Search results for: damping coefficients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1213

Search results for: damping coefficients

163 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 245
162 Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds

Authors: Vesta Kohlmeier, George C. Dragan, Juergen Orasche, Juergen Schnelle-Kreis, Dietmar Breuer, Ralf Zimmermann

Abstract:

Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371.

Keywords: gas phase collection efficiency, particle transmission, personal aerosol sampler, SVOC

Procedia PDF Downloads 145
161 The Turkish Version of the Carer’s Assessment of Satisfaction Index (CASI-TR): Its Cultural Adaptation, Validation, and Reliability

Authors: Cemile Kütmeç Yilmaz, Güler Duru Asiret, Gulcan Bagcivan

Abstract:

The aim of this study was to evaluate the reliability and validity of the Turkish version of the Carer’s Assessment of Satisfaction Index (CASI-TR). The study was conducted between the dates of June 2016 and September 2017 at the Training and Research Hospital of Aksaray University with the caregiving family members of the inpatients with chronic diseases. For this study, the sample size was calculated as at least 10 individuals for each item (item number (30)X10=300). The study sample included 300 caregiving family members, who provided primer care for at least three months for a patient (who had at least one chronic disease and received inpatient treatment in general internal medicine and palliative care units). Data were collected by using a demographic questionnaire and CASI-TR. Descriptive statistics, and psychometric tests were used for the data analysis. Of those caregivers, 76.7% were female, 86.3% were 65 years old and below, 43.7% were primary school graduates, 87% were married, 86% were not working, 66.3% were housewives, and 60.3% defined their income status as having an income covering one’s expenses. Care recipients often had problems in terms of walking, sleep, balance, feeding and urinary incontinence. The Cronbach Alpha value calculated for the CASI-TR (30 items) was 0,949. Internal consistency coefficients calculated for subscales were: 0.922 for the subscale of ‘caregiver satisfaction related to care recipient’, 0.875 for the subscale of ‘caregiver satisfaction related to themselves’, and 0.723 for the subscale of ‘dynamics of interpersonal relations’. Factor analysis revealed that three factors accounted for 57.67% of the total variance, with an eigenvalue of >1. assessed in terms of significance, we saw that the items came together in a significant manner. The factor load of the items were between 0.311 and 0.874. These results show that the CASI-TR is a valid and reliable scale. The adoption of the translated CASI in Turkey is found reliable and valid to assessing the satisfaction of caregivers. CASI-TR can be used easily in clinics or house visits by nurses and other health professionals for assessing caregiver satisfaction from caregiving.

Keywords: carer’s assessment of satisfaction index, caregiver, validity, reliability

Procedia PDF Downloads 173
160 Monte Carlo and Biophysics Analysis in a Criminal Trial

Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano

Abstract:

In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.

Keywords: biophysics analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion

Procedia PDF Downloads 98
159 Infographics to Identify, Diagnose, and Review Medically Important Microbes and Microbial Diseases: A Tool to Ignite Minds of Undergraduate Medical Students

Authors: Mohan Bilikallahalli Sannathimmappa, Vinod Nambiar, Rajeev Aravindakshan

Abstract:

Background: Image-based teaching-learning module is innovative student-centered andragogy. The objective of our study was to explore medical students’ perception of effectiveness of image-based learning strategy in promoting their lifelong learning skills and evaluate its impact on improving students’ exam grades. Methods: A prospective single-cohort study was conducted on undergraduate medical students of the academic year 2021-22. The image-based teaching-learning module was assessed through pretest, posttest, and exam grades. Students’ feedback was collected through a predesigned questionnaire on a 3-point Likert Scale. The reliability of the questionnaire was assessed using Cronbach’s alpha coefficient test. In-Course Exam-4 results were compared with In-Course Exams 1, 2, and 3. Correlation coefficients were worked out wherever relevant to find the impact of the exercise on grades. Data were collected, entered into Microsoft Excel, and statistically analyzed using SPSS version 22. Results: In total, 127 students were included in the study. The posttest scores of the students were significantly high (24.75±) as compared to pretest scores (8.25±). Students’ opinion towards the effectiveness of image-based learning in promoting their lifelong learning skills was overwhelmingly positive (Cronbach’s alpha for all items was 0.756). More than 80% of the students indicated image-based learning was interesting, encouraged peer discussion, and helped them to identify, explore, and revise key information and knowledge improvement. Nearly 70% expressed image-based learning enhanced their critical thinking and problem-solving skills. Nine out of ten students recommended image-based learning module for future topics. Conclusion: Overall, Image-based learning was found to be effective in achieving undergraduate medical students learning outcomes. The results of the study are in favor of the implementation of Image-based learning in Microbiology courses. However, multicentric studies are required to authenticate our study findings.

Keywords: active learning, knowledge, medical education, microbes, problem solving

Procedia PDF Downloads 46
158 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 14
157 The Mediation Impact of Demographic and Clinical Characteristics on the Relationship between Trunk Control and Quality of Life among the Sub-Acute Stroke Population: A Cross-Sectional Study

Authors: Kumar Gular, Viswanathan S., Mastour Saeed Alshahrani, Ravi Shankar Reddy, Jaya Shanker Tedla, Snehil Dixit, Ajay Prasad Gautam, Venkata Nagaraj Kakaraparthi, Devika Rani Sangadala

Abstract:

Background: Despite trunk control’s significant contribution to improving various functional activity components, the independent effect of trunk performance on quality of life is yet to be estimated in stroke survivors. Ascertaining the correlation between trunk control and self-reported quality of life while evaluating the effect of demographic and clinical characteristics on their relationship will guide concerned healthcare professionals in designing ideal rehabilitation protocols during the late sub-acute stroke stage of recovery. The aims of the present research were to (1) investigate the associations of trunk performance with self-rated quality of life and (2) evaluate if age, body mass index (BMI), and clinical characteristics mediate the relationship between trunk motor performance and perceived quality of life in the sub-acute stroke population. Methods: Trunk motor functions and quality of life among the late sub-acute stroke population aged 57.53 ± 6.42 years were evaluated through the trunk Impairment Scale (TIS) and Stroke specific quality of life (SSQOL) questionnaire, respectively. Pearson correlation coefficients and mediation analysis were performed to elucidate the relationship of trunk motor function with quality of life and determine the mediation impact of demographic and clinical characteristics on their association, respectively. Results: The current study observed significant correlations between trunk motor functions (TIS) and quality of life (SSQOL) with r=0.68 (p<0.001). Age, BMI, and type of stroke were detected as potential mediating factors in the association between trunk performance and quality of life. Conclusion: Validated associations between trunk motor functions and perceived quality of life among the late sub-acute stroke population emphasize the importance of comprehensive evaluation of trunk control. Rehabilitation specialists should focus on appropriate strategies to enhance trunk performance anticipating the potential effects of age, BMI, and type of stroke to improve health-related quality of life in stroke survivors.

Keywords: sub-acute stroke, quality of life, functional independence, trunk control

Procedia PDF Downloads 39
156 An Alternative Rectangular Tunnels to Conventional Twin Circular Bored Tunnels in Weak Ground Conditions

Authors: Alex Atanaw Alebachew

Abstract:

The outcomes of a numerical research study conducted using the PLAXIS software to analyze surface settlements and moments generated in tunnel linings. The investigation focuses on both circular and rectangular twin tunnels. The study suggests that rectangular tunnels, although considered unconventional in modern tunneling practices, may be a viable option for shallow-depth tunneling in weak ground. The recommendation for engineers in the tunneling industry is to consider the use of rectangular tunnel boring machines (TBMs) based on the findings of this analysis. The research emphasizes the importance of evaluating various tunneling methods to optimize performance and address specific challenges in different ground conditions. These findings provide valuable insights into the behavior of rectangular tunnels compared to circular tunnels, emphasizing factors such as burial depth, relative positioning, tunnel size, and critical distance that influence surface settlements and bending moments. This research explores the feasibility of utilizing rectangular Tunnel Boring Machines (TBMs) as an alternative to conventional circular TBMs. The research findings indicate that rectangular tunnels exhibit slightly lower settlement than circular tunnels at shallow depths, especially in a narrower range directly above the twin tunnels. This difference could be attributed to maintaining a consistent tunnel-lining thickness across all depths. In deeper tunnel scenarios, circular tunnels experience less settlement compared to rectangular tunnels. Additionally, parallel rectangular tunnels settle more gradually than piggyback configurations, while piggyback tunnels show increased moments in the tunnel built second at the same level. Both settlement and moment coefficients increase with the diameter of twin tunnels, irrespective of their shape. The critical distance for both circular and rectangular tunnels is around 2.5 times the tunnel diameter, and distances closer than this result in a notable increase in moments. Rectangular tunnels spaced closer than 5 times the diameter led to higher settlement, and circular tunnels spaced closer than 2.5 to 3 times the diameter experience increased settlement as well.

Keywords: alternative, rectangular, tunnel, twin bored circular, weak ground

Procedia PDF Downloads 21
155 Psychological Factors of Readiness of Defectologists to Professional Development: On the Example of Choosing an Educational Environment

Authors: Inna V. Krotova

Abstract:

The study pays special attention to the definition of the psychological potential of a specialist-defectologist, which determines his desire to increase the level of his or her professional competence. The group included participants of the educational environment – an additional professional program 'Technologies of psychological and pedagogical assistance for children with complex developmental disabilities' implemented by the department of defectology and clinical psychology of the KFU jointly with the Support Fund for the Deafblind people 'Co-Unity'. The purpose of our study was to identify the psychological aspects of the readiness of the specialist-defectologist to his or her professional development. The study assessed the indicators of psychological preparedness, and its four components were taken into account: motivational, cognitive, emotional and volitional. We used valid and standardized tests during the study. As a result of the factor analysis of data received (from Extraction Method: Principal Component Analysis, Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 12 iterations), there were identified three factors with maximum factor load from 24 indices, and their correlation coefficients with other indicators were taken into account at the level of reliability p ≤ 0.001 and p ≤ 0.01. Thus the system making factor was determined – it’s a 'motivation to achieve success'; it formed a correlation galaxy with two other factors: 'general internality' and 'internality in the field of achievements', as well as with such psychological indicators as 'internality in the field of family relations', 'internality in the field of interpersonal relations 'and 'low self-control-high self-control' (the names of the scales used is the same as names in the analysis methods. In conclusion of the article, we present some proposals to take into account the psychological model of readiness of specialists-defectologists for their professional development, to stimulate the growth of their professional competence. The study has practical value for all providers of special education and organizations that have their own specialists-defectologists, teachers-defectologists, teachers for correctional and ergotherapeutic activities, specialists working in the field of correctional-pedagogical activity (speech therapists) to people with special needs who need true professional support.

Keywords: psychological readiness, defectologist, professional development, psychological factors, special education, professional competence, innovative educational environment

Procedia PDF Downloads 148
154 Advancing Healthcare Excellence in China: Crafting a Strategic Operational Evaluation Index System for Chinese Hospital Departments amid Payment Reform Initiatives

Authors: Jing Jiang, Yuguang Gao, Yang Yu

Abstract:

Facing increasingly challenging insurance payment pressures, the Chinese healthcare system is undergoing significant transformations, akin to the implementation of DRG payment models by the United States' Medicare. Consequently, there is a pressing need for Chinese hospitals to establish optimizations in departmental operations tailored to the ongoing healthcare payment reforms. This abstract delineates the meticulous construction of a scientifically rigorous and comprehensive index system at the departmental level in China strategically aligned with the evolving landscape of healthcare payment reforms. Methodologically, it integrates key process areas and maturity assessment theories, synthesizing relevant literature and industry standards to construct a robust framework and indicator pool. Employing the Delphi method, consultations with 21 experts were conducted, revealing a collective demonstration of high enthusiasm, authority, and coordination in designing the index system. The resulting model comprises four primary indicators -technical capabilities, cost-effectiveness, operational efficiency, and disciplinary potential- supported by 14 secondary indicators and 23 tertiary indicators with varied coefficient adjustment for department types (platform or surgical). The application of this evaluation system in a Chinese hospital within the northeastern region yielded results aligning seamlessly with the actual operational scenario. In conclusion, the index system comprehensively considers the integrity and effectiveness of structural, process, and outcome indicators and stands as a comprehensive reflection of the collective expertise of the engaged experts, manifesting in a model designed to elevate the operational management of hospital departments. Its strategic alignment with healthcare payment reforms holds practical significance in guiding departmental development positioning, brand cultivation, and talent development.

Keywords: Chinese healthcare system, Delphi method, departmental management, evaluation indicators, hospital operations, weight coefficients

Procedia PDF Downloads 23
153 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia

Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem

Abstract:

The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.

Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge

Procedia PDF Downloads 96
152 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 377
151 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis

Authors: Asif Arshid, Ying Huang, Denver Tolliver

Abstract:

Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.

Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade

Procedia PDF Downloads 96
150 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids

Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho

Abstract:

In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.

Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model

Procedia PDF Downloads 89
149 The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats

Authors: A. M. Pashayev, A. S. Samedov, T. B. Usubaliyev, N. Sh. Yusifov

Abstract:

Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades.

Keywords: gas turbine blades, thermal barrier coating, metallic bond coat, strategic metals, physical-chemical features

Procedia PDF Downloads 271
148 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 23
147 The Association of Excessive Work Stress with Job Satisfaction and Turnover Intention in Operating Room Nurses: A Cross-Sectional Study in a Metropolitan Teaching Hospital in Southern Taiwan

Authors: Chia Yu Chen, Shu Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Shu Jiuan Chen, Yen Ling Liu

Abstract:

Aim: It remains undetermined that whether increased work stress may affect the job satisfaction and career loyalty among nursing staffs in the operating room. The long-term goal of this study is to lengthen the professional life of operating room nurses by attenuating the work stress and enhancing their contentment in work. Method: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in the southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Occupational Stress Indicator-2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the operating room nurses. Chi-square test was used to analyze the categorical data and Pearson correlation was used to analyze the association between two numerical datasets (SPSS version 20.0). Results: The response rate was 80% (80/100) and a total of 73 (73%) completed forms were eventually proceeded for analysis. The average scores for work stress and job satisfaction of the operating room nurses were 145.96±32.91 and 47.38±6.07, respectively. The correlation coefficients of work stress versus job satisfaction and organizational identity were (r=-0.338, p=0.003 and r=-0.354, p=0.002), respectively. There were more nurses who took rotating shift quitted works from the operating room than those who took only dayshift (2=5.176, p<0.05). Nurses who reported of having lower job satisfaction were associated with significantly higher turnover intention (t=3.714, p< 0.01). Following multivariate regression analysis, rotating shift and low job satisfaction were identified as the two independent predictors of intention to quit from working in the operating room. Conclusion: Our study clearly demonstrates that increased work stress significantly attenuates job satisfaction and organizational identity. Rotating shift is associated with higher work stress, lower job satisfaction, and higher turnover intention, which is consistent with the previous surveys carried out in the department of medical technology. Therefore, improvement of working quality in the operating rooms is essential to increase the retain intention of the well-trained nursing staffs. Further investigation into types of work shifts and other strategies of attenuating stress in workplace is currently undertaken in order to improve the job satisfaction and to decrease turnover intention in the operating room.

Keywords: rotating shift, work stress, job satisfaction, turnover intention

Procedia PDF Downloads 154
146 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges

Authors: Dianelys Vega, Carlos Magluta, Ney Roitman

Abstract:

The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.

Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction

Procedia PDF Downloads 93
145 Development and Validation of an Instrument Measuring the Coping Strategies in Situations of Stress

Authors: Lucie Côté, Martin Lauzier, Guy Beauchamp, France Guertin

Abstract:

Stress causes deleterious effects to the physical, psychological and organizational levels, which highlight the need to use effective coping strategies to deal with it. Several coping models exist, but they don’t integrate the different strategies in a coherent way nor do they take into account the new research on the emotional coping and acceptance of the stressful situation. To fill these gaps, an integrative model incorporating the main coping strategies was developed. This model arises from the review of the scientific literature on coping and from a qualitative study carried out among workers with low or high levels of stress, as well as from an analysis of clinical cases. The model allows one to understand under what circumstances the strategies are effective or ineffective and to learn how one might use them more wisely. It includes Specific Strategies in controllable situations (the Modification of the Situation and the Resignation-Disempowerment), Specific Strategies in non-controllable situations (Acceptance and Stubborn Relentlessness) as well as so-called General Strategies (Wellbeing and Avoidance). This study is intended to undertake and present the process of development and validation of an instrument to measure coping strategies based on this model. An initial pool of items has been generated from the conceptual definitions and three expert judges have validated the content. Of these, 18 items have been selected for a short form questionnaire. A sample of 300 students and employees from a Quebec university was used for the validation of the questionnaire. Concerning the reliability of the instrument, the indices observed following the inter-rater agreement (Krippendorff’s alpha) and the calculation of the coefficients for internal consistency (Cronbach's alpha) are satisfactory. To evaluate the construct validity, a confirmatory factor analysis using MPlus supports the existence of a model with six factors. The results of this analysis suggest also that this configuration is superior to other alternative models. The correlations show that the factors are only loosely related to each other. Overall, the analyses carried out suggest that the instrument has good psychometric qualities and demonstrates the relevance of further work to establish predictive validity and reconfirm its structure. This instrument will help researchers and clinicians better understand and assess coping strategies to cope with stress and thus prevent mental health issues.

Keywords: acceptance, coping strategies, stress, validation process

Procedia PDF Downloads 306
144 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children

Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura

Abstract:

Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.

Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification

Procedia PDF Downloads 269
143 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 103
142 Beyond the “Breakdown” of Karman Vortex Street

Authors: Ajith Kumar S., Sankaran Namboothiri, Sankrish J., SarathKumar S., S. Anil Lal

Abstract:

A numerical analysis of flow over a heated circular cylinder is done in this paper. The governing equations, Navier-Stokes, and energy equation within the Boussinesq approximation along with continuity equation are solved using hybrid FEM-FVM technique. The density gradient created due to the heating of the cylinder will induce buoyancy force, opposite to the direction of action of acceleration due to gravity, g. In the present work, the flow direction and the direction of buoyancy force are taken as same (vertical flow configuration), so that the buoyancy force accelerates the mean flow past the cylinder. The relative dominance of the buoyancy force over the inertia force is characterized by the Richardson number (Ri), which is one of the parameter that governs the flow dynamics and heat transfer in this analysis. It is well known that above a certain value of Reynolds number, Re (ratio of inertia force over the viscous forces), the unsteady Von Karman vortices can be seen shedding behind the cylinder. The shedding wake patterns could be seriously altered by heating/cooling the cylinder. The non-dimensional shedding frequency called the Strouhal number is found to be increasing as Ri increases. The aerodynamic force coefficients CL and CD are observed to change its value. In the present vertical configuration of flow over the cylinder, as Ri increases, shedding frequency gets increased and suddenly drops down to zero at a critical value of Richardson number. The unsteady vortices turn to steady standing recirculation bubbles behind the cylinder after this critical Richardson number. This phenomenon is well known in literature as "Breakdown of the Karman Vortex Street". It is interesting to see the flow structures on further increase in the Richardson number. On further heating of the cylinder surface, the size of the recirculation bubble decreases without loosing its symmetry about the horizontal axis passing through the center of the cylinder. The separation angle is found to be decreasing with Ri. Finally, we observed a second critical Richardson number, after which the the flow will be attached to the cylinder surface without any wake behind it. The flow structures will be symmetrical not only about the horizontal axis, but also with the vertical axis passing through the center of the cylinder. At this stage, there will be a "single plume" emanating from the rear stagnation point of the cylinder. We also observed the transition of the plume is a strong function of the Richardson number.

