Search results for: diffusion coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3213

Search results for: diffusion coefficient

3183 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method

Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai

Abstract:

In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.

Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon

Procedia PDF Downloads 136
3182 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 137
3181 Investigation of Mesoporous Silicon Carbonization Process

Authors: N. I. Kargin, G. K. Safaraliev, A. S. Gusev, A. O. Sultanov, N. V. Siglovaya, S. M. Ryndya, A. A. Timofeev

Abstract:

In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.

Keywords: silicon carbide, porous silicon, carbonization, electrochemical etching, diffusion

Procedia PDF Downloads 226
3180 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 542
3179 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation

Authors: Sachin Kumar

Abstract:

Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.

Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method

Procedia PDF Downloads 156
3178 Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors

Authors: Sally Salah El Menshawy, Ghada M. Ahmed GabAllah, Doaa Khedr M. Khedr

Abstract:

Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions.

Keywords: diffusion tensor imaging, MRI, salivary gland, tumors

Procedia PDF Downloads 75
3177 Natural Gas Production Forecasts Using Diffusion Models

Authors: Md. Abud Darda

Abstract:

Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.

Keywords: diffusion models, energy forecast, natural gas, nonlinear production

Procedia PDF Downloads 198
3176 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method

Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy

Abstract:

With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.

Keywords: heat transfer, pde, taguchi optimization, SI/Ge

Procedia PDF Downloads 309
3175 Effect of Temperature on Pervaporation Performance of Ag-Poly Vinyl Alcohol Nanocomposite Membranes

Authors: Asmaa Selim, Peter Mizsey

Abstract:

Bio-ethanol is considered of higher potential as a green renewable energy source owing to its environmental benefits and its high efficiency. In the present study, silver nanoparticles were in-situ generated in a poly (vinyl alcohol) in order to improve its potentials for pervaporation of ethanol-water mixture using solution-casting. Effect of silver content on the pervaporation separation index and the enrichment factor of the membrane at 15 percentage mass water at 40ᵒC was reported. Pervaporation data for nanocomposite membranes showed around 100% increase in the water permeance values while the intrinsic selectivity decreased. The water permeances of origin crosslinked PVA membrane, and the 2.5% silver loaded PVA membrane are 26.65 and 70.45 (g/m².kPa.h) respectively. The values of total flux and water flux are closed to each other, indicating that membranes could be effectively used to break the azeotropic point of ethanol-water. Effect of temperature on the pervaporation performance, permeation parameter and diffusion coefficient of both water and ethanol was discussed. The negative heat of sorption ∆Hs values calculated on the basis of the estimated Arrhenius activation energy values indicating that the sorption process was controlled by Langmuir’s mode. The overall results showed that the membrane containing 0.5 mass percentage of Ag salt exhibited excellent PV performance.

Keywords: bio-ethanol, diffusion coefficient, nanocomposite, pervaporation, poly (vinyl alcohol), silver nanoparticles

Procedia PDF Downloads 134
3174 Diffusive Transport of VOCs Through Composite Liners

Authors: Christina Jery, R. K. Anjana, D. N. Arnepalli, R. Sobha

Abstract:

Modern landfills employ a composite liner consisting of a geomembrane overlying a compacted clay liner (CCL) or a geosynthetic clay liner (GCL) as a barrier system. The primary function of a barrier system is to control the contaminant transport from the leachate (dissolved phase) and landfill gas (vapour phase) out of the landfill thereby minimizing the environmental impact. This study is undertaken to investigate the diffusive migration of VOCs through composite liners. VOCs are known hazardous air pollutants were often existing in both the vapour phase and dissolved phase. These compounds are known to diffuse readily through the polymeric geomembranes. The objective of the research is to develop a comprehensive data set of diffusive parameters involved in the diffusion of VOCs in the composite liner (1.5 mm HDPE geomembrane overlying a 30mm compacted clay layer). For this purpose, the study aims to develop a new experimental setup for determining the diffusion characteristics. The key parameters of diffusion (partitioning, diffusion and permeation coefficients) are examined. The diffusion tests are carried out both in aqueous and vapor phase. Finally, an attempt is also made to study the effect of low temperature on the diffusion characteristics.

