Search results for: electrical conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2587

Search results for: electrical conductivity

2347 Geo-Engineering Properties of Lime Stabilized Expansive Soil with Shredded Waste Tyre

Authors: Upasana Pattnaik, Akshaya Kumar Sabat

Abstract:

The compaction properties, unconfined compressive strength (UCS), soaked California bearing ratio (CBR), hydraulic conductivity, and swelling pressure of lime stabilized expansive soil-shredded waste tyre mixes have been discussed in this paper. Shredded waste tyres, passing 4.75 mm Indian Standard (IS) sieve and retained on 75µ IS sieve have been used in the experimental programme. First of all expansive soil-shredded waste tyre mixes were prepared by adding shredded waste tyre from 0 to 20% at an increment of 5%.Standard Proctor compaction, UCS and soaked CBR tests were conducted on these mixes. The optimum percentage of shredded waste tyre found out was 10%.In the second phase of the experiment, lime was added to sample having optimum percentage of expansive soil and shredded waste tyre from 2 to 6% at an increment of 1%.Compaction, UCS, soaked CBR, hydraulic conductivity, and swelling pressure tests were conducted on lime stabilized expansive soil-shredded waste tyre mixes. The optimum percentage of lime for stabilization was found out to be 5%.At the optimum percentage of lime the stabilized expansive soil-shredded waste tyre mix had increased strength, reduced hydraulic conductivity and swelling pressure.

Keywords: expansive soil, hydraulic conductivity, lime, shredded waste tyre, soaked california bearing ratio

Procedia PDF Downloads 224
2346 Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films

Authors: Ahmet Battal, Demet Tatar, Bahattin Düzgün

Abstract:

Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure.

Keywords: thin films, spray pyrolysis, SnO2, doubly doped

Procedia PDF Downloads 448
2345 Nanoindentation Behavior and Physical Properties of Polyvinyl Chloride /Styrene Co-Maleic Anhydride Blend Reinforced by Nano-Bentonite

Authors: Dalia Elsawy Abulyazied, Samia Mohamad Mokhtar, Ahmed Magdy Motawie

Abstract:

This article studies the effects of nano-bentonite on the structure and properties of polymer blends nanocomposites, based on polyvinyl chloride (PVC) and styrene co-maleic anhydride (SMA) blend. Modification of Egyptian bentonite (EB) is carried out using organo-modifier namely; octadecylamine (ODA). Octadecylamine bentonite (ODA-B) is characterized using FTIR, XRD and TEM. Nanocomposites of PVC/SMA/ODA-B are prepared by solution intercalation polymerization from 0.50 up to 5 phr. The nanocomposites are characterized by XRD and TEM. Thermal behavior of the nanocomposites is studied. The effect of different content of ODA-B on the nano-mechanical properties is investigated by a nano-indentation test method. Also the swelling and electrical properties of the nanocomposites are measured. The morphology of the nanocomposites shows that ODA-B achieved good dispersion in the PVC/SMA matrix. The thermal stability of the nanocomposites is enhanced due to the presence of the ODA-B. Incorporation of 0.5, 1, 3 and 5 phr. ODA-B into the PVC/SMA blends results in an improvement in nano-hardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased by 37% from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa for 3 phr. The cross-link density and the electrical conductivity of the nanocomposites are increased with increasing the content of ODA-B.

Keywords: PVC, SMA, nanocomposites, nano-bentonite, nanoindentation, crosslink density

Procedia PDF Downloads 448
2344 Improvement of Ground Water Quality Index Using Citrus limetta

Authors: Rupas Kumar M., Saravana Kumar M., Amarendra Kumar S., Likhita Komal V., Sree Deepthi M.