Keywords: drag reduction, flow over circular cylinder, flow control, mixed convection flow, vortex shedding, vortex breakdown

Procedia PDF Downloads 375
141 A Numerical Investigation of Segmental Lining Joints Interactions in Tunnels

Authors: M. H. Ahmadi, A. Mortazavi, H. Zarei

Abstract:

Several authors have described the main mechanism of formation of cracks in the segment lining during the construction of tunnels with tunnel boring machines. A comprehensive analysis of segmental lining joints may help to guarantee a safe construction during Tunneling and serviceable stages. The most frequent types of segment damage are caused by a condition of uneven segment matching due to contact deficiencies. This paper investigated the interaction mechanism of precast concrete lining joints in tunnels. The Discrete Element Method (DEM) was used to analyze a typical segmental lining model consisting of six segment rings. In the analyses, typical segmental lining design parameters of the Ghomrood water conveyance tunnel, Iran were employed in the study. In the conducted analysis, the worst-case scenario of loading faced during the boring of Ghomrood tunnel was considered. This was associated with the existence of a crushed zone dipping at 75 degree at the location of the key segment. In the analysis, moreover, the effect of changes in horizontal stress ratio on the loads on the segment was assessed. The boundary condition associated with K (ratio of the horizontal to the vertical stress) values of 0.5, 1, 1.5 and 2 were applied to the model and separate analysis was conducted for each case. Important parameters such as stress, moments, and displacements were measured at joint locations and the surrounding rock. Accordingly, the segment joint interactions were assessed and analyzed. Moreover, rock mass properties of the Ghomrood in Ghom were adopted. In this study, the load acting on segments joints are included a crushed zone stratum force that intersect tunnel with 75 slopes in the location of the key segment, gravity force of segments and earth pressures. A numerical investigation was used for different coefficients of stress concentration of 0.5, 1, 1.5, 2 and different geological conditions of saturated crushed zone under the critical scenario. The numerical results also demonstrate that maximum bending moments in longitudinal joints occurred for crushed zone with the weaken strengths (Sandstone). Besides that, increasing the load in segment-stratum interfaces affected radial stress in longitudinal joints and finally the opening of joints occurred.

Keywords: joint, interface, segment, contact

Procedia PDF Downloads 237
140 Inclusion Complexes of Some Imidazoline Drugs with Cucurbit[N]Uril (N=7,8): Preparation, Characterization and Theoretical Calculations

Authors: Fakhreldin O. Suliman, Alia H. Al-Battashi

Abstract:

