosphors were characterized by X-ray diffraction technique, Field emission scanning electron microscopy, Fourier transformed infrared spectroscopy and photoluminescence technique. It was observed that the surfactants have not changed the crystal structure, but influenced the morphology of as-synthesized phosphors to a great extent. The as-synthesized phosphors are expected to be promising candidates for optoelectronic devices, biosensors, MRI contrast agents and various biomedical applications.

Keywords: co-precipitation, Europium, photoluminescence, surfactants

Procedia PDF Downloads 148
3633 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression

Procedia PDF Downloads 334
3632 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects

Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif

Abstract:

Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.

Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission

Procedia PDF Downloads 269
3631 Utilization of Low-Cost Adsorbent Fly Ash for the Removal of Phenol from Water

Authors: Ihsanullah, Muataz Ali Atieh

Abstract:

In this study, a low-cost adsorbent carbon fly ash (CFA) was used for the removal of Phenol from the water. The adsorbent characteristics were observed by the Thermogravimetric Analysis (TGA), BET specific surface area analyzer, Zeta Potential and Field Emission Scanning Electron Microscopy (FE-SEM). The effect of pH, agitation speed, contact time, adsorbent dosage, and initial concentration of phenol were studied on the removal of phenol from the water. The optimum values of these variables for maximum removal of phenol were also determined. Both Freundlich and Langmuir isotherm models were successfully applied to describe the experimental data. Results showed that low-cost adsorbent phenol can be successfully applied for the removal of Phenol from the water.

Keywords: phenol, fly ash, adsorption, carbon adsorbents

Procedia PDF Downloads 290
3630 Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 159
3629 Cross Section Measurement for Formation of Metastable State of ¹¹¹ᵐCd through ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd Reaction Induced by Bremsstrahlung Generated through 6 MeV Electrons

Authors: Vishal D. Bharud, B. J. Patil, S. S. Dahiwale, V. N. Bhoraskar, S. D. Dhole

Abstract:

Photon induced average reaction cross section of ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction was experimentally determined for the bremsstrahlung energy spectrum of 6 MeV by utilizing the activation and offline γ-ray spectrometric techniques. The 6 MeV electron accelerator Racetrack Microtron of Savitribai Phule Pune University, Pune was used for the experimental work. The bremsstrahlung spectrum generated by bombarding 6 MeV electrons on lead target was theoretically estimated by FLUKA code. Bremsstrahlung radiation can have energies exceeding the threshold of the particle emission, which is normally above 6 MeV. Photons of energies below the particle emission threshold undergo absorption into discrete energy levels, with possibility of exciting nuclei to excited state including metastable state. The ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction cross sections were calculated at different energies of bombarding Photon by using the TALYS 1.8 computer code with a default parameter. The focus of the present work was to study the (γ,γ’) reaction for exciting ¹¹¹Cd nuclei to metastable states which have threshold energy below 3 MeV. The flux weighted average cross section was obtained from the theoretical values of TALYS 1.8 and TENDL 2017 and is found to be in good agreement with the present experimental cross section.

Keywords: bremsstrahlung, cross section, FLUKA, TALYS-1.8

Procedia PDF Downloads 134
3628 On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria

Authors: R. Kerbachi, S. Chikhi, M. Boughedaoui

Abstract:

The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions.

Keywords: on-board measurements of unit emissions of CO, HC, NOx and CO2, light vehicles, mini-CVS, LPG-fuel, artemis, Algeria

Procedia PDF Downloads 248
3627 Electron Impact Ionization Cross-Sections for e-C₅H₅N₅ Scattering

Authors: Manoj Kumar

Abstract:

Ionization cross sections of molecules due to electron impact play an important role in chemical processes in various branches of applied physics, such as radiation chemistry, gas discharges, plasmas etching in semiconductors, planetary upper atmospheric physics, mass spectrometry, etc. In the present work, we have calculated the total ionization cross sections for Adenine (C₅H₅N₅), a biologically important molecule, by electron impact in the incident electron energy range from ionization threshold to 2 keV employing a well-known Jain-Khare semiempirical formulation based on Bethe and Möllor cross sections. In the non-availability of the experimental results, the present results are in good agreement qualitatively as well as quantitatively with available theoretical results. The present results drive our confidence for further investigation of complex bio-molecule with better accuracy. Notwithstanding, the present method can deduce reliable cross-sectional data for complex targets with adequate accuracy and may facilitate the acclimatization of calculated cross-sections into atomic molecular cross-section data sets for modeling codes and other applications.

Keywords: electron impact ionization cross-sections, oscillator strength, jain-khare semiempirical approach

Procedia PDF Downloads 75
3626 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer

Authors: R. Karmouch

Abstract:

A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.

Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons

Procedia PDF Downloads 389
3625 Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant

Authors: Uma Shanker, Vidhisha Jassal

Abstract:

A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm.

Keywords: metal hexacyanoferrates, natural surfactant, Sapindus mukorossias, nanoparticles

Procedia PDF Downloads 489
3624 Structural and Luminescent Properties of EU Doped SrY₂O₄ Phosphors

Authors: Ruby Priya, O. P. Pandey

Abstract:

Herein, we report the structural and luminescent properties of undoped and Eu doped SrY₂O₄ phosphors. The phosphors are synthesized via the combustion synthesis route using glycine as a fuel. The structural, morphological, and optical characterizations are done via X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescent (PL) techniques. The pure phase SrY₂O₄ is obtained at 1100℃, below which impure phases such as Y₂O₃ and SrO were dominant. All the phosphors are excited under UV excitation and exhibited intense emission around 611 nm, which is the typical transition of Eu ions. The phase formation of the synthesized phosphors is studied via analyzing XRD patterns. The as-synthesized phosphors find tremendous applications in optoelectronic devices, light-emitting diodes, and sensors.

Keywords: combustion, europium, glycine, luminescence

Procedia PDF Downloads 121
3623 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms

Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim

Abstract:

The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.

Keywords: BESS, firefly algorithm, PVDG, voltage fluctuation

Procedia PDF Downloads 291
3622 Electrical Properties of Cement-Based Piezoelectric Nanoparticles

Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad

Abstract:

Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.

Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric

Procedia PDF Downloads 211
3621 Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends

Authors: Virender Singh Gurau, Akash Deep, Sarbjot S. Sandhu

Abstract:

Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel.

Keywords: biodiesel, transesterification, bitter apricot kernel oil, performance and emission testing

Procedia PDF Downloads 290
3620 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 514
3619 Nd³⁺: Si₂N₂O (Sinoite) Phosphors for White Light Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

A silicon oxynitride (Si2N2O), the mineralogical name is “Sinoite”, reveals the outstanding physical, mechanical and thermal properties, e.g., good oxidation resistance at high temperatures, high fracture toughness with rod shape, high hardness, low theoretical density, good thermal shock resistance by low thermal expansion coefficient and high thermal conductivity. In addition, the orthorhombic crystal structure of Si2N2O allows accommodating the rare earth (RE) element atoms along the “c” axis due to existing large structural interstitial sites. Here, 0.02 to 0.12 wt. % Nd3+ doped Si2N2O samples were successfully synthesized by spark plasma sintering (SPS) method at 30MPa pressure and 1650oC temperature. Li2O was also utilized as a sintering additive to take advantage of low eutectic point during synthesizing. The specimens were characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and cathodoluminescence (CL) in SEM and photoluminescence (PL) spectroscopy. Based on the overall results, the Si2N2O phase was obtained above 90% by the SPS route. Furthermore, Nd3+: Si2N2O samples showed a very broad intense emission peak between 400-700 nm, which corresponds to white color. Therefore, this material can be considered as a promising candidate for white light-emitting diodes (WLEDs) purposes. This study was supported by TUBITAK under project number 217M667.