Abstract:

The demand for water is increasing at an alarming rate due to rapid urbanization and increase in population. Due to freshwater scarcity, Groundwater became the necessary source of potable water to major parts of the world. This problem of freshwater scarcity and groundwater dependency is very severe particularly in developing countries and overpopulated regions like India. The present study aimed at evaluating the Ground Water Quality Index (GWQI), which represents overall quality of water at certain location and time based on water quality parameters. To evaluate the GWQI, sixteen water quality parameters have been considered viz. colour, pH, electrical conductivity, total dissolved solids, turbidity, total hardness, alkalinity, calcium, magnesium, sodium, chloride, nitrate, sulphate, iron, manganese and fluorides. The groundwater samples are collected from Kadapa City in Andhra Pradesh, India and subjected to comprehensive physicochemical analysis. The high value of GWQI has been found to be mainly from higher values of total dissolved solids, electrical conductivity, turbidity, alkalinity, hardness, and fluorides. in the present study, citrus limetta (sweet lemon) peel powder has used as a coagulant and GWQI values are recorded in different concentrations to improve GWQI. Sensitivity analysis is also carried out to determine the effect of coagulant dosage, mixing speed and stirring time on GWQI. The research found the maximum percentage improvement in GWQI values are obtained when the coagulant dosage is 100ppm, mixing speed is 100 rpm and stirring time is 10 mins. Alum is also used as a coagulant aid and the optimal ratio of citrus limetta and alum is identified as 3:2 which resulted in best GWQI value. The present study proposes Citrus limetta peel powder as a potential natural coagulant to treat Groundwater and to improve GWQI.

Keywords: alum, Citrus limetta, ground water quality index, physicochemical analysis

Procedia PDF Downloads 196
2343 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry

Procedia PDF Downloads 368
2342 Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa

Authors: Retang A. Mokua, Julia Glenday, Jacobus M. Nel

Abstract:

Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed.

Keywords: electrical conductivity, Jonkershoek valley, stable isotopes, table mountain group

Procedia PDF Downloads 81
2341 Feasibility Study of Wireless Communication for the Control and Monitoring of Rotating Electrical Machine

Authors: S. Ben Brahim, T. H. Vuong, J. David, R. Bouallegue, M. Pietrzak-David

Abstract:

Electrical machine monitoring is important to protect motor from unexpected problems. Today, using wireless communication for electrical machines is interesting for both real time monitoring and diagnostic purposes. In this paper, we propose a system based on wireless communication IEEE 802.11 to control electrical machine. IEEE 802.11 standard is recommended for this type of applications because it provides a faster connection, better range from the base station, and better security. Therefore, our contribution is to study a new technique to control and monitor the rotating electrical machines (motors, generators) using wireless communication. The reliability of radio channel inside rotating electrical machine is also discussed. Then, the communication protocol, software and hardware design used for the proposed system are presented in detail and the experimental results of our system are illustrated.

Keywords: control, DFIM machine, electromagnetic field, EMC, IEEE 802.11, monitoring, rotating electrical machines, wireless communication

Procedia PDF Downloads 661
2340 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices

Procedia PDF Downloads 154
2339 Investigation of Nucleation and Thermal Conductivity of Waxy Crude Oil on Pipe Wall via Particle Dynamics

Authors: Jinchen Cao, Tiantian Du

Abstract:

As waxy crude oil is easy to crystallization and deposition in the pipeline wall, it causes pipeline clogging and leads to the reduction of oil and gas gathering and transmission efficiency. In this paper, a mesoscopic scale dissipative particle dynamics method is employed, and constructed four pipe wall models, including smooth wall (SW), hydroxylated wall (HW), rough wall (RW), and single-layer graphene wall (GW). Snapshots of the simulation output trajectories show that paraffin molecules interact with each other to form a network structure that constrains water molecules as their nucleation sites. Meanwhile, it is observed that the paraffin molecules on the near-wall side are adsorbed horizontally between inter-lattice gaps of the solid wall. In the pressure range of 0 - 50 MPa, the pressure change has less effect on the affinity properties of SS, HS, and GS walls, but for RS walls, the contact angle between paraffin wax and water molecules was found to decrease with the increase in pressure, while the water molecules showed the opposite trend, the phenomenon is due to the change in pressure, leading to the transition of paraffin wax molecules from amorphous to crystalline state. Meanwhile, the minimum crystalline phase pressure (MCPP) was proposed to describe the lowest pressure at which crystallization of paraffin molecules occurs. The maximum number of crystalline clusters formed by paraffin molecules at MCPP in the system showed NSS (0.52 MPa) > NHS (0.55 MPa) > NRS (0.62 MPa) > NGS (0.75 MPa). The MCPP on the graphene surface, with the least number of clusters formed, indicates that the addition of graphene inhibited the crystallization process of paraffin deposition on the wall surface. Finally, the thermal conductivity was calculated, and the results show that on the near-wall side, the thermal conductivity changes drastically due to the occurrence of adsorption crystallization of paraffin waxes; on the fluid side the thermal conductivity gradually tends to stabilize, and the average thermal conductivity shows: ĸRS(0.254W/(m·K)) > ĸRS(0.249W/(m·K)) > ĸRS(0.218W/(m·K)) > ĸRS(0.188W/(m·K)).This study provides a theoretical basis for improving the transport efficiency and heat transfer characteristics of waxy crude oil in terms of wall type, wall roughness, and MCPP.