This work explored the interaction of three different imidazoline drugs, naphazoline nitrate (NPH), oxymetazoline hydrochloride (OXY) and xylometazoline hydrochloride (XYL) with two different synthesized cucurbit[n]urils CB[n], cucurbit[7]uril (CB[7]) and cucuribit[8]uril (CB[8]). Three binary inclusion complexes have been investigated in solution and in the solid state. The solid complexes were obtained by lyophilization, whereas the physical mixtures of guests and hosts at a stoichiometric ratio of 1:1 were obtained for each drug. 1HNMR, electrospray ionization mass spectrometry (ESI-MS), and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was used to study the complexes prepared in aqueous media. The lyophilized solid complexes were characterized by Fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffractometry (PXRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). MS, FT-IR and PXRD experimental results established in this work reveal that NPH, OXY and XYL molecules form stable inclusion complexes with the two hosts. The TGA and DSC confirmed the enhancement of the thermal stability of each drug and the production of a thermally stable solid complex. The 1HNMR has shown that the protons of the guests faced shifting in ppm and broadening of their peaks upon the formation of inclusion complexes with the selected CB[n]. The aromatic protons of the guest exhibited the highest changes in the chemical shifts and shape of the NMR peaks, suggesting their inclusion into the cavity of the CB[n]. The diffusion coefficients (D), developed from the diffusion-controlled NMR Spectroscopy (DOSY) measurements, for the complexation of the selected imidazoline drugs with CB[7] and CB[8], were decreased in the presence of hosts compared to the free guests indicating the formation of the guest-host adduct. Furthermore, we conducted molecular dynamic simulations and quantum mechanics calculations on these complexes. The results of the theoretical study corroborate the experimental findings and have also shed light on the mechanism of inclusion of the guests into the two hosts. This study generates initial data for potential drug delivery or drug formulation systems for these three selected imidazoline drug compounds based on their inclusion into the CB[n] cavities.

Keywords: cucurbit[n]urils, imidazoline, inclusion complexes, molecular dynamics, DFT calculations, mass spectrometry

Procedia PDF Downloads 25
139 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.

Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system

Procedia PDF Downloads 55
138 Analysis of Reflection Coefficients of Reflected and Transmitted Waves at the Interface Between Viscous Fluid and Hygro-Thermo-Orthotropic Medium

Authors: Anand Kumar Yadav

Abstract:

Purpose – The purpose of this paper is to investigate the fluctuation of amplitude ratios of various transmitted and reflected waves. Design/methodology/approach – The reflection and transmission of plane waves on the interface between an orthotropic hygro-thermo-elastic half-space (OHTHS) and a viscous-fluid half-space (VFHS) were investigated in this study with reference to coupled hygro-thermo-elasticity. Findings – The interface, where y = 0, is struck by the principal (P) plane waves as they travel through the VFHS. Two waves are reflected in VFHS, and four waves are transmitted in OHTHS as a result namely longitudinal displacement, Pwave − , thermal diffusion TDwave − and moisture diffusion mDwave − and shear vertical SV wave. Expressions for the reflection and transmitted coefficient are developed for the incidence of a hygrothermal plane wave. It is noted that these ratios are graphically displayed and are observed under the influence of coupled hygro-thermo-elasticity. Research limitations/implications – There isn't much study on the model under consideration, which combines OHTHS and VFHS with coupled hygro-thermo-elasticity, according to the existing literature Practical implications – The current model can be applied in many different areas, such as soil dynamics, nuclear reactors, high particle accelerators, earthquake engineering, and other areas where linked hygrothermo-elasticity is important. In a range of technical and geophysical settings, wave propagation in a viscous fluid-thermoelastic medium with various characteristics, such as initial stress, magnetic field, porosity, temperature, etc., gives essential information regarding the presence of new and modified waves. This model may prove useful in modifying earthquake estimates for experimental seismologists, new material designers, and researchers. Social implications – Researchers may use coupled hygro-thermo-elasticity to categories the material, where the parameter is a new indication of its ability to conduct heat in interaction with diverse materials. Originality/value – The submitted text is the sole creation of the team of writers, and all authors equally contributed to its creation.

Keywords: hygro-thermo-elasticity, viscous fluid, reflection coefficient, transmission coefficient, moisture concentration

Procedia PDF Downloads 35
137 Evaluation of Learning Outcomes, Satisfaction and Self-Assessment of Students as a Change Factor in the Polish Higher Education System

Authors: Teresa Kupczyk, Selçuk Mustafa Özcan, Joanna Kubicka

Abstract:

The paper presents results of specialist literature analysis concerning learning outcomes and student satisfaction as a factor of the necessary change in the Polish higher education system. The objective of the empirical research was to determine students’ assessment of learning outcomes, satisfaction of their expectations, as well as their satisfaction with lectures and practical classes held in the traditional form, e-learning and video-conference. The assessment concerned effectiveness of time spent at classes, usefulness of the delivered knowledge, instructors’ preparation and teaching skills, application of tools, studies curriculum, its adaptation to students’ needs and labour market, as well as studying conditions. Self-assessment of learning outcomes was confronted with assessment by lecturers. The indirect objective of the research was also to identify how students assessed their activity and commitment in acquisition of knowledge and their discipline in achieving education goals. It was analysed how the studies held affected the students’ willingness to improve their skills and assessment of their perspectives at the labour market. To capture the changes underway, the research was held at the beginning, during and after completion of the studies. The study group included 86 students of two editions of full-time studies majoring in Management and specialising in “Mega-event organisation”. The studies were held within the EU-funded project entitled “Responding to challenges of new markets – innovative managerial education”. The results obtained were analysed statistically. Average results and standard deviations were calculated. In order to describe differences between the studied variables present during the process of studies, as well as considering the respondents’ gender, t-Student test for independent samples was performed with the IBM SPSS Statistics 21.0 software package. Correlations between variables were identified by calculation of Pearson and Spearman correlation coefficients. Research results suggest necessity to introduce some changes in the teaching system applied at Polish higher education institutions, not only considering the obtained outcomes, but also impact on students’ willingness to improve their qualifications constantly, improved self-assessment among students and their opportunities at the labour market.

Keywords: higher education, learning outcomes, students, change

Procedia PDF Downloads 205
136 Information Technology Capabilities and Organizational Performance: Mediating Role of Strategic Benefits of It: A Comparison between China and Pakistan

Authors: Rehan Ullah

Abstract:

The primary purpose of the study is to observe the relationship that exists between the organizational information technology (IT) capabilities and the organizational performance in China and Pakistan. Nations like China and Pakistan utilize modern techno-how to enhance their production endeavors. Therefore, making a wide-ranging comparison of the manufacturing services between China and Pakistan was chosen due to numerous reasons. One reason for carrying out this comparison is to determine how IT of the two countries enhances organizational competency on small and medium-sized manufacturing enterprises (SMEs). The study hypothesized that organizational IT capabilities (IT infrastructure, IT competence) have a positive influence on organizational performance and the strategic benefits of IT have a mediating effect on the relationship between IT capability and organizational performance. To investigate the relationship between IT capabilities and organizational performance, surveys were sent to managers of small, medium-sized manufacturing organizations located in the southwestern region, Sichuan province of China, and Pakistani companies, which are located in Islamabad, Lahore, and Karachi. These cities were selected as typical representatives of each country. Organizational performance has been measured in terms of profitability, organizational success, growth, market share, and innovativeness. Out of 400 surveys distributed to different manufacturing organizations, 303 usable and valid responses were received that are analyzed in this research. The data were examined using SPSS and Smart PLS computer software. The results of the study, including the descriptive statistics of each variable, are used. The outer model has been measured with considerations to content validity, discriminant validity, and convergent validity. The path coefficients among the constructs were also computed when analyzing the structural model using the bootstrapping technique. The analysis of data from both China and Pakistan yields an identical but unique result. The results show that IT infrastructure, IT competence, strategic benefits of IT are all correlated to the performance of the organizations. Moreover, strategic benefits of IT have been proved to mediate the relationship between IT capabilities and organization performance. The author, concerning the role of IT on the performance of an organization, highlights the different aspects as well as its benefits in an organization. The overall study concludes several implications for both managers and academicians. It also provides the limitations of the study and offers recommendations for future studies and practice.

Keywords: organizational performance, IT capabilities, IT infrastructure, IT competence, strategic benefits of IT, China, Pakistan

Procedia PDF Downloads 67
135 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process

Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel

Abstract:

In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.

Keywords: discrete element method, physical properties of materials, calibration, granular flow

Procedia PDF Downloads 454
134 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 113