Keywords: diffusion, sorption, organic compounds, composite liners, geomembrane

Procedia PDF Downloads 335
3173 Effect of Storage Time on the Properties of Seeds, Oil and Biodiesel from Reutealis trisperma

Authors: Muhammad Yusuf Abduh, Syaripudin, Laksmitha Dyanie, Robert Manurung

Abstract:

The time profile of moisture content for different fractions (PT-3, PT-7, PT-14, NPT-21) of trisperma seeds (Reutealis trisperma) was determined at a relative humidity of 67% and 27°C for a four months period. The diffusion coefficient of water in the trisperma seeds was determined using an analytical solution of instationary diffusion equation and used to model the moisture content in the seeds. The total oil content of the seeds and the acid value of the extracted oil from the stored seeds were periodically measured for four months. The acid value of the extracted oil from the stored seeds increased for all conditions (1.1 to 2.8 mg KOH/g for PT-3, 1.9 to 9.9 mg KOH/g for PT-7, 3.4 to 11.6 mg KOH/g for PT-14 and 4.7 to 25.4 mg KOH/g for NPT-21). The acid value of trisperma oil and biodiesel that has been stored for four months (27°C, closed container) was also determined. Upon storage, the acid value of trisperma oil and biodiesel only slightly increased from 1.1 to 1.3 mg KOH/g and 0.4 to 0.43 mg KOH/g, respectively.

Keywords: acid value, biodiesel, moisture content, Reutealis trisperma, storage

Procedia PDF Downloads 261
3172 On Coverage Probability of Confidence Intervals for the Normal Mean with Known Coefficient of Variation

Authors: Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

Statistical inference of normal mean with known coefficient of variation has been investigated recently. This phenomenon occurs normally in environment and agriculture experiments when the scientist knows the coefficient of variation of their experiments. In this paper, we constructed new confidence intervals for the normal population mean with known coefficient of variation. We also derived analytic expressions for the coverage probability of each confidence interval. To confirm our theoretical results, Monte Carlo simulation will be used to assess the performance of these intervals based on their coverage probabilities.

Keywords: confidence interval, coverage probability, expected length, known coefficient of variation

Procedia PDF Downloads 355
3171 Uterine Cervical Cancer; Early Treatment Assessment with T2- And Diffusion-Weighted MRI

Authors: Susanne Fridsten, Kristina Hellman, Anders Sundin, Lennart Blomqvist

Abstract:

Background: Patients diagnosed with locally advanced cervical carcinoma are treated with definitive concomitant chemo-radiotherapy. Treatment failure occurs in 30-50% of patients with very poor prognoses. The treatment is standardized with risk for both over-and undertreatment. Consequently, there is a great need for biomarkers able to predict therapy outcomes to allow for individualized treatment. Aim: To explore the role of T2- and diffusion-weighted magnetic resonance imaging (MRI) for early prediction of therapy outcome and the optimal time point for assessment. Methods: A pilot study including 15 patients with cervical carcinoma stage IIB-IIIB (FIGO 2009) undergoing definitive chemoradiotherapy. All patients underwent MRI four times, at baseline, 3 weeks, 5 weeks, and 12 weeks after treatment started. Tumour size, size change (∆size), visibility on diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and change of ADC (∆ADC) at the different time points were recorded. Results: 7/15 patients relapsed during the study period, referred to as "poor prognosis", PP, and the remaining eight patients are referred to "good prognosis", GP. The tumor size was larger at all time points for PP than for GP. The ∆size between any of the four-time points was the same for PP and GP patients. The sensitivity and specificity to predict prognostic group depending on a remaining tumor on DWI were highest at 5 weeks and 83% (5/6) and 63% (5/8), respectively. The combination of tumor size at baseline and remaining tumor on DWI at 5 weeks in ROC analysis reached an area under the curve (AUC) of 0.83. After 12 weeks, no remaining tumor was seen on DWI among patients with GP, as opposed to 2/7 PP patients. Adding ADC to the tumor size measurements did not improve the predictive value at any time point. Conclusion: A large tumor at baseline MRI combined with a remaining tumor on DWI at 5 weeks predicted a poor prognosis.

Keywords: chemoradiotherapy, diffusion-weighted imaging, magnetic resonance imaging, uterine cervical carcinoma

Procedia PDF Downloads 110
3170 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 359
3169 Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations

Authors: Yildiray Keskin, Omer Acan, Murat Akkus

Abstract:

In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations.

