Search results for: earthquake
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: earthquake

620 Seismic Analysis of Adjacent Buildings Connected with Dampers

Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar

Abstract:

This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.

Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters

Procedia PDF Downloads 458
619 Investigating the Behavior of Underground Structures in the Event of an Earthquake

Authors: Davoud Beheshtizadeh, Farzin Malekpour

Abstract:

The progress of technology and producing new machinery have made a big change in excavation operations and construction of underground structures. The limitations of space and some other economic, politic and military considerations gained the attention of most developed and developing countries towards the construction of these structures for mine, military, and development objectives. Underground highways, tunnels, subways, oil reservoir resources, fuels, nuclear wastes burying reservoir and underground stores are increasingly developing and being used in these countries. The existence and habitability of the cities depend on these underground installations or in other words these vital arteries. Stopping the flow of water, gas leakage and explosion, collapsing of sewage paths, etc., resulting from the earthquake are among the factors that can severely harm the environment and increase the casualty. Lack of sewage network and complete stoppage of the flow of water in Bam (Iran) is a good example of this kind. In this paper, we investigate the effect of wave orientation on structures and deformation of them and the effect of faulting on underground structures, and then, we study resistance of reinforced concrete against earthquake, simulate two different samples, analyze the result and point out the importance of paying attention to underground installations.

Keywords: underground structures, earthquake, underground installations, axial deformations

Procedia PDF Downloads 161
618 Analysis of a Strengthening of a Building Reinforced Concrete Structure

Authors: Nassereddine Attari

Abstract:

Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building.

Keywords: pushover analysis, earthquake, damage, strengthening

Procedia PDF Downloads 394
617 A Study on Earthquake Activities and Tectonic Setting in the Northeastern Part of Egypt

Authors: Sayed Abdallah Mohamed Dahy

Abstract:

Northeastern part of Egypt is considered one of the few regions of the world whereas evidence of historical activities has been documented during the last 48 centuries or more. Instrumental, historical and pre-historical seismicity data indicate that large destructive earthquakes have occurred quite frequently in the investigated area. The main aims in the present study were to redraw attention to the fact that the northeastern part of Egypt is seismically active and this result is associated with earthquake risk in the region. The interaction of the African, Arabian and Eurasian plates and Sinai subplate, is the main factor behind the earthquake activities of northeastern part of Egypt. All earthquakes occur at shallow depth and are concentrated at four seismic zones, these zones including the Gulfs of Suez and Aqaba, around the entrance of the Gulf of Suez and the fourth one is located at the south-west of great Cairo (Dahshour area). The seismicity map of the previous zones shows that the activity is coincide with the major tectonic trends of the Suez rift, Aqaba rift with their connection with the great rift system of the Red Sea and Gulf of Suez-Cairo-Alexandria trend.

Keywords: earthquake ectivities, Egypt, northeastern, tectonic setting

Procedia PDF Downloads 366
616 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: acceleration, backfill, earthquake, soil, PGA

Procedia PDF Downloads 347
615 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures

Authors: Radhwane Boudjelthia

Abstract:

The most recent earthquakes that occurred in the world and particularly in Algeria, have killed thousands of people and severe damage. The example that is etched in our memory is the last earthquake in the regions of Boumerdes and Algiers (Boumerdes earthquake of May 21, 2003). For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation" to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.

Keywords: earthquake, building, seismic forces, displacement, resonance, response

Procedia PDF Downloads 89
614 Social Capital in Housing Reconstruction Post Disaster Case of Yogyakarta Post Earthquake

Authors: Ikaputra

Abstract:

This paper will focus on the concept of social capital for especially housing reconstruction Post Disaster. The context of the study is Indonesia and Yogyakarta Post Earthquake 2006 as a case, but it is expected that the concept can be adopted in general post disaster reconstruction. The discussion will begin by addressing issues on House Reconstruction Post Disaster in Indonesia and Yogyakarta; defining Social Capital as a concept for effective management capacity based on community; Social Capital Post Java Earthquake utilizing Gotong Royong—community mutual self-help, and Approach and Strategy towards Community-based Reconstruction.