Keywords: waxy crude oil, thermal conductivity, crystallization, dissipative particle dynamics, MCPP

Procedia PDF Downloads 35
2338 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 419
2337 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry

Authors: Maryam Kiani

Abstract:

The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.

Keywords: 2D materials, geopolymers, electrical properties, self-sensing

Procedia PDF Downloads 61
2336 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 108
2335 Thermoelectric Properties of Spark Plasma Sintered Te Doped Cu₃SbSe₄: Promising Thermoelectric Material

Authors: Kriti Tyagi, Bhasker Gahtori

Abstract:

Various groups have attempted on enhancing the thermoelectric figure-of-merit (ZT) of the Cu₃SbSe₄ compound by employing doping process. Efforts are made to study the thermoelectric performance of Cu₃SbSe₄ material doped with Te in different compositions (i. e. Cu₃Sb₁₋ₓTeₓSe₄, x = 0.005, 0.01, 0.015, 0.02). The different doping concentration has been selected to identify the suitable doping to increase the thermoelectric performance. Compared to pristine Cu₃SbSe₄, an enhancement of thermoelectric figure-of-merit was achieved for 0.005 Te doped Cu₃SbSe₄. This improvement can be attributed to the reduction of thermal conductivity for 0.005 Te doped Cu₃SbSe₄.

Keywords: figure-of-merit, polycrystalline, thermal conductivity, thermoelectric

Procedia PDF Downloads 208
2334 Structural, Magnetic, Dielectric, and Electrical Properties of ZnFe2O4 Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

ZnFe2O4 spinel ferrite nanoparticles were synthesized by sol-gel auto-combustion method. The synthesized spinel ferrite nanoparticles were annealed at different higher temperature to achieve different size nanoparticles. The as synthesized and annealed samples were characterized by powder X-ray Diffraction Spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, UV-Vis absorption Spectroscopy and Scanning Electron Microscopy. The magnetic properties were studied by vibrating sample magnetometer. The variation in magnetic parameters was noticed with variation in grain size. The dielectric constant and dielectric loss with variation of frequency shows normal behaviour of spinel ferrite. The variation in conductivity with variation in grain size is noticed. Modulus and Impedance Spectroscopy shows the role of grain and grain boundary on the electrical resistance and capacitance of different grain sized spinel ferrite nanoparticles. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: spinel ferrite, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 384
2333 Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte

Authors: Manuel Salado, Mikel Rincón, Arkaitz Fidalgo, Roberto Fernandez, Senentxu Lanceros-Méndez

Abstract:

Lithium-ion batteries (LIBs) are a promising technology for energy storage, but they suffer from safety concerns due to the use of flammable organic solvents in their liquid electrolytes. Solid-state electrolytes (SSEs) offer a potential solution to this problem, but they have their own limitations, such as poor ionic conductivity and high interfacial resistance. The aim of this research was to develop a new type of SSE based on metal-organic frameworks (MOFs) and ionic liquids (ILs). MOFs are porous materials with high surface area and tunable electronic properties, making them ideal for use in SSEs. ILs are liquid electrolytes that are non-flammable and have high ionic conductivity. A series of MOFs were synthesized, and their electrochemical properties were evaluated. The MOFs were then infiltrated with ILs to form a quasi-solid gel and solid xerogel SSEs. The ionic conductivity, interfacial resistance, and electrochemical performance of the SSEs were characterized. The results showed that the MOF-IL SSEs had significantly higher ionic conductivity and lower interfacial resistance than conventional SSEs. The SSEs also exhibited excellent electrochemical performance, with high discharge capacity and long cycle life. The development of MOF-IL SSEs represents a significant advance in the field of solid-state electrolytes. The high ionic conductivity and low interfacial resistance of the SSEs make them promising candidates for use in next-generation LIBs. The data for this research was collected using a variety of methods, including X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The data was analyzed using a variety of statistical and computational methods, including principal component analysis, density functional theory, and molecular dynamics simulations. The main question addressed by this research was whether MOF-IL SSEs could be developed that have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. The results of this research demonstrate that MOF-IL SSEs are a promising new type of solid-state electrolyte for use in LIBs. The SSEs have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. These properties make them promising candidates for use in next-generation LIBs that are safer and have higher energy densities.

Keywords: energy storage, solid-electrolyte, ionic liquid, metal-organic-framework, electrochemistry, organic inorganic plastic crystal

Procedia PDF Downloads 39
2332 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 133
2331 Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization

Authors: Abdi Djamila, Haffar Hichem

Abstract:

The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells.

Keywords: polymethylene blue, electropolymerization, homo-lumo, photocurrents

Procedia PDF Downloads 244
2330 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review

Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi

Abstract:

Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.

Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties

Procedia PDF Downloads 403
2329 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing

Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen

Abstract:

Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.

Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management

Procedia PDF Downloads 110
2328 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity

Authors: Marcin Baranski

Abstract:

This article presents a vibration diagnostic method designed for permanent magnets (PM) traction motors. Those machines are commonly used in traction drives of electrical vehicles. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. This work presents: field-circuit model, results of static tests, results of calculations and simulations.

Keywords: electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity

Procedia PDF Downloads 586
2327 The Effect of Substrate Temperature on the Structural, Optical, and Electrical of Nano-Crystalline Tin Doped-Cadmium Telluride Thin Films for Photovoltaic Applications

Authors: Eman A. Alghamdi, A. M. Aldhafiri

Abstract:

It was found that the induce an isolated dopant close to the middle of the bandgap by occupying the Cd position in the CdTe lattice structure is an efficient factor in reducing the nonradiative recombination rate and increasing the solar efficiency. According to our laboratory results, this work has been carried out to obtain the effect of substrate temperature on the CdTe0.6Sn0.4 prepared by thermal evaporation technique for photovoltaic application. Various substrate temperature (25°C, 100°C, 150°C, 200°C, 250°C and 300°C) was applied. Sn-doped CdTe thin films on a glass substrate at a different substrate temperature were made using CdTe and SnTe powders by the thermal evaporation technique. The structural properties of the prepared samples were determined using Raman, x-Ray Diffraction. Spectroscopic ellipsometry and spectrophotometric measurements were conducted to extract the optical constants as a function of substrate temperature. The structural properties of the grown films show hexagonal and cubic mixed structures and phase change has been reported. Scanning electron microscopy (SEM) reviled that a homogenous with a bigger grain size was obtained at 250°C substrate temperature. The conductivity measurements were recorded as a function of substrate temperatures. The open-circuit voltage was improved by controlling the substrate temperature due to the improvement of the fundamental material issues such as recombination and low carrier concentration. All the result was explained and discussed on the biases of the influences of the Sn dopant and the substrate temperature on the structural, optical and photovoltaic characteristics.

Keywords: CdTe, conductivity, photovoltaic, ellipsometry

Procedia PDF Downloads 90
2326 Effect of Hot Rolling Conditions on Magnetic Properties of Fe-3%Si Non-Grain Oriented Electrical Steels

Authors: Emre Alan, Yusuf Yamanturk, Gokay Bas

Abstract:

Non-grain oriented electrical steels are high silicon containing steels in which the direction of magnetism is intended the same in any direction of the material. Major applications of non-grain-oriented electrical steels are electrical motors, generators, etc. where low magnetic losses are required. Selection of proper hot rolling process parameters is an important factor in order to produce a material that has desired magnetic properties. In this study, the effect of finishing and coiling temperatures on magnetic properties of Fe-3%Si non-grain oriented electrical steels will be investigated. Additionally, the effect of slab reheating temperature at same entry finishing temperature will be investigated by means of reduction in roughing mill pass number from 1-5 to 1-3.