Keywords: fractional diffusion equations, Caputo fractional derivative, reduced differential transform method, partial

Procedia PDF Downloads 488
3168 Encapsulation of Volatile Citronella Essential oil by Coacervation: Efficiency and Release Kinetic Study

Authors: Rafeqah Raslan, Mastura AbdManaf, Junaidah Jai, Istikamah Subuki, Ana Najwa Mustapa

Abstract:

The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using gum Arabic and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph was developed with R2 equal to 0.9523 for the accurate determination of encapsulation efficiency and release study. The release kinetic was analyzed based on Fick’s law of diffusion for polymeric system and linear graph of log fraction release over log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The capsules morphology analysis supported the release kinetic mechanisms of produced capsules for both coacervation process.

Keywords: simple coacervation, complex coacervation, encapsulation efficiency, release kinetic study

Procedia PDF Downloads 288
3167 Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient

Authors: Ping-Ben Liu, Chien-Chou Tseng

Abstract:

The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge.

Keywords: Computational Fluid Dynamics, cavitation, turbulence, lift coefficient

Procedia PDF Downloads 313
3166 The Friction and Wear Behaviour of Ti2AlC MAX Phase

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of Ti2AlC were investigated. In order to modify the surface properties of Ti2AlC, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti2AlC. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti2AlC from 6 GPa to 13GPa. In the pin-on-disc test, it was found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti2AlC/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti2AlC under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti2AlC.

Keywords: MAX phase, wear, hardness, boronizing

Procedia PDF Downloads 282
3165 Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames

Authors: A. M. Tahsini

Abstract:

Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that only in the stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations.

Keywords: diffusion flame, ignition delay time, mixing layer, numerical simulation, premixed flame, supersonic flow

Procedia PDF Downloads 423
3164 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference

Authors: Jang kyun Cho, Jeong-dong Lee

Abstract:

The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.

Keywords: innovation diffusion, agent based model, small-world network, demand forecasting

Procedia PDF Downloads 310
3163 Diffusion Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Detecting Malignancy in Maxillofacial Lesions

Authors: Mohamed Khalifa Zayet, Salma Belal Eiid, Mushira Mohamed Dahaba

Abstract:

Introduction: Malignant tumors may not be easily detected by traditional radiographic techniques especially in an anatomically complex area like maxillofacial region. At the same time, the advent of biological functional MRI was a significant footstep in the diagnostic imaging field. Objective: The purpose of this study was to define the malignant metabolic profile of maxillofacial lesions using diffusion MRI and magnetic resonance spectroscopy, as adjunctive aids for diagnosing of such lesions. Subjects and Methods: Twenty-one patients with twenty-two lesions were enrolled in this study. Both morphological and functional MRI scans were performed, where T1, T2 weighted images, diffusion-weighted MRI with four apparent diffusion coefficient (ADC) maps were constructed for analysis, and magnetic resonance spectroscopy with qualitative and semi-quantitative analyses of choline and lactate peaks were applied. Then, all patients underwent incisional or excisional biopsies within two weeks from MR scans. Results: Statistical analysis revealed that not all the parameters had the same diagnostic performance, where lactate had the highest areas under the curve (AUC) of 0.9 and choline was the lowest with insignificant diagnostic value. The best cut-off value suggested for lactate was 0.125, where any lesion above this value is supposed to be malignant with 90 % sensitivity and 83.3 % specificity. Despite that ADC maps had comparable AUCs still, the statistical measure that had the final say was the interpretation of likelihood ratio. As expected, lactate again showed the best combination of positive and negative likelihood ratios, whereas for the maps, ADC map with 500 and 1000 b-values showed the best realistic combination of likelihood ratios, however, with lower sensitivity and specificity than lactate. Conclusion: Diffusion weighted imaging and magnetic resonance spectroscopy are state-of-art in the diagnostic arena and they manifested themselves as key players in the differentiation process of orofacial tumors. The complete biological profile of malignancy can be decoded as low ADC values, high choline and/or high lactate, whereas that of benign entities can be translated as high ADC values, low choline and no lactate.

Keywords: diffusion magnetic resonance imaging, magnetic resonance spectroscopy, malignant tumors, maxillofacial

Procedia PDF Downloads 144
3162 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind

Authors: Fidelis Chigondo

Abstract:

This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.

Keywords: biosorption, phenol, biosorbent, watermelon rind

Procedia PDF Downloads 216
3161 Basket Option Pricing under Jump Diffusion Models

Authors: Ali Safdari-Vaighani

Abstract:

Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.