Keywords: community empowerment, Gotong Royong, post disaster, reconstruction, social capital, Yogyakarta-Indonesia

Procedia PDF Downloads 286
613 Space Weather and Earthquakes: A Case Study of Solar Flare X9.3 Class on September 6, 2017

Authors: Viktor Novikov, Yuri Ruzhin

Abstract:

The studies completed to-date on a relation of the Earth's seismicity and solar processes provide the fuzzy and contradictory results. For verification of an idea that solar flares can trigger earthquakes, we have analyzed a case of a powerful surge of solar flash activity early in September 2017 during approaching the minimum of 24th solar cycle was accompanied by significant disturbances of space weather. On September 6, 2017, a group of sunspots AR2673 generated a large solar flare of X9.3 class, the strongest flare over the past twelve years. Its explosion produced a coronal mass ejection partially directed towards the Earth. We carried out a statistical analysis of the catalogs of earthquakes USGS and EMSC for determination of the effect of solar flares on global seismic activity. New evidence of earthquake triggering due to the Sun-Earth interaction has been demonstrated by simple comparison of behavior of Earth's seismicity before and after the strong solar flare. The global number of earthquakes with magnitude of 2.5 to 5.5 within 11 days after the solar flare has increased by 30 to 100%. A possibility of electric/electromagnetic triggering of earthquake due to space weather disturbances is supported by results of field and laboratory studies, where the earthquakes (both natural and laboratory) were initiated by injection of electrical current into the Earth crust. For the specific case of artificial electric earthquake triggering the current density at a depth of earthquake, sources are comparable with estimations of a density of telluric currents induced by variation of space weather conditions due to solar flares. Acknowledgment: The work was supported by RFBR grant No. 18-05-00255.

Keywords: solar flare, earthquake activity, earthquake triggering, solar-terrestrial relations

Procedia PDF Downloads 113
612 Discussion on the Impact Issues in Urban by Earthquake Disaster Cases

Authors: M. C. Teng, M. C. Ke, C. Y. Yang, S. S. Ke

Abstract:

There are more than one thousand times a year of felt earthquakes in Taiwan. Because earthquakes are disaster threats to urban infrastructure, they often disrupt infrastructure services. For example, the highway system is very important to transportation infrastructure; however, it is vulnerable to earthquakes and typhoons in Taiwan. When a highway system is damaged by disaster, it will create a major impact on post-disaster communications and emergency relief and affect disaster relief works. In a study case on September 18th, 2022, the Taitung Chihshang earthquake, with a magnitude of 6.8 on the Richter scale with a depth of 7 km, caused one death; 171 people were injured and had a significant urban infrastructure impact. Hualien and Taitung areas have a large number of surface ruptures, road disruptions due to the collapses, over ten cases of bridges failure or closed, partial railroad section service shutdown, building collapses, and casualties. Taitung Chihshang earthquake, the peak ground acceleration is 585 gal (cm/s²), and the seismic intensity is Level 6 Upper(6+)in Chishang, Taitung County. After the earthquakes, we conducted on-site disaster investigation works in the disaster area; the disaster investigation works included a public and private building survey, a transportation facility survey, a total of ten damaged bridges, and one railroad station damaged were investigated in this investigation. The results showed that the affected locations were mainly concentrated along the Chihshang fault and the Yuli fault in the Huatung Longitudinal Valley. We recorded and described the impact and assessed its influence region in terms of its susceptibility to and the consequences of earthquake attacks. In addition, a lesson is learned from this study regarding the key issues after the Taitung Chihshang earthquake.

Keywords: earthquake, infrastructure, disaster investigation, lesson learned

Procedia PDF Downloads 31
611 A General Review of Çarpanak Church

Authors: Sahabettin Ozturk, Muhammet Kurucu, Soner Guler

Abstract:

Çarpanak church is one of the well-known churches in the eastern part of Turkey. It is located on Çarpanak island of Van city. Çarpanak Church was built in the 6th. century and then restored in 1462 year. After an earthquake in 1703 year, the church was again restored between 1712 and 1720 years. In spite of some parts of Çarpanak church have been destroyed by natural disasters, it has survived until today without total collapse. In this study, present condition of Çarpanak church is introduced and evaluated briefly.

Keywords: Çarpanak church, earthquake, restoration, Van city

Procedia PDF Downloads 241
610 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes

Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi

Abstract:

The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.

Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm

Procedia PDF Downloads 258
609 Seismic Performance of Nuclear Power Plant Structures Subjected to Korean Earthquakes

Authors: D. D. Nguyen, H. S. Park, S. W. Yang, B. Thusa, Y. M. Kim, T. H. Lee

Abstract:

Currently, the design response spectrum (i.e., Nuclear Regulatory Commission - NRC 1.60 spectrum) with the peak ground acceleration (PGA) 0.3g (for Safe Shutdown Earthquake level) is specified for designing the new nuclear power plant (NPP) structures in Korea. However, the recent earthquakes in the region such as the 2016 Gyeongju and the 2017 Pohang earthquake showed that the possible PGA of ground motions can be larger than 0.3g. Therefore, there is a need to analyze the seismic performance of the existing NPP structures under these earthquakes. An NPP model, APR-1400, which is designed and built in Korea was selected for a case study. The NPP structure is numerically modeled in terms of lumped-mass stick elements using OpenSees framework. The floor acceleration and displacement of components are measured to quantify the responses of components. The numerical results show that the floor spectral accelerations are significantly amplified in the components subjected to Korean earthquakes. A comparison between floor response spectra of Korean earthquakes and the NRC design motion highlights that the seismic design level of NPP components under an earthquake should be thoroughly reconsidered. Additionally, a seismic safety assessment of the equipment and relays attached to main structures is also required.

Keywords: nuclear power plant, floor response spectra, Korean earthquake, NRC spectrum

Procedia PDF Downloads 125
608 Manifestation of Behavioral and Emotional Disturbances and Perceived Coping Strategies of Earthquake Survived Children

Authors: Mahwish Rabia, Najma Najam

Abstract:

The present study was conducted to identify emotional and behavioral disturbances among earthquake survived children and the perceived coping strategies of affected children. In the present study, a sample of 50 children (6-16 years) belonging to badly affected areas (earthquake) was selected from different camps in Islamabad. Child Behavioral Checklist (CBCL) and Rotter Incomplete Sentence Blank (RISB) interpretations were used to assess variety of emotional and behavioral patterns, and Child Coping Strategies Checklist (CCSC) was used to assess the perceived coping strategies of affected children. Results showed that some of the frequent emotional/behavioral reactions exhibited by children like withdrawal, anxiety\depression, aggression and attention seeking behavior. Whereas gender-based comparisons indicated that female children showed more internalizing behavioral patterns (withdrawn, somatic complaints) as compared to male children who exhibited more externalizing emotions (aggression, delinquent behavior).Coping strategies in which male children tried to adopt Positive Cognitive Restructuring and for distracting attention they used distraction strategies of coping. It is concluded that significant negative emotional and behavioral reactions are exhibited by the earthquake affected children. Male children adopt coping strategies more as compared to female children. The study identifies the negative emotional and behavioral reactions towards trauma, which can be helpful for identifying the problematic area for counseling and therapeutic interventions for these children.

Keywords: behavioural disturbances, emotional disturbances, coping strategies, earthquake, children

Procedia PDF Downloads 447
607 A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity

Authors: Sayed Abdallah Mohamed Dahy

Abstract:

Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction.

Keywords: Aswan high dam reservoir, earthquake activity, environmental, Egypt

Procedia PDF Downloads 343
606 The Role of Public Education in Increasing Public Awareness through Mass Media with Emphasis on Newspapers and TV: Coping with Possible Earthquake in Tehran

Authors: Naser Charkhsaz, Ashraf Sadat Mousavi, Navvab Shamspour

Abstract:

This study aimed to evaluate the role of state education in increasing public awareness through mass media (with emphasis on newspapers and TV) coping with possible earthquake in Tehran. All residents aged 15 to 65 who live in the five regions of Tehran (North, South, East, West and Center) during the plan implementation were selected and studied. The required sample size in each region was calculated based on the Cochran formula (n=380). In order to collect and analyze the data, a questionnaire with reliability (82%) and a one-sample t-test has been used, respectively. The results showed that warnings related to the Tehran earthquake affected people in the pre-contemplation stage, while public education through mass media did not promote public awareness about prevention, preparedness and rehabilitation.

Keywords: media, disaster, knowledge, Iranian Red Crescent society

Procedia PDF Downloads 286
605 Crack Propagation in Concrete Gravity Dam

Authors: Faramarz Khoshnoudian

Abstract:

A seismic stability assessment of the concrete gravity dam was performed. Initially (Phase 1), a linear response spectrum analysis was performed to verify the potential for crack formation. The result shows the possibility of developing cracks in the upstream face of the dam close to the lowest gallery, which were sufficiently long that the dam would not be stable following the earthquake. The results show the dam has potentially inadequate seismic and post-earthquake resistance and recommended an update of the stability analysis.