Keywords: neodymium, oxynitride, Si₂N₂O, WLEDs

Procedia PDF Downloads 100
3618 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: acoustic emission, dual phase steels, deformation, failure, fracture

Procedia PDF Downloads 365
3617 Climate Change Effects of Vehicular Carbon Monoxide Emission from Road Transportation in Part of Minna Metropolis, Niger State, Nigeria

Authors: H. M. Liman, Y. M. Suleiman A. A. David

Abstract:

Poor air quality often considered one of the greatest environmental threats facing the world today is caused majorly by the emission of carbon monoxide into the atmosphere. The principal air pollutant is carbon monoxide. One prominent source of carbon monoxide emission is the transportation sector. Not much was known about the emission levels of carbon monoxide, the primary pollutant from the road transportation in the study area. Therefore, this study assessed the levels of carbon monoxide emission from road transportation in the Minna, Niger State. The database shows the carbon monoxide data collected. MSA Altair gas alert detector was used to take the carbon monoxide emission readings in Parts per Million for the peak and off-peak periods of vehicular movement at the road intersections. Their Global Positioning System (GPS) coordinates were recorded in the Universal Transverse Mercator (UTM). Bar chart graphs were plotted by using the emissions level of carbon dioxide as recorded on the field against the scientifically established internationally accepted safe limit of 8.7 Parts per Million of carbon monoxide in the atmosphere. Further statistical analysis was also carried out on the data recorded from the field using the Statistical Package for Social Sciences (SPSS) software and Microsoft excel to show the variance of the emission levels of each of the parameters in the study area. The results established that emissions’ level of atmospheric carbon monoxide from the road transportation in the study area exceeded the internationally accepted safe limits of 8.7 parts per million. In addition, the variations in the average emission levels of CO between the four parameters showed that morning peak is having the highest average emission level of 24.5PPM followed by evening peak with 22.84PPM while morning off peak is having 15.33 and the least is evening off peak 12.94PPM. Based on these results, recommendations made for poor air quality mitigation via carbon monoxide emissions reduction from transportation include Introduction of the urban mass transit would definitely reduce the number of traffic on the roads, hence the emissions from several vehicles that would have been on the road. This would also be a cheaper means of transportation for the masses and Encouraging the use of vehicles using alternative sources of energy like solar, electric and biofuel will also result in less emission levels as the these alternative energy sources other than fossil fuel originated diesel and petrol vehicles do not emit especially carbon monoxide.

Keywords: carbon monoxide, climate change emissions, road transportation, vehicular

Procedia PDF Downloads 346
3616 Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound

Authors: Drissi Mokhtaria, Chouaih Abdelkader, Fodil Hamzaoui

Abstract:

Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods.

Keywords: electron charge density, m-nitrophenol, nonlinear optical compound, electrostatic potential, optimized geometric

Procedia PDF Downloads 239
3615 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles

Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.

Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric

Procedia PDF Downloads 120
3614 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 347
3613 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City

Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse

Abstract:

Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.

Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters

Procedia PDF Downloads 95
3612 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 390
3611 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF

Authors: Sezen Gurdag, Ayse Ebru Akin

Abstract:

There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.

Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive

Procedia PDF Downloads 120
3610 Determination of Non-CO2 Greenhouse Gas Emission in Electronics Industry

Authors: Bong Jae Lee, Jeong Il Lee, Hyo Su Kim

Abstract:

Both developed and developing countries have adopted the decision to join the Paris agreement to reduce greenhouse gas (GHG) emissions at the Conference of the Parties (COP) 21 meeting in Paris. As a result, the developed and developing countries have to submit the Intended Nationally Determined Contributions (INDC) by 2020, and each country will be assessed for their performance in reducing GHG. After that, they shall propose a reduction target which is higher than the previous target every five years. Therefore, an accurate method for calculating greenhouse gas emissions is essential to be presented as a rational for implementing GHG reduction measures based on the reduction targets. Non-CO2 GHGs (CF4, NF3, N2O, SF6 and so on) are being widely used in fabrication process of semiconductor manufacturing, and etching/deposition process of display manufacturing process. The Global Warming Potential (GWP) value of Non-CO2 is much higher than CO2, which means it will have greater effect on a global warming than CO2. Therefore, GHG calculation methods of the electronics industry are provided by Intergovernmental Panel on climate change (IPCC) and U.S. Environmental Protection Agency (EPA), and it will be discussed at ISO/TC 146 meeting. As discussed earlier, being precise and accurate in calculating Non-CO2 GHG is becoming more important. Thus this study aims to discuss the implications of the calculating methods through comparing the methods of IPCC and EPA. As a conclusion, after analyzing the methods of IPCC & EPA, the method of EPA is more detailed and it also provides the calculation for N2O. In case of the default emission factor (by IPCC & EPA), IPCC provides more conservative results compared to that of EPA; The factor of IPCC was developed for calculating a national GHG emission, while the factor of EPA was specifically developed for the U.S. which means it must have been developed to address the environmental issue of the US. The semiconductor factory ‘A’ measured F gas according to the EPA Destruction and Removal Efficiency (DRE) protocol and estimated their own DRE, and it was observed that their emission factor shows higher DRE compared to default DRE factor of IPCC and EPA Therefore, each country can improve their GHG emission calculation by developing its own emission factor (if possible) at the time of reporting Nationally Determined Contributions (NDC). Acknowledgements: This work was supported by the Korea Evaluation Institute of Industrial Technology (No. 10053589).

Keywords: non-CO2 GHG, GHG emission, electronics industry, measuring method

Procedia PDF Downloads 251
3609 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe

Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante

Abstract:

High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.

Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation

Procedia PDF Downloads 316
3608 Spin-Dipole Excitations Produced On-Demand in the Fermi Sea

Authors: Mykhailo Moskalets, Pablo Burset, Benjamin Roussel, Christian Flindt

Abstract:

The single-particle injection from the Andreev level and how such injection is simulated using a voltage pulse are discussed. Recently, high-speed quantum-coherent electron sources injecting one- to few-particle excitations into the Fermi sea have been experimentally realized. The main obstacle to using these excitations as flying qubits for quantum-information processing purposes is decoherence due to the long-range Coulomb interaction. An obvious way to get around this difficulty is to employ electrically neutral excitations. Here it is discussed how such excitations can be generated on-demand using the same injection principles as in existing electron sources. Namely, with the help of a voltage pulse of a certain shape applied to the Fermi sea or using a driven quantum dot with superconducting correlations. The advantage of the latter approach is the possibility of varying the electron-hole content in the excitation and the possibility of creating a charge-neutral but spin-dipole excitation.

Keywords: Andreev level, on-demand, single-electron, spin-dipole

Procedia PDF Downloads 44
3607 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 270
3606 Key Factors Influencing the Purchasing Decisions of Low Emission Cars: A Comparative Study between Egypt and Slovenia

Authors: O. Alaa, D. Ahmed, R. Baher, K. Matjaz

Abstract:

This paper provides a study of the factors influencing the purchasing of low emission vehicles. In order to achieve the objectives of the paper, and in the light of the pool of literature and availability of data, the authors relied on qualitative methods to offers a comparison between Egypt as a developing country and Slovenia as a developed country, through analysing a survey that involves an Egyptian sample and Slovenian samples, it also studies the effect of different push and pull methods on different buyers in order to help the governments as well as the manufacturers to understand the most significant factors that affect the purchasing behaviour of LEV in the future. The results of this paper show the important vehicle performance factors, financial considerations, and environmental considerations along with the gender and age of the consumer show that consumers are more interested in the total price of the car than in different taxes.

Keywords: low emission vehicles, purchasing behavior, developed countries, developing countries

Procedia PDF Downloads 104