Keywords: electrical steels, hot rolling, magnetic properties, roughing mill

Procedia PDF Downloads 298
2325 A Study of Environmental Test Sequences for Electrical Units

Authors: Jung Ho Yang, Yong Soo Kim

Abstract:

Electrical units are operated by electrical and electronic components. An environmental test sequence is useful for testing electrical units to reduce reliability issues. This study introduces test sequence guidelines based on relevant principles and considerations for electronic testing according to international standard IEC-60068-1 and the United States military standard MIL-STD-810G. Then, test sequences were proposed based on the descriptions for each test. Finally, General Motors (GM) specification GMW3172 was interpreted and compared to IEC-60068-1 and MIL-STD-810G.

Keywords: reliability, environmental test sequence, electrical units, IEC 60068-1, MIL-STD-810G

Procedia PDF Downloads 463
2324 MXene-Based Self-Sensing of Damage in Fiber Composites

Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi

Abstract:

Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.

Keywords: damage sensing, fiber composites, MXene, self-sensing

Procedia PDF Downloads 91
2323 Non-Contact Characterization of Standard Liquids Using Waveguide at 12.4 to18 Ghz Frequency Span

Authors: Kasra Khorsand-Kazemi, Bianca Vizcaino, Mandeep Chhajer Jain, Maryam Moradpour

Abstract:

This work presents an approach to characterize a non- contact microwave sensor using waveguides for different standard liquids such as ethanol, methanol and 2-propanol (Isopropyl Alcohol). Wideband waveguides operating between 12.4GHz to 18 GHz form the core of the sensing structure. Waveguides are sensitive to changes in conductivity of the sample under test (SUT), making them an ideal tool to characterize different polar liquids. As conductivity of the sample under test increase, the loss tangent of the material increase, thereby decreasing the S21 (dB) response of the waveguide. Among all the standard liquids measured, methanol exhibits the highest conductivity and 2-Propanol exhibits the lowest. The cutoff frequency measured for ethanol, 2-propanol, and methanol are 10.28 GHz, 10.32 GHz, and 10.38 GHz respectively. The measured results can be correlated with the loss tangent results of the standard liquid measured using the dielectric probe. This conclusively enables us to characterize different liquids using waveguides expanding the potential future applications in domains ranging from water quality management to bio-medical, chemistry and agriculture.

Keywords: Waveguides, , Microwave sensors, , Standard liquids characterization, Non-contact sensing

Procedia PDF Downloads 106
2322 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria

Authors: Olumuyiwa Olusola Falowo

Abstract:

One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.

Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction

Procedia PDF Downloads 112
2321 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers

Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan

Abstract:

PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of the concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to a decrease of diameter of nanofiber.

Keywords: amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile

Procedia PDF Downloads 273
2320 Electro-Thermal Imaging of Breast Phantom: An Experimental Study

Authors: H. Feza Carlak, N. G. Gencer

Abstract:

To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.

Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection

Procedia PDF Downloads 395
2319 Influence of Thickness on Electrical and Structural Properties of Zinc Oxide (ZnO) Thin Films Prepared by RF Sputtering Technique

Authors: M. Momoh, S. Abdullahi, A. U. Moreh

Abstract:

Zinc oxide (ZnO) thin films were prepared on corning (7059) glass substrates at a thickness of 75.5 and 130.5 nm by RF sputtering technique. The deposition was carried out at room temperature after which the samples were annealed in open air at 150°C. The electrical and structural properties of these films were studied. The electrical properties of the films were monitored by four-point probe method while the structural properties were studied by X-ray diffraction (XRD). It was found that the electrical resistance of the films decreases with increase in the thickness of the films. The XRD analysis of the films showed that the films have a peak located at 34.31°-34.35° with hkl (002). Other parameters calculated include the stress (σ) and the grain size (D).

Keywords: electrical properties, film thickness, structural properties, zinc oxide

Procedia PDF Downloads 346
2318 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 85