Keywords: crack propgation, concrete gravity dam, seismic, assesment

Procedia PDF Downloads 33
604 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.

Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic

Procedia PDF Downloads 221
603 Pre-Primary Schools’ Earthquake Safety Initiative in Greece

Authors: A. Kourou, A. Ioakeimidou, A. Gakou

Abstract:

Greece due to its location in the Eastern Mediterranean region is characterized by a high degree of seismicity and occurrence of severe earthquakes. It is generally accepted that preventive planning is vital in mitigating impacts, protecting those who are the most vulnerable namely children and increasing the degree of resilience of local communities. Worldwide, States have highlighted the need to ensure the safety of early childhood environments in case of disaster. A great number of children are enrolled in daycare facilities, so building and improving the preparedness of pre-primary schools to prevent injuries and fatalities in case of an earthquake becomes an important policy issue. It is more than evident that preparedness in early preschool level will be increased through awareness and education of the people who work to pre-primary classes and provide early childhood care. The aim of the present study is to assess the level of awareness and preparedness of the Greek pre-primary schools staff concerning earthquake protection issues, as well as their risk mitigation behaviors and earthquake management in case of a strong event. In this framework, specific questionnaire was developed and filled by the abovementioned target group at 30 different municipalities of Greece (2014-2016). Also in the framework of this study it is presented the Pre-Primary Schools’ Earthquake Safety Initiative that has been undertaken by Earthquake Planning and Protection Organization (EPPO) the last years. This initiative aims to develop disaster-resilient day care centers through awareness, self-help, cooperation and education. Recognizing the necessity of integration of the disaster safety concept at pre-primary environments, EPPO published practical guidelines that focused on earthquake planning of these workspaces. Furthermore, dozens of seminars are implemented in municipality or prefecture-level every year by EPPO, in order the early childhood schools’ staff to be appropriately educated and adequately trained to face the earthquake risk. Great progress has been made towards building awareness and increasing preschool preparedness in Greece but significant gaps still remain. Anyway, it is extremely important that the implementation of effective programs and practices and the broad collaboration of all involved parties have been recognized as essential in order to develop a comprehensive disaster management system at preschool environment.

Keywords: awareness, earthquake, education, emergency plans, preparedness, pre-primary schools

Procedia PDF Downloads 166
602 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames

Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi

Abstract:

The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.

Keywords: EBFs, replaceable link, earthquake disaster, reduced section

Procedia PDF Downloads 300
601 GIS and Remote Sensing Approach in Earthquake Hazard Assessment and Monitoring: A Case Study in the Momase Region of Papua New Guinea

Authors: Tingneyuc Sekac, Sujoy Kumar Jana, Indrajit Pal, Dilip Kumar Pal

Abstract:

Tectonism induced Tsunami, landslide, ground shaking leading to liquefaction, infrastructure collapse, conflagration are the common earthquake hazards that are experienced worldwide. Apart from human casualty, the damage to built-up infrastructures like roads, bridges, buildings and other properties are the collateral episodes. The appropriate planning must precede with a view to safeguarding people’s welfare, infrastructures and other properties at a site based on proper evaluation and assessments of the potential level of earthquake hazard. The information or output results can be used as a tool that can assist in minimizing risk from earthquakes and also can foster appropriate construction design and formulation of building codes at a particular site. Different disciplines adopt different approaches in assessing and monitoring earthquake hazard throughout the world. For the present study, GIS and Remote Sensing potentials were utilized to evaluate and assess earthquake hazards of the study region. Subsurface geology and geomorphology were the common features or factors that were assessed and integrated within GIS environment coupling with seismicity data layers like; Peak Ground Acceleration (PGA), historical earthquake magnitude and earthquake depth to evaluate and prepare liquefaction potential zones (LPZ) culminating in earthquake hazard zonation of our study sites. The liquefaction can eventuate in the aftermath of severe ground shaking with amenable site soil condition, geology and geomorphology. The latter site conditions or the wave propagation media were assessed to identify the potential zones. The precept has been that during any earthquake event the seismic wave is generated and propagates from earthquake focus to the surface. As it propagates, it passes through certain geological or geomorphological and specific soil features, where these features according to their strength/stiffness/moisture content, aggravates or attenuates the strength of wave propagation to the surface. Accordingly, the resulting intensity of shaking may or may not culminate in the collapse of built-up infrastructures. For the case of earthquake hazard zonation, the overall assessment was carried out through integrating seismicity data layers with LPZ. Multi-criteria Evaluation (MCE) with Saaty’s Analytical Hierarchy Process (AHP) was adopted for this study. It is a GIS technology that involves integration of several factors (thematic layers) that can have a potential contribution to liquefaction triggered by earthquake hazard. The factors are to be weighted and ranked in the order of their contribution to earthquake induced liquefaction. The weightage and ranking assigned to each factor are to be normalized with AHP technique. The spatial analysis tools i.e., Raster calculator, reclassify, overlay analysis in ArcGIS 10 software were mainly employed in the study. The final output of LPZ and Earthquake hazard zones were reclassified to ‘Very high’, ‘High’, ‘Moderate’, ‘Low’ and ‘Very Low’ to indicate levels of hazard within a study region.