Keywords: basket option, jump diffusion, ‎radial basis function, RBF-PUM

Procedia PDF Downloads 316
3160 The Friction and Wear Behavior of 0.35 VfTiC-Ti3SiC2 Composite

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modify the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7 N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.

Keywords: MAX phase, boronizing, hardness, wear

Procedia PDF Downloads 314
3159 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM

Procedia PDF Downloads 252
3158 Evaluating the Permeability Coefficient of Sandy Soil for Grouting to Reinforce Soft Soil in Binh Duong, Vietnam

Authors: Trung Le Thanh

Abstract:

Soil permeability coefficient is an important parameter that affects the effectiveness of mortar restoration work to reinforce soft soil. Currently, there are many methods to determine the permeability coefficient of ground through laboratory and field experiments. However, the value of the permeability coefficient is determined very differently depending on the geology in general and the sand base in particular. This article presents how to determine the permeability coefficient of sand foundation in Phu My Ward, Tan Uyen City, Binh Duong. The author analyzes and evaluates the advantages and disadvantages of assessment methods based on the data and results obtained, and on that basis recommends a suitable method for determining the permeability coefficient for sand foundations. The research results serve the evaluation of the effectiveness of grouting to reinforce soft ground in general, and grouting of bored piles in particular.

Keywords: permeability coefficient, soft soil, shaft grouting, post grouting, jet grouting

Procedia PDF Downloads 37
3157 The Effects of Boronizing Treatment on the Friction and Wear Behavior of 0.35 VfTiC- Ti3SiC2 Composite

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modity the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 underAl2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.

Keywords: MAX phase, wearing, friction, boronizing

Procedia PDF Downloads 423
3156 Comparative Diagnostic Performance of Diffusion-Weighted Imaging Combined With Microcalcifications on Mammography for Discriminating Malignant From Benign Bi-rads 4 Lesions With the Kaiser Score

Authors: Wangxu Xia

Abstract:

BACKGROUND BI-RADS 4 lesions raise the possibility of malignancy that warrant further clinical and radiologic work-up. This study aimed to evaluate the predictive performance of diffusion-weighted imaging(DWI) and microcalcifications on mammography for predicting malignancy of BI-RADS 4 lesions. In addition, the predictive performance of DWI combined with microcalcifications was alsocompared with the Kaiser score. METHODS During January 2021 and June 2023, 144 patients with 178 BI-RADS 4 lesions underwent conventional MRI, DWI, and mammography were included. The lesions were dichotomized intobenign or malignant according to the pathological results from core needle biopsy or surgical mastectomy. DWI was performed with a b value of 0 and 800s/mm2 and analyzed using theapparent diffusion coefficient, and a Kaiser score > 4 was considered to suggest malignancy. Thediagnostic performances for various diagnostic tests were evaluated with the receiver-operatingcharacteristic (ROC) curve. RESULTS The area under the curve (AUC) for DWI was significantly higher than that of the of mammography (0.86 vs 0.71, P<0.001), but was comparable with that of the Kaiser score (0.86 vs 0.84, P=0.58). However, the AUC for DWI combined with mammography was significantly highthan that of the Kaiser score (0.93 vs 0.84, P=0.007). The sensitivity for discriminating malignant from benign BI-RADS 4 lesions was highest at 89% for Kaiser score, but the highest specificity of 83% can be achieved with DWI combined with mammography. CONCLUSION DWI combined with microcalcifications on mammography could discriminate malignant BI-RADS4 lesions from benign ones with a high AUC and specificity. However, Kaiser score had a better sensitivity for discrimination.

Keywords: MRI, DWI, mammography, breast disease

Procedia PDF Downloads 17
3155 Factors That Affect the Diffusion of Innovation in Greek Archaeological Museums

Authors: Maria Boile, Eirini Sifaki

Abstract:

This study, based on desktop research and the analysis of questionnaires completed by a representative sample of museums, adopts the Diffusion of Innovation (DOI) theory of Everett Rogers as a theoretical basis to figure out the perceived benefits that occur for any organization after the adoption of an official website, and identify the factors that affect its diffusion process. The most important conclusion is that Greek archaeological museums are far away from involving such technologies in their strategies, mainly because of the bureaucracy, the lack of necessary funds, and the lack of personnel.

Keywords: dDiffusion of innovation, websites, archaeological museums, economic crisis

Procedia PDF Downloads 347
3154 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 63