Keywords: hazard micro-zonation, liquefaction, multi criteria evaluation, tectonism

Procedia PDF Downloads 232
600 Seismotectonics of Southern Haiti: A Faulting Model for the 12 January 2010 M7 Earthquake

Authors: Newdeskarl Saint Fleur, Nathalie Feuillet, Raphaël Grandin, Éric Jacques, Jennifer Weil-Accardo, Yann Klinger

Abstract:

The prevailing consensus is that the 2010 Mw7.0 Haiti earthquake left the Enriquillo–Plantain Garden strike-slip Fault (EPGF) unruptured but broke unmapped blind north-dipping thrusts. Using high-resolution topography, aerial images, bathymetry and geology we identified previously unrecognized south-dipping NW-SE-striking active thrusts in southern Haiti. One of them, Lamentin thrust (LT), cuts across the crowded city of Carrefour, extends offshore into Port-au-Prince Bay and connects at depth with the EPGF. We propose that both faults broke in 2010. The rupture likely initiated on the thrust and propagated further along the EPGF due to unclamping. This scenario is consistent with geodetic, seismological and field data. The 2010 earthquake increased the stress toward failure on the unruptured segments of the EPGF and on neighboring thrusts, significantly increasing the seismic hazard in the Port-au-Prince urban area. The numerous active thrusts recognized in that area must be considered for future evaluation of the seismic hazard.

Keywords: active faulting, enriquillo-plantain garden fault, Haiti earthquake, seismic hazard

Procedia PDF Downloads 1200
599 Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System

Authors: Asad Naeem, Jinkoo Kim

Abstract:

This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces.

Keywords: seismic retrofit, spring viscous damper, shaking table test, earthquake resistant structures

Procedia PDF Downloads 152
598 Evaluation of Pile Performance in Different Layers of Soil

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: pile, earthquake, liquefaction, non-liquefiable, damage

Procedia PDF Downloads 271
597 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 34
596 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal

Authors: Elif Bakkaloglu, Necdet Torunbalci

Abstract:

The fact of earthquakes in Turkiye is an inevitable natural disaster. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after an earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-storey hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkiye, using seismic isolators in public hospitals, which are placed in first-degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-storey hospital buildings in cities where those problems are experienced. Although widespread use of seismic isolators in Japan, there are few multi-storey buildings in which seismic isolators are used in Turkiye. As it is known, base isolation systems are the most effective methods of earthquake resistance, as number of floors increases, center of gravity moves away from base in multi-storey buildings, increasing the overturning effect and limiting the use of these systems. In this context, it is aimed to investigate structural systems of multi-storey buildings which built using seismic isolation methods in the World. In addition to this, a working principle is suggested for disseminating seismic isolators in multi-storey hospital buildings. The results to be obtained from the study will guide architects who design multi-storey hospital buildings in their architectural designs and engineers in terms of structural system design.

Keywords: earthquake, energy absorbing systems, hospital, seismic isolation systems

Procedia PDF Downloads 110
595 Analysis of Earthquake Potential and Shock Level Scenarios in South Sulawesi

Authors: Takhul Bakhtiar

Abstract:

In South Sulawesi Province, there is an active Walanae Fault causing this area to frequently experience earthquakes. This study aims to determine the level of seismicity of the earthquake in order to obtain the potential for earthquakes in the future. The estimation of the potential for earthquakes is then made a scenario model determine the estimated level of shocks as an effort to mitigate earthquake disasters in the region. The method used in this study is the Gutenberg Richter Method through the statistical likelihood approach. This study used earthquake data in the South Sulawesi region in 1972 - 2022. The research location is located at the coordinates of 3.5° – 5.5° South Latitude and 119.5° – 120.5° East Longitude and divided into two segments, namely the northern segment at the coordinates of 3.5° – 4.5° South Latitude and 119,5° – 120,5° East Longitude then the southern segment with coordinates of 4.5° – 5.5° South Latitude and 119,5° – 120.5° East Longitude. This study uses earthquake parameters with a magnitude > 1 and a depth < 50 km. The results of the analysis show that the potential for earthquakes in the next ten years with a magnitude of M = 7 in the northern segment is estimated at 98.81% with an estimated shock level of VI-VII MMI around the cities of Pare-Pare, Barru, Pinrang and Soppeng then IV - V MMI in the cities of Bulukumba, Selayar, Makassar and Gowa. In the southern segment, the potential for earthquakes in the next ten years with a magnitude of M = 7 is estimated at 32.89% with an estimated VI-VII MMI shock level in the cities of Bulukumba, Selayar, Makassar and Gowa, then III-IV MMI around the cities of Pare-Pare, Barru, Pinrang and Soppeng.

Keywords: Gutenberg Richter, likelihood method, seismicity, shakemap and MMI scale

Procedia PDF Downloads 91
594 Exploring the Number, Type and Level of Disability among Victims of Nepal Earthquake 2015

Authors: Inosha Bimali, Shambhu P. Adhikari, Sumana Baidya, Nishchal R. Shakya

Abstract:

Background: An earthquake of 7.8 magnitudes with an epicenter in Gorkha on 25th April 2015 and second earthquake of 6.5 magnitudes with an epicenter at Sindhupalchwok on 12th May 2015 struck the beautiful country of Nepal, killing more than 8,500 people and over 18,500 individuals were left injured with various forms of disabilities. Objectives: To explore number, type and level of disability among post earthquake victims. A door to door physiotherapy rehabilitation program will be conducted at the community level as a continuation of this study. Methods: A survey was carried out in the catchment area of Bahunepati and Manekharka outreach centers of Sindhupalchowk district and Gaurishankar outreach center of Dolakha district of Dhulikhel Hospital. Physical disability was identified using a disability survey form given by Ministry of women, children and social welfare Nepal Government. World health organization disability assessment schedule-2 was used to identify the level of disability. Results: Twenty-nine person with disabilities at Bahunepati, four person with disabilities at Manekharkha and two person with disabilities at Gaurishankar and its catchment area were identified. Level of disability was an average of 56% with majority of survivors having upper extremities fractures followed by lower extremities fractures and miscellaneous injury. Few spinal cord injuries and head injuries were also identified. Conclusion: Though number of person with disabilities was found relatively less, disability level is high; hence an urgent need of physiotherapy rehabilitation is reflected to improve the quality of life of the affected people.

Keywords: community, disability, Nepal earthquake, physiotherapy

Procedia PDF Downloads 264
593 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity

Authors: Muhammad Tariq A. Chaudhary

Abstract:

Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.

Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction

Procedia PDF Downloads 195
592 Resilience and Renewal: Sustainable Tourism Development in Post-Earthquake Marrakech-El Haouz

Authors: Oumayma Hilal

Abstract:

The devastating earthquake in Marrakech-El Haouz in September 2023 underscores the critical need for sustainable tourism practices. This study proposes innovative approaches to territory tourism, prioritizing resilient and sustainable development to aid recovery and empower local communities. Using a mixed-methods approach, the research evaluates post-earthquake tourism impacts, gathers local perspectives, and benchmarks global models for disaster recovery through tourism. The paper aims to offer practical, community-centric tourism initiatives, integrated with strategic communication strategies, to enhance socio-economic welfare and ensure long-term resilience. The findings are expected to contribute significantly to sustainable tourism literature in post-disaster contexts and provide actionable strategies for the revitalization of the Marrakech-El Haouz region.

Keywords: sustainable tourism, community development, Marrakech El Haouz, communication strategies, territory tourism, sustainable tourism, community development

Procedia PDF Downloads 16
591 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: wavelet transform, computational error, computational duration, strong ground motion data

Procedia PDF Downloads 345